Link Prediction in Bipartite Graphs and Its Applications to Drug-Target Interaction Prediction

Speaker: 

Krisztian Buza, Institute Jozef Stefan

Date: 

07/03/2023 - 10:00

The prediction of interactions between drugs (medicines) and pharmacological targets (proteins) is one of the most prominent applications of machine learning it the pharmaceutical industry. From the theoretical point of view, the task is to predict unknown links in a bipartite graph. Compared with standard link prediction, in case of drug-target interaction prediction, additional information is available, such as the similarity between pairs of drugs and the similarity between pairs of targets. The incorporation of this additional information is one of the key components of successful drug-target interaction prediction techniques. This talk will review some of the most prominent link prediction techniques and their adapta- tion to drug-target interaction prediction ranging from simple weighted profile (a.k.a. nearest neighbor or collaborative filtering) approaches over methods based on matrix factorisation to bipartie local models and some of its recent variants.

Historia zmian

Data aktualizacji: 07/03/2023 - 15:25; autor zmian: Jarosław Miszczak (miszczak@iitis.pl)

The prediction of interactions between drugs (medicines) and pharmacological targets (proteins) is one of the most prominent applications of machine learning it the pharmaceutical industry. From the theoretical point of view, the task is to predict unknown links in a bipartite graph. Compared with standard link prediction, in case of drug-target interaction prediction, additional information is available, such as the similarity between pairs of drugs and the similarity between pairs of targets. The incorporation of this additional information is one of the key components of successful drug-target interaction prediction techniques. This talk will review some of the most prominent link prediction techniques and their adapta- tion to drug-target interaction prediction ranging from simple weighted profile (a.k.a. nearest neighbor or collaborative filtering) approaches over methods based on matrix factorisation to bipartie local models and some of its recent variants.

Data aktualizacji: 07/03/2023 - 15:25; autor zmian: Jarosław Miszczak (miszczak@iitis.pl)
The prediction of interactions between drugs (medicines) and pharmacological targets (proteins) is one of the most prominent applications of machine learning it the pharmaceutical industry. From the theoretical point of view, the task is to predict unknown links in a bipartite graph. Compared with standard link prediction, in case of drug-target interaction prediction, additional information is available, such as the similarity between pairs of drugs and the similarity between pairs of targets. The incorporation of this additional information is one of the key components of successful drug-target interaction prediction techniques. This talk will review some of the most prominent link prediction techniques and their adapta- tion to drug-target interaction prediction ranging from simple weighted profile (a.k.a. nearest neighbor or collaborative filtering) approaches over methods based on matrix factorisation to bipartie local models and some of its recent variants.
Data aktualizacji: 23/02/2023 - 13:09; autor zmian: Przemysław Głomb (przemg@iitis.pl)
The prediction of interactions between drugs (medicines) and pharmacological targets (proteins) is one of the most prominent applications of machine learning it the pharmaceutical industry. From the theoretical point of view, the task is to predict unknown links in a bipartite graph. Compared with standard link prediction, in case of drug-target interaction prediction, additional information is available, such as the similarity between pairs of drugs and the similarity between pairs of targets. The incorporation of this additional information is one of the key components of successful drug-target interaction prediction techniques. This talk will review some of the most prominent link prediction techniques and their adapta- tion to drug-target interaction prediction ranging from simple weighted profile (a.k.a. nearest neighbor or collaborative filtering) approaches over methods based on matrix factorisation to bipartie local models and some of its recent variants.
Data aktualizacji: 23/02/2023 - 13:08; autor zmian: Przemysław Głomb (przemg@iitis.pl)
Data aktualizacji: 23/02/2023 - 13:08; autor zmian: Przemysław Głomb (przemg@iitis.pl)
Przewidywanie interakcji między lekami a celami farmakologicznymi (białkami) jest jednym z najbardziej znanych zastosowań uczenia maszynowego w przemyśle farmaceutycznym. Z teoretycznego punktu widzenia zadaniem jest przewidywanie nieznanych powiązań (links) w grafie dwudzielnym (bipartite graph). W porównaniu ze standardową predykcją powiązań, w przypadku predykcji interakcji lek-cel, dodatkowo dostępne są informacje takie jak podobieństwo między parami leków lub parami białek. Włączenie tych dodatkowych informacji jest jednym z kluczowych elementów skuteczne techniki przewidywania interakcji. W tym wystąpieniu przedstawiony zostanie przegląd niektórych z najbardziej znanych technik przewidywania linków i ich adaptacji do przewidywania interakcji lek-cel, począwszy od prostego profilu ważonego (simple weighted profile) (inaczej najbliższego sąsiada lub filtrowanie kolaboracyjne) nad metodami opartymi na faktoryzacji macierzy do dwustronnych modeli lokalnych i niektórych jego ostatnich wariantów. Seminarium odbędzie się w języku angielskim.