
Institute of Theoretical and Applied Informatics, Polish
Academy of Sciences

Validation and benchmarking of
quantum annealing technology

Doctoral dissertation

mgr Konrad Jałowiecki

Supervisor:
dr hab. Bartłomiej Gardas

Co-supervisor:
dr hab. inż. Łukasz Pawela

Katowice, November 24, 2023





Instytut Informatyki Teoretycznej i Stosowanej Polskiej
Akademii Nauk

Walidacja i testowanie
porównawcze technologii
kwantowego wyżarzania

Rozprawa doktorska

mgr Konrad Jałowiecki

Promotor:
dr hab. Bartłomiej Gardas

Promotor pomocniczy:
dr hab. inż. Łukasz Pawela

Katowice, 24 listopada 2023





Contents

Acknowledgements iii

Published work v

Abstract vii

Streszczenie ix

1 Introduction 1

2 Ising model and QUBO problem 5
2.1 Ising model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Algorithms and complexity . . . . . . . . . . . . . . . . . . . . 8
2.3 Complexity classes . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4 Ising model and complexity . . . . . . . . . . . . . . . . . . . . 10
2.5 Algorithms for solving Ising model . . . . . . . . . . . . . . . . 11
2.6 Quadratic Unconstrained Binary Optimization . . . . . . . . . 13

3 Quantum annealing and GPU computing 17
3.1 Adiabatic quantum computation and quantum annealing . . . . 17
3.2 Nvidia CUDA . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4 Simulating dynamics of quantum systems using quantum
annealing 39
4.1 Parallel in time simulation of dynamical systems . . . . . . . . 40
4.2 Solving systems of linear equations as an optimization problem 42
4.3 Discretizing variables . . . . . . . . . . . . . . . . . . . . . . . . 42

i



ii CONTENTS

4.4 Parallel-in-time simulations with quantum annealer . . . . . . . 44

5 Solving spin-glass problems using tensor networks 49
5.1 Exploring the probability space . . . . . . . . . . . . . . . . . . 49
5.2 Branch and bound . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.3 PEPS network construction . . . . . . . . . . . . . . . . . . . . 52
5.4 Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6 Brute–forcing spin–glass problems with CUDA 59
6.1 Finding low–energy spectrum with CUDA . . . . . . . . . . . . 60
6.2 Example application: verifying MPS-based optimization algo-

rithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
6.3 Improving the algorithm using Gray Code . . . . . . . . . . . . 67

7 Railway conflict management 79
7.1 Overview of the problem . . . . . . . . . . . . . . . . . . . . . . 79
7.2 The mathematical model . . . . . . . . . . . . . . . . . . . . . . 81
7.3 Discretizing delays . . . . . . . . . . . . . . . . . . . . . . . . . 84
7.4 Dispatching conditions and the penalties . . . . . . . . . . . . . 85
7.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

Bibliography 103

A Asymptotic notation 111

B Conditional probability on square lattice 113

C Dispatching conditions 115
C.1 The minimum passing time condition. . . . . . . . . . . . . . . 115
C.2 The single block occupation condition. . . . . . . . . . . . . . . 116
C.3 The deadlock condition . . . . . . . . . . . . . . . . . . . . . . 117
C.4 The rolling stock circulation condition . . . . . . . . . . . . . . 117
C.5 The capacity condition . . . . . . . . . . . . . . . . . . . . . . . 118



Acknowledgements

I am deeply grateful to my supervisor, dr hab. Bartłomiej Gardas, whose
unwavering support and insightful guidance have been instrumental in shaping
this doctoral thesis. His expertise, encouragement, and mentorship have been
invaluable, and I am truly fortunate to have had the opportunity to work under
his supervision.

I would also like to express my sincere appreciation to my co-supervisor,
dr hab. inż. Łukasz Pawela, for his constructive feedback, especially in the
field of software engineering. His expertise and willingness to share knowledge
have significantly enriched the quality of this thesis.

I would also like to express my gratitude to all my colleagues from the
Institute who contributed to this thesis via many fruitful conversations I had
with them. In particular, I would like to thank Krzysztof Domino for sharing
his knowledge and expertise in the railway dispatching field.

Additionally, I extend my deepest gratitude to my friends, Alexander Juda,
Michał Stęchły, and Paweł Grzybek, for taking the time to read parts of this
thesis. Their valuable feedback contributed greatly to improving the readabil-
ity and overall quality of this work.

This project was partially supported by the National Science Center (NCN),
Poland, under Projects: Sonata Bis 10, No. 2020/38/E/ST3/00269 and the
National Centre for Research and Development (NCBR), Poland, under Project
No. POIR.01.01.01-00-0061/2. I would also like to thank The Quantum Data
Center Corporation for providing me with access to several GPUs used for
benchmarks presented in this thesis.

iii





Published work

Publications relevant for this dissertation

[1] K. Jałowiecki, A. Więckowski, P. Gawron, and B. Gardas, Parallel in time
dynamics with quantum annealers, Sci. Rep. 10 (2020).

[2] M. M. Rams, M. Mohseni, D. Eppens, K. Jałowiecki, and B. Gardas, Ap-
proximate optimization, sampling, and spin-glass droplet discovery with tensor
networks, Phys. Rev. E 104 (2021).

[3] K. Jałowiecki, M. M. Rams, and B. Gardas, Brute-forcing spin-glass problems
with CUDA, Comput. Phys. Commun. 260, 107728 (2021).

[4] K. Domino, M. Koniorczyk, K. Krawiec, K. Jałowiecki, S. Deffner, and B.
Gardas, Quantum annealing in the NISQ era: railway conflict management,
Entropy 25 (2023).

[5] K. Jałowiecki and Ł. Pawela, Omnisolver: An extensible interface to Ising
spin–glass and QUBO solvers, SoftwareX 24, 101559 (2023).

Other publications

[6] K. Jałowiecki, P. Lewandowska, and Ł. Pawela, PyQBench: A Python li-
brary for benchmarking gate-based quantum computers, SoftwareX 24, 101558
(2023).

v

https://www.nature.com/articles/s41598-020-70017-x
https://journals.aps.org/pre/abstract/10.1103/PhysRevE.104.025308
https://www.sciencedirect.com/science/article/abs/pii/S001046552030360X
https://www.mdpi.com/1099-4300/25/2/191
https://www.sciencedirect.com/science/article/pii/S2352711023002558
https://www.sciencedirect.com/science/article/pii/S2352711023002546
https://www.sciencedirect.com/science/article/pii/S2352711023002546




Abstract

In this thesis, we focus on the problem of validating and benchmarking quan-
tum annealers in a practical context. To this end, we propose two algorithms
for solving real-world problems and test how well they perform on the current
generation of quantum annealers. The first algorithm allows for solving the dy-
namics of quantum systems (or, in fact, any dynamical systems). The second
of the proposed algorithms is suitable for solving a particular family of rail-
way dispatching problems: the delay and conflict management on single-track
railway lines. We assess the performance of those algorithms on the current
generation of D-Wave quantum annealers with the assistance of two novel,
classical strategies for solving an Ising model also presented in the thesis. The
first, tensor network-based approach is a heuristic algorithm specifically tai-
lored for solving instances defined on Chimera-like graphs, thus making it ideal
for providing a baseline with which the results from physical annealers can be
compared. The other presented approach is a massively parallel implemen-
tation of the exhaustive search through the whole solution space, also known
as the brute-force approach. Although the brute-force approach is limited to
moderate instance sizes, it has the advantage of being able to compute the low
energy spectrum and certify the solutions. Thus, it can be used to obtain ad-
ditional insight into the solution space structure. The results obtained in our
experiments suggest that already present-day quantum annealers are capable
of solving a subset of the aforementioned optimization problems. In particu-
lar, we show that the D-Wave annealers are capable of capturing the dynamics
of a simple two-level quantum system in a specific regime of parameters, and
can be used to obtain good-quality solutions for instances of railway conflict
management problems. Finally, our findings make it clear that the current

vii



viii ABSTRACT

generation of the D-Wave annealers is far from perfect. We discuss problem
instances for which the annealers failed to find a good or even feasible solution.
We also provide, where possible, a plausible explanation of why some of the
presented problems might be hard for the annealers.



Streszczenie

W niniejszej pracy skupiamy się na problemie walidowania i benchmarkowa-
nia wyżaraczy kwantowych w praktycznym kontekście. W tym celu, przed-
stawiamy dwa algorytmy służące do rozwiązywania rzeczywistych problemów,
oraz sprawdzamy, jak dobrze sprawdzają się na obecnej generacji wyżaraczy
kwantowych. Pierwszy z algorytmów pozwala na rozwiązywanie dynamiki
kwantowych układów (lub, w gruncie rzeczy, dowolnych układów dynamicz-
nych). Drugi z przedstawianych algorytmów może z kolei zostać użyty do
rozwiązywania pewnego podzbioru kolejowych problemów dyspozytorski: za-
rządania opóźnieniami i konfliktami w sieciach kolejowych o jednej linii. Oceny
działania obu w.w. algorytmów na bieżącej generacji wyżaraczy D-Wave doko-
nujemy z pomocą dwóch, nowatorskich, klasycznych strategii rozwiązywania
szkieł spinowych Isinga, które również prezentujemy w niniejszej rozprawie.
Pierwszym z nich jest opierający się na sieciach tensorowych heurystyczny
algorytm stworzony specjalnie do rozwiązywania szkieł spinowych zdefiniowa-
nych na grafach przypominających topologię Chimera, co sprawia, że idealnie
nadaje się do wyznaczania referencyjnych rozwiązań, do których można po-
równać wyniki z fizycznych wyżarzaczy. Drugim z prezentowanych podejść
jest masywnie równoległa implementacja wyczerpującego przeszukiwania całej
przestrzeni rozwiązań, tzw. brute-force. Mimo, że użycie algorytmu brute-
force jest ograniczone do instancji o niewielkich rozmiarach, posiada on tę
zaletę, że może wyznaczać niskoenergetyczne spektrum, oraz certyfikować roz-
wiązania. W związku z tym, algorytm przeszukiwania wyczerpującego może
slużyć do uzyskania dodatkowego wglądu w strukturę przestrzeni rozwiązań.
Wyniki otrzymane w naszych eksperymentach sugerują, że już współczesne wy-
żarzacze są w stanie uchwycić dynamikę prostych, dwupoziomowych układów

ix



x STRESZCZENIE

kwantowych w specyficznym reżimie parametrów, oraz mogą znaleźć dobrej ja-
kości rozwiązania instancji kolejowych problemów dyspozytorskich. Wreszcie,
nasze eksperymenty pokazują jasno, że obecna generacja wyżaraczy D-Wave
nie jest idealna. Wymieniamy instancje problemów, dla których wyżarzanie
nie potrafily znaleźść wysokojakościowych, lub nawet dopuszczalnych rozwią-
zań. Tam gdzie to możliwe, omawiamy również możliwe wyjaśnienie dlaczego
niektóre z prezentowanych instancji mogą być dla wyżaraczy wymagające.



Chapter 1

Introduction

The previous century has witnessed what is now called the digital revolution.
The introduction of digital computers dramatically altered multiple aspects of
our lives. In particular, almost every area of science benefitted hugely from
the increasingly available computational power [7]. Physics was no exception,
and numerical simulations now commonly assist experiments.

Simulating quantum systems – a holy grail of modern computational physics
– is a highly challenging task for classical computers [8]. The difficulties can be
blamed on the enormous number of possible configurations of such systems.
Direct, naive simulations would require solving systems of differential equa-
tions with the number of variables exponential in the number of particles. But
what about using more sophisticated algorithms? Surprisingly, it is commonly
believed that a sufficiently efficient classical algorithm for simulating quantum
systems does not exist [8, 9]. Matters seem even worse when one considers
that the increase in the classical devices’ computational power cannot accel-
erate infinitely. Moore’s law [10], which so far well predicted this growth, is
expected to slow down in the years to come [11, 12].

If classical computers cannot simulate quantum physics efficiently, what de-
vice can? In the 1980s, Richard Feynman and Paul Benioff put forward the idea
that quantum devices can be used to carry simulations of quantum systems [8,
13]. This idea led to the development of several quantum computation models.
In 1985 David Deutsch described a universal, gate-based quantum computer
[14], a device capable of simulating any other quantum computer with at most

1



2 CHAPTER 1. INTRODUCTION

polynomial slowdown. The 1990s and the early 2000s saw the emergence of an-
other model of quantum computation, Adiabatic Quantum Computing (AQC)
[15, 16]. Interestingly, AQC was later proven to be equivalent to the standard
gate-based model [17].

Just like a classical computer, a quantum computer needs software to run,
and software is based on algorithms, describing how the computation should
be performed. It is not a surprise that quantum computers operate in a very
different way than classical ones, and require different, specialized algorithms.
What is surprising is that several notable quantum algorithms were developed
even before the first quantum computers were constructed. In 1994 Peter Shor
published his, now famous, algorithm for integer factorization [18]. Shor’s
algorithm demonstrated that quantum computers are (in principle) capable
of solving problems intractable by the classical ones [19]. It was also shown
that quantum computers could offer a significant performance boost for easier
problems. For instance, in 1996 Grover presented a quantum algorithm for
unstructured database search [20], offering a quadratic speed-up over classical
algorithms solving the same problem.

The invention of specialized quantum algorithms further fuelled interest in
the field. In recent years, we observed the development of hardware that brings
us closer to the quantum revolution. Several implementations of gate–based
quantum computers [21, 22] and quantum annealers [23, 24] were constructed
and made publicly available. This allowed scientists to benchmark them and
further research their possible applications.

However promising, current quantum computers are far from perfect [25,
26]. Can those noisy devices already be used to solve some real-world prob-
lems? And how does one approach validating if this is the case? In this thesis,
we try to answer these questions, focusing solely on a specific type of quantum
computer – namely, the D-Wave quantum annealers.

Layout of the thesis

We begin the thesis with an introduction to Ising and QUBO models (col-
lectively known as Binary Quadratic Models) in Chapter 2. This chapter’s
purpose is to lay the necessary foundations for understanding optimization
problems that can be, at least in principle, solved using quantum annealers.



3

In Chapter 3 we introduce technologies and devices used for conducting
research presented in this thesis. Quite naturally, the first of those devices
are quantum annealers. We briefly describe the principle of operation of these
devices and then move on to discuss currently available models. We also
describe NVIDIA CUDA, another technology that we used for implementing
the brute-force algorithm presented in Chapter 6.

It is widely believed that a noiseless universal quantum computer would
be capable of simulating quantum systems. But what about the near-term
quantum devices? In Chapter 4 we explore the idea of simulating the evolution
of dynamical (not necessarily quantum) systems using quantum annealers.
We describe how to represent the task of simulating the dynamics as a static
optimization problem and then present experimental results obtained from the
D-Wave annealer. We find out that for small systems, the annealer is able to
faithfully capture the dynamics. We also discuss possible sources of errors for
the problem instances that the annealers failed to solve. While our algorithm
is only a proof of concept, it exemplifies possible directions of future research.

A key component in assessing the performance of current quantum anneal-
ers is comparing them to the classical algorithms solving the same problems.
While there exists a plethora of general heuristic methods for finding a ground
state of Ising spin-glass, one can ask if it is possible to construct a better algo-
rithm tailored for problems defined on the same graph as the physical device.
In Chapter 5, we present a recent, heuristic algorithm for finding the low-
energy spectrum of an Ising spin-glass based on tensor networks, specifically
suited for problems defined on Chimera-like graphs.

Chapter 6 describes a fast, parallel approach to exhaustively searching for
a low-energy spectrum of Ising spin-glass problems. Our method is suitable
for solving small (less than 54 spins), but otherwise arbitrary instances. The
presented approach can be used for benchmarking other algorithms that can-
not certify their solution. Moreover, the possibility of finding a low-energy
spectrum (instead of a single solution) is extremely useful for analyzing the
structure of the energy landscape of the problem. We exemplify the usage
of our algorithm by conducting benchmarks of a recent MPS-based algorithm
on a set of random spin-glass problems. Compared to the original algorithm
presented in [3], the algorithm described in Chapter 6 contains several new,



4 CHAPTER 1. INTRODUCTION

non-trivial optimizations further increasing the problem sizes that it can tackle.
To the best of our knowledge, those optimizations make our implementation
the fastest brute-force solver for Ising problems available on the market.

Lastly, in Chapter 7, we present the application of quantum annealing to
solving certain railway dispatching problems. We discuss how such problems
can be converted to QUBO problems suitable for running on the annealer. We
then report the performance of the current generation of quantum annealers
on a set of dispatching problems constructed for real Polish railway networks.
Presented benchmarks extend results presented in [4] to the newer genera-
tion of quantum annealers. Compared to [4], we also include a more detailed
discussion on the influence of penalty terms on the quality of results.



Chapter 2

Ising model and QUBO problem

Quantum annealers are fundamentally different from classical computers. For
one, they don’t execute programs written as a sequence of instructions in their
memory. Instead, they are single-purpose devices capable (in principle) of
solving a specific optimization problem. Namely, annealers are designed to
find the lowest energy configuration (called ground state) of instances of the
Ising spin–glass model, which we introduce in this chapter.

The potential usefulness of quantum annealers stems from the fact that the
optimization problem they are supposed to solve is hard for classical comput-
ers. But what does it formally mean for a problem to be hard? To answer this
question, we will need a brief recap of complexity theory, which is a second
point of this chapter.

Finding a ground state of the Ising spin–glass model may be hard for
classical computers, but there exists a plethora of heuristic, classical algorithms
capable of finding solutions that are at least “good enough”. As the next
point in this chapter, we provide a brief overview of the most popular classical
algorithms for solving the Ising spin-glass problems. These algorithms will
serve as a baseline for comparison with quantum annealing and a recent tensor
network-based approach discussed later in the thesis.

As the last point in the chapter, we define the Quadratic Unconstrained
Binary Optimization (QUBO) problem, which is equivalent to the problem of
finding the ground state of the Ising model. We will use the QUBO formulation
on several occasions in the thesis, as it oftentimes results in a more natural

5



6 CHAPTER 2. ISING MODEL AND QUBO PROBLEM

phrasing of the problem, or leads to a surprising performance improvement
when implementing software solvers.

2.1 Ising model

The Ising spin–glass model was introduced in 1920 by Wilhelm Lenz [27] as a
description of ferromagnetism in solids but is named after his student Ernst
Ising, who studied and solved it in the one-dimensional case [28]. For purposes
of this thesis, however, we will forget about the physical interpretation of the
model, treating it merely as a description of a particular optimization problem.

Consider a simple1, undirected graph G = (V,E) with N nodes labeled
by consecutive natural numbers. With each node i ∈ V we associate a spin
variable si ∈ {−1, 1}. To each edge {i, j} ∈ E we assign an interaction strength
Jij and to each node i ∈ V we assign a local magnetic field hi. Here, all Jij and
hi are real numbers. For such a system, one can define the following energy
function (Hamiltonian):

H(s) =
∑
⟨i,j⟩

Jijsisj +
N∑
i=1

hisi, (2.1)

where s = (si, . . . , sN ) and the first sum runs over all edges exactly once2. In
this thesis, we will call the instances of the Ising model Ising spin-glasses. An
illustrative representation of a spin-glass is depicted in Fig. 2.1.

For fixed model coefficients, one is typically interested in finding its ground
state, a configuration s that minimizesH. More generally, it might be desirable
to search for k ≪ 2N configurations with the lowest energy, a so-called low-
energy spectrum of size k.

1That is, one that does not contain duplicate edges or loops.
2In the literature, the Ising Hamiltonian (2.1) is often negated. However, the definition

provided here is consistent with the one used by D-Wave, and thus more suitable for use in
this thesis.



2.1. ISING MODEL 7

hi

Jij

Figure 2.1: Symbolic representation of Ising spin–glass defined on the graph with N =
16 nodes. Here, hi is a real number associated with i-th node, and Jij denotes coupling
strength associated with an edge between i-th and j-th node. The configuration of
each spin is marked by a red arrow pointing upwards (+1) or a blue arrow pointing
downwards (-1).

Example 2.1. Consider an Ising model instance with 3 spins given by the
Hamiltonian H:

H(s1, s2, s3) = s1 − s2 + 2s3 − 2s2s3 + 3s1s2 (2.2)

This instance has 8 possible states:

s = (s1, s2, s3) H(s) s = (s1, s2, s3) H(s)

(-1, -1, -1) -1 (1, -1, -1) -5
(-1, -1, 1) 7 (1, -1, 1) 3
(-1, 1, -1) -5 (1, 1, -1) 3
(-1, 1, 1) -5 (1, 1, 1) 3

Table 2.1: All possible configurations for the Ising Hamiltonian in the equation (2.2).

Observe that the lowest attainable energy is -5 and there are 3 states
with exactly this energy. Hence, all the configurations (−1, 1,−1), (−1, 1, 1),
(1,−1,−1) are ground states. This situation, i.e. when two or more states
share the same energy, is called degeneracy and the states in question are
called degenerate. For this instance, a low energy spectrum of size k = 5

comprises all ground states, the (−1,−1,−1) state with H(−1,−1,−1) = −1

and any of the states with H(s) = 3.



8 CHAPTER 2. ISING MODEL AND QUBO PROBLEM

Despite the simple formulation, the problem of finding a ground state of
Ising spin–glass is computationally hard [29]. Before expanding on this idea,
let us first introduce the hierarchy of complexity classes.

2.2 Algorithms and complexity

Solving the computational problem requires a suitable algorithm, a description
of steps to be performed by a computer to obtain a solution. It is hardly sur-
prising that some problems might be solved in more than one way, i.e. there
might exist different algorithms performing essentially the same task. Different
algorithms solving the same problems might vastly differ in their demand on
various resources, like memory or time needed to execute them. In practice,
the execution time (and usage of other resources) of a given algorithm might
also vary between its implementations, depending on factors like programming
language or libraries used and the hardware it is executed on. Moreover, mea-
suring execution time can only tell us how the given implementation performs
on a specific problem. But if we increase the problem size tenfold, will the
execution time be 10 times slower? Or maybe 100 times slower? Or maybe
it will remain unchanged? Clearly, measuring execution times is useful, but
cannot be used for comparing algorithms (instead of their implementations).
Instead, it is more informative to characterize algorithms based on how their
execution time scales asymptotically with increasing problem size [30]. For
instance, given an algorithm with execution time roughly proportional to the
input size N , one might suspect that for problem instances large enough, it
will perform better than the one with execution time proportional to N2. This
characteristic, known as computational complexity3, can be formalized by a
big-O notation (see appendix for a more detailed description). Using this no-
tation, the algorithms from the above example would be classified as O(N)

and O(N2) respectively.

3Note that here we focus only on time complexity, but other notions like memory com-
plexity can be defined similarly



2.3. COMPLEXITY CLASSES 9

2.3 Complexity classes

Although there might exist more than one algorithm for solving a particular
problem, one might consider the smallest time complexity needed to do so.
Consequently, one might group computational problems based on their demand
on resources. In this view, sets of similar problems are called complexity classes
[30]. The definition of some complexity classes might also be restricted to
specific types of problems. For instance, one might consider only decision
problems, i.e. problems to which the answer is yes or no [30]. Finally, to
define any complexity class one has to assume some model of computation. In
many cases, this model is assumed to be a Turing Machine [30], a theoretical
device manipulating symbols on a tape using some table of rules, or its non-
deterministic variant.

One of the fundamental complexity classes is P, a class of decision problems
solvable in polynomial time on a deterministic Turing Machine [30]. Another
class, NP, comprises all decision problems whose solution can be verified in
polynomial time using a deterministic Turing Machine [30]. Immediately, one
can see that P ⊂ NP. Indeed, if a problem is solvable in polynomial time, then
it is also trivially verifiable in polynomial time. However, it is not immediately
obvious if the inclusion is strict, and the question of whether P ̸= NP is one
of the most important, yet unsolved problems in theoretical computer science
[31]. The class of NP–hard problems comprises all the problems that are at
least as hard as every problem in NP. More formally, a decision problem S

is NP–hard if and only if solving every problem in NP can be reduced to
solving S a polynomial number of times [30]. A particular subclass of NP–
hard problems, NP–complete, is an intersection of NP and NP–hard [30].
Figure 2.2 shows the relationship between the discussed complexity classes,
both under assumptions P = NP and P ̸= NP.

Problems in the complexity class P are often considered tractable, or effi-
ciently solvable, whereas problems not in P are perceived as hard and compu-
tationally demanding, a statement known as the Cobham’s thesis [30, 32]. At
first, one might find it strange and unintuitive - a decision problem for which
the best-known algorithm runs in O(N105) time is definitely in P, but can
hardly be called efficiently solvable. However, such large polynomial complex-
ities are rarely encountered in practice. Furthermore, even in such cases, it is



10 CHAPTER 2. ISING MODEL AND QUBO PROBLEM

NP

P

NP–complete

NP–hard
NP–hard

NP = P = NP–complete

P 6= NP P = NP

Figure 2.2: Hierarchy of basic complexity classes. Under the assumption of P ̸= NP
(left), the hierarchy is richer and there exist problems in NP that are not NP–
complete. Under the opposite assumption (right), the hierarchy collapses. Notice
that in both cases there exist NP–hard problems that are not in NP

not uncommon that a better algorithm is found shortly after the original one
is discovered [30].

2.4 Ising model and complexity

Thus far, we only discussed classes of decision problems. How do they relate
to the problem of finding a ground state of the Ising model? Suppose we are
given an Ising model instance with hamiltonian H and let x ∈ R be some fixed
number. Consider the problem of deciding whether there exists s such that
H(s) ≤ x. We will call this problem a decision version of the Ising problem.

If we can minimize H, we can also solve the decision problem by simply
finding a ground state and checking if its energy exceeds threshold x. On the
other hand, the sole capability of solving the decision version of a problem
does not give us an algorithm for solving an original optimization problem.
Therefore, one can see that the optimization problem is at least as hard as
the corresponding decision problem. Of course, the same reasoning applies for
other optimization problems. Hence, if the decision version of an optimization
problem is NP–hard, the optimization problem is sometimes also called NP–



2.5. ALGORITHMS FOR SOLVING ISING MODEL 11

hard, even if it slightly abuses the terminology. For simplifying the vocabulary,
in what follows we will use this slightly imprecise but more concise convention.

It was shown that finding a ground state of the Ising spin–glass in the case of
three-dimensional lattices, as well as for some planar graphs, is NP–hard [29].
The decision version of the problem is NP–complete. Multiple known NP–
hard problems, such as Travelling Salesman Problem, Hamiltonian Cycles
Problem or Set Cover Problem are reducible to finding the ground state of
Ising spin-glass [33].

As a side note, one might be tempted to think that the NP–hardness of
finding Ising model’s ground state is trivial, because its enormous state space
comprises 2N states. However, it is important to remember that the size of
the solution space itself is not enough to reason about the problem’s hardness.
For instance, the number of possible spanning trees in the complete graph of
N vertices is N (N−2), yet the minimum spanning tree problem is solvable in
polynomial time via several algorithms [34].

2.5 Algorithms for solving Ising model

As is the case with many NP–hard optimization problems, there are many
heuristic approaches for solving the Ising model. One family of such algorithms
relies on the Metropolis-Hastings [35] algorithm for sampling configurations
from the underlying Boltzmann distribution. In simulated annealing [36, 37],
one samples states from the system while lowering the temperature over time.
Thus, the chance of accepting a locally worse solution is greater at the start
of the algorithm, which helps avoid getting stuck in a local minimum, and
decreases with each iteration. In another approach from the same family, par-
allel tempering, one simulates several replicas of the system, each of them in
a different temperature. Neighboring replicas are allowed to exchange states,
with exchange probability depending on their energy and temperature differ-
ence [38]. Replicas with higher temperatures explore state space rapidly (thus
reseeding the algorithm), while ones with lower temperatures refine the best
solutions found so far. Various modifications of the aforementioned algorithms
exist. For instance, one could employ isoenergetic cluster moves [39] or adap-
tive choosing of the number of sweeps performed between replica exchanges



12 CHAPTER 2. ISING MODEL AND QUBO PROBLEM

[40]. Population annealing is yet another Monte Carlo method, sharing similar-
ities with simulated annealing and parallel tempering [41]. Other approaches
for solving Ising spin–glasses include methods involving branch–and–bound
framework [42], its chordal extensions [43] or methods based on simulating
dynamical systems [44].

epochs

te
m
p
e
ra

tu
re

epochs

te
m
p
e
ra

tu
re

a.

b.

Figure 2.3: a. Schematic representation of the simulated annealing algorithm. b.
Schematic representation of the Parallel tempering algorithms. In simulated anneal-
ing, a single copy of the system is simulated. The temperature of the system is
decreased with each epoch, thus reducing movement through the state space. In
parallel tempering, several copies (replicas) of the system are simulated, each with
a fixed temperature. Hotter replicas move through the state space rapidly and less
predictably, while colder replicas move conservatively. Between epochs, replicas can
exchange states, which helps avoid being stuck at local minima. Exchanging replicas
can also be viewed as reseeding of the colder replicas by randomized solutions pro-
vided by hotter replicas.



2.6. QUADRATIC UNCONSTRAINED BINARY OPTIMIZATION 13

2.6 Quadratic Unconstrained Binary Optimization

Let us now shift our attention to QUBO – the Quadratic Unconstrained Binary
Optimization problem. QUBO is essentially the same as the problem of finding
the ground state of Ising spin–glass, except that in QUBO one uses binary
variables qi ∈ {0, 1} instead of ±1 spin variables. To distinguish between the
two problems, we will use symbols aij and bi to denote respectively quadratic
and linear coefficients in QUBO, so the energy function to be minimized can
be written as:

F (q1, . . . , qN ) =
∑
⟨i,j⟩

aijqiqj +

N∑
i=1

biqi, (2.3)

where, as in the Ising model, the first sum runs through all the edges of the
graph on which the problem is defined.

The QUBO and Ising formulations are essentially equivalent. Indeed, it is
always possible to transform the Ising Hamiltonian (2.1) into the QUBO cost
function by a linear substitution of variables si 7→ 2qi − 1. Then, one obtains
function F like in the equation (2.3), with the following values for aij and bi:

aij = 4Jij , bi = 2hi − 2
∑
⟨i,j⟩

Jij , (2.4)

where the last sum runs over all neighbors of node i. The obtained function
F differs from the original H by the constant offset:

F (q)−H(s) =

N∑
i=1

hi −
∑
⟨i,j⟩

Jij , (2.5)

which is irrelevant to the optimization process.

Example 2.2. Let us go back to the previous example and convert the Ising
Hamiltonian from the equation (2.2) to an equivalent QUBO. We compute the
coefficients using formulas from the equation (2.4) to obtain:

b1 = 2h1 − 2J12 = −4 a12 = 4J12 = 12

b2 = 2h2 − 2(J12 + J23) = −4 a23= 4J23 = −8

b3 = 2h3 − 2J23 = 8.

(2.6)



14 CHAPTER 2. ISING MODEL AND QUBO PROBLEM

This gives the following energy function:

F (q1, q2, q3) = −4q1 − 4q2 + 8q3 + 12q1q2 − 8q2q3. (2.7)

The possible system configurations and their energies are listed in the table
2.7 below. Observe that the difference between QUBO and Ising energies for
corresponding configurations is always 1, which is exactly what we get if we
computed the offset explicitly:

offset = h1 + h2 + h3 − J12 − J23 = 1. (2.8)

q = (q1, q2, q3) F (q) q = (q1, q2, q3) F (q)

(0, 0, 0) 0 (1, 0, 0) -4
(0, 0, 1) 8 (1, 0, 1) 4
(0, 1, 0) -4 (1, 1, 0) 4
(0, 1, 1) -4 (1, 1, 1) 4

Table 2.2: All configurations for example QUBO from the equation (2.7).

We will conclude this chapter by discussing alternative notation for QUBO
problems when the problem is defined on a complete graph. In such a case,
the first sum in the equation (2.3) runs through all the possible pairs i, j, and
thus F can be written as:

F (q1, . . . , qN ) =
N∑
i=1

N∑
j=i+1

aijqiqj +
N∑
i=1

biqi, (2.9)

One can now define a n× n real symmetric matrix Q with coefficients:

Qij =


bi i = j

aij i < j

aji j < i

(2.10)

Having in mind that squaring a binary variable does not change its value, we
can again rewrite F as:

F (qi, . . . , qN ) =
∑
i≤j

Qijqiqj =
∑
j≤i

Qijqiqj . (2.11)



2.6. QUADRATIC UNCONSTRAINED BINARY OPTIMIZATION 15

Moreover, since it is always possible to view any given QUBO as a one de-
fined on a complete graph (by introducing artificial edges with weights 0), the
equation (2.11) provides a one–to–one correspondence between real symmetric
matrices and QUBO problems. We will see the benefits of this correspondence
when discussing the brute-force algorithm in Chapter 6.





Chapter 3

Quantum annealing and GPU
computing

After introducing the Ising model, our next task is to present the technolo-
gies used in the research conducted for this thesis. Since the main point of
this thesis is benchmarking quantum annealers, it is only natural that we
start by introducing the reader to the concepts of adiabatic quantum compu-
tations and quantum annealing. The second part of the chapter is devoted
to Nvidia CUDA, a technology allowing massively parallel computations on
general-purpose graphics processing units (GPUs).

3.1 Adiabatic quantum computation and quantum
annealing

Adiabatic Quantum Computation

One of the possible models of quantum computing is Adiabatic Quantum Com-
putation (AQC) [16]. AQC ties closely with quantum annealing, and hence
we will shortly discuss how it works in general. Before we describe how the
computations are performed in this model, we will take a closer look at the
underlying adiabatic theorem, which can be stated as follows [16, 45]:

Theorem 1 (Adiabatic theorem). Suppose we are give a time-dependent
Hamiltonian H̃(t) with eigenenergies E1(t) ≤ E2(t) ≤ . . . ≤ Ei(t) ≤ . . . and

17



18 CHAPTER 3. QUANTUM ANNEALING AND GPU COMPUTING

corresponding eigenstates |ψi(t)⟩. Further, suppose we are given a physical
system S evolving according to H(t) = H̃(t/T ) and let |ψ(t)⟩ denote the state
of S at time t. If |ψ(0)⟩ = |ψn(0)⟩, then also |ψ(t)⟩ = |ψn(t)⟩ for all time t,
provided that T is large enough and for all t there exists a non-zero difference
between En(t) and the rest of the H(t)’s spectrum.

One conclusion to the adiabatic theorem is of particular importance to
quantum computation. If the system is prepared in a ground state, has a
non-zero gap between its ground energy and the energy of the first excited
state, and is evolved slowly enough, it will stay in the ground state during the
whole evolution. Knowing this we can finally discuss how AQC works. First,
an optimization problem to be solved is encoded as a ground state of some
Hamiltonian Htarget. Then, a physical system is prepared in a ground state
of some simpler Hamiltonian, Hinitial. After that, the system is driven slowly
from Hinitial to Htarget. By adiabatic theorem, the system ends up in a ground
state of Htarget, and after the measurement is performed the solution to the
original problem can be decoded.

In Quantum Annealing (QA), one follows essentially the same procedure
as in Adiabatic Quantum Computing. What is different, is that the evolution
of the system in QA does not have to be adiabatic [46]. We will describe in
more detail how Quantum Annealing works on a concrete example later in this
chapter when we discuss D-Wave annealers.

D-Wave quantum annealers

The first commercially available quantum annealer was D-Wave One, which
was introduced by D-Wave company in 2011 [23], featuring 128 qubits. Since
then, multiple improved generations of D-Wave annealers have been released.
At the time of writing, the newest series of D-Wave annealers is called the
Advantage system. Devices in this series utilize a chip with at least 5000

qubits. Table 3.1 summarizes the release history of D-Wave annealers and
highlights the differences between their generations.

As already mentioned in the introduction, D-Wave annealers are built to
find the ground states of the classical Ising spin–glasses. In these devices, the
spin variables correspond to physical two-level systems, called qubits, which are
implemented using Josephson junctions [47, 48]. At the end of the annealing



3.1. AQC AND QUANTUM ANNEALING 19

process, the (quantum) Hamiltonian of the annealer has to correspond to the
classical Ising Hamiltonian of the spin-glass instance being solved, i.e.:

Htarget =

N∑
i=1

hiσ̂
(i)
z +

∑
<i,j>

Jij σ̂
(i)
z σ̂(j)z , (3.1)

where N , as previously, is the number of spins, σ̂(i)x , σ̂(i)z denote Pauli operators
acting on i-th qubit, and hi, Jij ∈ R are coefficients of the instance. Note that
finding the ground state of such Hamiltonian is equivalent to finding the ground
state of its classical counterpart (c.f. eq. (2.1)). For small system sizes, this
can be accomplished by listing all possible configurations and sorting them
with respect to their energies.

More precisely, the time-dependent Hamiltonian implemented by the D-
Wave devices is of the form:

H(t) = −A(t)
2

N∑
i=1

σ̂(i)x +
B(t)

2

 N∑
i=1

hiσ̂
(i)
z +

∑
<i,j>

Jij σ̂
(i)
z σ̂(j)z

 . (3.2)

where t ∈ [0, τ ] [49]. The tunneling energy curve A(t) is monotonically de-
creasing and it vanishes as t approaches τ . Similarly B(t) is monotonically
increasing, and the functions satisfy A(0) ≫ B(0) and B(τ) ≫ A(τ). Illustra-
tive plots of the functions A and B are presented in Fig. 3.1.

Since the variables in the spin–glass being solved have to correspond to the
physical qubits, it is clear that the number of qubits of the device limits the size
of the input problem. However, it is not the only factor restricting problems
that can be directly submitted to the annealer. To implement quadratic terms
in the Ising hamiltonian, the qubits have to be physically connected via a
coupler. The available connectivity on the device depends on two factors. The
first one is the topology of the chip, i.e. graph describing its qubits layout.
The topology is the same for all devices in the same generation. However,
due to manufacturing errors and calibration problems, some qubits and/or
couplers might be unavailable to the end user. The graph describing qubits’
connectivity of an actual device is called its working graph. Understanding
annealer topologies is crucial for understanding how to program these devices.
Hence, in the next section, we will describe topologies of all currently available
D-Wave annealers



20 CHAPTER 3. QUANTUM ANNEALING AND GPU COMPUTING

0 1/4 1/2 3/4 1
0

15

30

45

t/τ

Fr
eq

ue
nc

y
[G

H
z]

Annealing protocol

A(t/τ)
B(t/τ)

Figure 3.1: A typical shape of the A and B curves defining the annealing protocol on
D-Wave annealers. Here, τ denotes the annealing time. Actual values of the functions
vary between the devices.

Series Release year Topology Num. qubits Num. couplers
D-Wave One 2011 C4 128 352
D-Wave Two 2013 C8 512 1472
D-Wave 2X 2015 C12 1152 3360
D-Wave 2000Q 2017 C16 2048 6016
Advantage 2020 P16 5640 40484
Advantage 2 2023-2024 Z15 7440 71736

Table 3.1: Comparison of different generations of D-Wave annealers. For topologies,
Cn, Pn and Zn refers to Chimera, Pegasus and Zephyr of size n respectively. The
numbers of qubits and couplers are given for a perfectly manufactured chip with full
yield. Actual devices typically have a lower number of qubits or couplers.

.



3.1. AQC AND QUANTUM ANNEALING 21

Annealer topologies

The first topology that we will discuss in this chapter is the Chimera topol-
ogy, used for all generations of D-Wave devices up to D-Wave 2000Q series.
We decided to describe the Chimera before moving towards newer topologies
because it serves as a building block for its successors.

While discussing the topologies of the D-Wave annealers, we will not discuss
the physical structure of the chip. We decided to do so because, for this thesis,
the logical structure of the chip is far more important than the underlying
physical one. However, one consequence of this choice is that the distinction
between two types of couplers (external and internal) will become less intuitive
once we reach beyond the Chimera topology. Nevertheless, we believe that this
will not impair the reader’s ability to understand the layout of qubits in the
newer devices. For the description of the physical chip layouts, we refer the
reader to [49].

The Chimera topology

In Chimera topology, depicted in Fig. 3.2, the qubits are placed on a rect-
angular grid of unit cells. Every unit cell is a complete bipartite graph Kt,t.
Each group in the bipartition is called shore, and hence the parameter t is
called the shore size. Each qubit in the unit cell (except the ones in the cells
on the border) connects to two qubits on the same shore in the neighboring
cells. Hence, the whole Chimera graph is also bipartite, and the maximum
degree of a node is t+2. The couplers connecting qubits in the same unit cell
are called internal and the couplers connecting qubits belonging to different
cells are called external.

Typically, the devices using Chimera topology utilize a square grid with a
shore size of 4. Such layouts are denoted by Cn, where n is the width (and the
height) of the grid. In such devices, each qubit is connected to a maximum of
6 qubits, the total number of qubits is 8n2 and the total number of couplers
is 16n2 + 8(n− 1)n.

The Chimera topology is often visualized using two distinct layouts, both
of which are exemplified in Fig. 3.2. In the cross layout, the shores of the unit
cell form a cross, with one shore being placed vertically and the second shore
being placed horizontally. In the grid layout, each unit cell is depicted as two



22 CHAPTER 3. QUANTUM ANNEALING AND GPU COMPUTING

Coupler type
Internal External

a.

Coupler type
Internal External

b.

Figure 3.2: Chimera C3 topology drawn using different layouts. a. The cross layout.
b. The grid layout. The internal couplers are marked with blue, and the external
couplers are marked with bold orange.

columns of qubits, corresponding to both shores of the cell. While the grid
layout might be more intuitive in some applications, cross layouts are in turn
convenient when presenting the Pegasus topology, which we will discuss next.

The Pegasus topology

The current generation of D-Wave devices, dubbed the Advantage System,
uses a topology called Pegasus [50]. An example of this topology is presented
in Fig. 3.3. The unit cell of Pegasus comprises 24 qubits grouped into the 3
Chimera unit cells. The topology features several improvements regarding the
qubit connectivity. Firstly, the internal couplers connect not only the qubits
in the same Chimera unit cell but also connect some neighboring Chimera unit
cells. Secondly, inside the Chimera unit cells new type of connection, called
the odd couplers, is introduced. Interestingly, those modifications mean that
the Pegasus graph is no longer bipartite. The Pegasus topology having n rows
and n columns of unit cells is denoted by Pn and contains 24n(n− 1) qubits.

Observe that a graph in Pegasus topology features subgraphs isomorphic to
Chimera graphs. This fact is important for the annealer users, as all problems
instances compatible with a device using the Chimera topology are automati-



3.1. AQC AND QUANTUM ANNEALING 23

Coupler type

Internal External Odd

Coupler type

Internal External Odd

Figure 3.3: The P3 graph, an example of the Pegasus topology. The magnified portion
of the image shows a part of the graph containing a Chimera unit cell. Observe the
odd couplers, marked in red, connecting qubits that are not connected in a unit cell
of Chimera topology.

cally compatible with annealers using a sufficiently large Pegasus topology.

The Zephyr topology

The upcoming generation of D-Wave annealers, called Advantage 2 System,
will use the Zephyr topology [51]. This topology utilizes Chimera unit cells
with a shore size of 8 and, compared to the Pegasus topology, contains more



24 CHAPTER 3. QUANTUM ANNEALING AND GPU COMPUTING

Coupler type

Internal External Odd

Figure 3.4: The Z3 graph, an example of the Zephyr topology. Different types of
couplers are color–coded. Observe that, similarly to Pegasus, the Zephyr topology
contains Chimera subgraphs. However, the shore size of the Chimera unit cells in
Zephyr is 8 instead of 4.

odd couplers. Overall, the maximum degree of a qubit in Zephyr topology is
20. The Zephyr topology containing n unit cells is denoted Zn and contains
16n(2n+ 1) qubits.



3.1. AQC AND QUANTUM ANNEALING 25

Minor embeddings

Oftentimes, even small (relatively to the available number of qubits) instances
are not compatible with the annealer because of its restricted connectivity.
This issue can sometimes be mitigated using a procedure called the minor
embedding, in which the number of qubits is sacrificed for an improvement in
connectivity. Informally, the minor embedding relies on constructing a new
logical graph with which the Ising instance to be solved is compatible. This,
in turn, is achieved by introducing logical qubits built from several physical
qubits (a process called contraction). For the reasons explained later in this
section, we will require all qubits forming the logical qubit to be connected in
a chain. The logical qubit constructed this way inherits all the neighbors of its
physical qubits, and thus one ends up with a more densely connected graph,
albeit with a lower number of qubits. Before formalizing this idea, let us first
present an example of minor embedding.

Example 3.1 (Minor embedding). Consider an annealer with C1 topology
and an (arbitrary) Ising spin–glass instance defined on a triangular graph G as
depicted in Fig. 3.5. No such instance is compatible with C1, because graph G
is not bipartite. Combining qubits 0 and 4 into a single logical qubit yields a

a.

04

5

6

7

1

2

3

04

5

6

7

1

2

3

b.

4

5

6

7

1

2

3

4+0

5

6

7

1

2

3

c.

1

2

3

contraction

Figure 3.5: Example of minor embedding. Spin–glasses defined on the graph G (c.)
cannot be directly solved on an annealer with C1 topology (a.). By contracting
neighboring vertices 4 and 0 one obtains a new logical graph C ′

1 (b.), which contains
problem graph G as a subgraph.



26 CHAPTER 3. QUANTUM ANNEALING AND GPU COMPUTING

graph depicted in Fig. 3.5b., with which G is compatible. If one could use an
annealer with this logical graph, then instances defined on G could be solved
directly. Note that vertices 0 and 4 are not the only choice in this case. Indeed,
every contraction of two vertices in C1 would be sufficient to embed G.

As demonstrated in the example, contracting vertices in the annealer’s
working graph can make it compatible with an Ising instance otherwise un-
solvable by the annealer. It only remains to explain how this new logical graph
can be used with the actual device.

The idea is to make all the physical qubits in the chain behave like a
single qubit. Since the qubits are connected, one can couple them, including
a penalty large enough that violating qubits’ alignment would prohibitively
increase the energy of the solution. The next example presents this idea.

Example 3.2 (Minor embedding, continued). Consider an Ising spin–glass
instance with Hamiltonian:

H(s1, s2, s3) = s1 + s2 + s3 − s1s2 − s2s3 (3.3)

with an unique optimal solution s = (−1,−1,−1). Suppose we want to solve
it on annealer with C1 topology, using the minor embedding presented in
Example 3.1. The problem submitted to the annealer will have the following
Hamiltonian:

H ′(z0, z3, z4, z5) = z3 + z5︸ ︷︷ ︸
s1+s3

+0.5(z0 + z4)︸ ︷︷ ︸
s2

− z3z4︸︷︷︸
s2s1

− z0z5︸︷︷︸
s2s3

+P (z0, z4)︸ ︷︷ ︸
penalty

, (3.4)

where zi is a spin variable associated to i-th qubit and P (z0, z4) is a penalty
term for chain comprising qubits 0 and 4. The penalty is of the form:

P (z0, z4) = −αz0z4 (3.5)

where alpha is a positive constant. Let us examine all possible configurations
of (z0, z3, z4, z5) and observe how the penalty term influences their energy:

If α is large enough, e.g. α = 2, all feasible solutions (left part of the table)
have energy lower than any solution in which qubits z0 and z4 are misaligned
(right part of the table), which increases a chance of sampling them on a
physical device. On the other hand, if α = 1, the feasible solution (1, 1, 1, 1)

has higher energy than the infeasible solution (1,−1,−1,−1).



3.1. AQC AND QUANTUM ANNEALING 27

feasible solutions infeasible solutions
z0, z3, z4, z5 energy z0, z3, z4, z5 energy
-1, -1,-1, -1 −5.0− α 1, 1,1, -1 1.0 + α
-1, 1,1, -1 −2.0− α 1, -1,1, -1 1.0 + α
-1, -1,1, -1 −2.0− α -1, -1,-1, 1 −1.0 + α
1, 1,-1, 1 2.0− α 1, 1,-1, -1 2.0 + α
1, -1,-1, 1 −2.0− α 1, -1,-1, -1 −2.0 + α
-1, 1,-1, -1 −1.0− α -1, -1,1, 1 2.0 + α
1, -1,1, 1 1.0− α -1, 1,1, 1 2.0 + α
1, 1,1, 1 1.0− α -1, 1,-1, 1 3.0 + α

Table 3.2: All possible configurations for the instance from the equation (3.4).

As demonstrated in the example above, when performing minor embedding
it is important to correctly choose the chain strengths. Typically, it is not
possible to choose a correct α with certainty. In practice, one typically tries
different chain strengths and tests how well they perform for the given problem.

Since the annealers are inherently heuristic devices, even with carefully
chosen chain strength one might obtain solutions that cannot be decoded into
feasible solutions to the original problem because the qubits forming chains
are misaligned. This situation is known as a chain break, and there are two
most commonly used strategies for dealing with it:

• discarding the incorrect samples. This is the simplest method, but it
reduces the total number of samples. Hence, the experiments needing
some fixed number of samples have to adapt and e.g. sample from the
annealer multiple times until the desired number of feasible samples is
collected.

• majority voting : whenever the chain of qubits is misaligned, choose the
most common value among the chain and use it as a value of the logical
qubit. In case of a tie, choose -1 or 1 with equal probability.

Having presented all the necessary information about quantum annealers,
we can conclude this section with a discussion on how quantum annealing
differs from the classical model of computation.



28 CHAPTER 3. QUANTUM ANNEALING AND GPU COMPUTING

Comparison to the classical model of computation

It is clear that quantum annealing is different from classical computations.
One of the most obvious differences is the computational model. On classical
computers, one essentially writes programs as a series of instructions to be
executed by the CPU. On typical machines, the CPU is capable of performing
arithmetic operations, computing values of some special functions, managing
execution flow, controlling I/O and much more. In comparison, chips in quan-
tum annealers are capable of executing a single operation: annealing a given
optimization problem. Therefore, programming these devices boils down to
defining an optimization problem and tuning the annealing parameters.

Another difference between classical computers and quantum annealers is
the lack of working memory in the former. Classical computers use working
memory (typically in the form of RAM) to store machine code and data. How-
ever, quantum annealers do not need to store neither code nor data, and hence
they do not feature an analogous component. Similarly, quantum annealers,
being purely computationally oriented devices, do not have mass storage.

A slightly less obvious difference between classical computers and quantum
annealers is their model of parallelism. Classical computers are capable of
running several threads of execution at the same time. However, every non-
trivial classical algorithm involving parallelism must necessarily also include a
serial part which limits speedup gained for introducing more execution units
(CPU cores or CPUs). In contrast, quantum annealers are capable of annealing
multiple qubits at the same time, making their operation inherently parallel.

3.2 Nvidia CUDA

Quantum annealing, introduced in the previous section, is a heuristic pro-
cess. Like many heuristic algorithms, it cannot certify that the solution it
found is optimal. One way to assess the performance of such algorithms is to
compare their results with known low-energy spectra of some test instances.
Another viable approach is to compute the exact low energy spectra of some
test instances, which in turn requires an exact solver. In particular, one might
perform an exhaustive search over all possible states and extract only the se-
lected number of the ones with the lowest energy, the approach also known



3.2. NVIDIA CUDA 29

as the brute-force approach. In Chapter 6 we demonstrate a massively par-
allel implementation of the brute-force algorithm using Nvidia CUDA, but
before we do this, in this section we will introduce the basic principles of using
CUDA-enabled graphic processing units.

Brief history of Graphics Processing Units

The history of specialized hardware for manipulating graphics ranges as far as
the 1970s [52]. Initially, these devices, which later became known as Graphics
Processing Units (GPUs), offered limited functionalities. Increasing demand
for performance in the gaming industry and professional graphics processing
drove the evolution of GPUs, which eventually became highly sophisticated
devices supporting advanced 2D and 3D image manipulation. Performing such
arithmetically intensive operations requires enormous computational power,
and it was only a matter of time until it was realized that the power of these
devices could be harnessed for the general purpose computations (so-called
GPGPU - General Purpose computing on GPU).

The early forms of GPGPU required framing of computational problems
in terms of operations performed on graphical primitives, as this was the only
way for using specialized API of GPUs [53, 54]. This changed with the devel-
opment of devices, toolkits and frameworks that supported operations needed
for the general-purpose computations out of the box. Notable examples of such
computational frameworks include Nvidia CUDA [55–57] (released in 2007),
ATI/AMD FireStream [58, 59] (2006) and ROCm [60–62] (2016) or OpenCL
[56] (2009). The research presented in this thesis was conducted using Nvidia
CUDA-capable devices, which is why in the rest of this chapter we focus solely
on CUDA framework.

Differences between CPU and GPU

The principles behind the operation of CUDA-enabled GPUs are fundamen-
tally different from the ones governing the execution of a program on tradi-
tional CPU-only architecture. In current x86–based computers, the CPU runs
a given sequence of instructions (so-called thread of execution) using one of
its cores. Such a processor is the ”brain” of a computer, and it can perform
a wide variety of tasks ranging from arithmetic operations, through accessing



30 CHAPTER 3. QUANTUM ANNEALING AND GPU COMPUTING

the system’s RAM, to performing IO operations and controlling other com-
ponents of the system. Typical CPUs are optimized for sequential execution,
and as such are usually equipped with moderate (as compared to the GPUs)
number of high-performance cores.

On the other hand, GPUs are more specialized. They are well suited for
performing numerous arithmetic operations and accessing memory in parallel.
They typically have more cores than a traditional CPU (with even modern
commodity GPUs boasting thousands of them). Although those cores are less
performant than their CPU counterparts and support a much narrower set of
operations, their large number combined with fast memory access gives modern
GPUs an advantage over CPUs in multiple areas.

Processing flow on CUDA

Considering the architectural differences between CPUs and GPUs, it is hardly
surprising that both of these types of devices are programmed quite differently.
The first major difference is that GPUs cannot operate on their own and are
themselves controlled by the CPU. This is why CUDA is a type of heterogenous
architecture as opposed to CPU-only homogenous architecture. The processing
flow on CUDA is summarized in Figure 3.6.

Programs run on GPU are organized in kernels. For the most part, kernels
might be viewed as functions or subroutines (which is indeed how they are
implemented) that don’t have a return value. On a CPU, such a function
would be executed by some core as a part of a thread. In CUDA however, the
very same kernel is executed by multiple threads. Executing a kernel requires
specifying a grid that will be used for running it. A grid can be 1, 2– or
3–dimensional and is itself divided into blocks. Each block is in turn also
organized in 1, 2–, or 3-dimensional structure of threads, which has to be the
same for every block in the grid. A schematic view of a two-dimensional grid
is presented in Fig. 3.7.

As already mentioned, each thread in the grid executes precisely the same
kernel with precisely the same parameters. It might therefore seem surprising
that, nevertheless, they can access different parts of memory or otherwise
handle a different part of the computational task. This is possible because each
thread is identified by its indices in both the grid and the block. Those indices



3.2. NVIDIA CUDA 31

CPU
Main

memory

GPU
memory

SM

Shared

memory

SM

Shared

memory

1
Copy processing data

to device memory

2
Initialize processing by

launching kernel

3

Process data in parallel

by multiple threads in

the GPU.

4
Copy output data back

to main memory

Figure 3.6: Processing flow on CUDA. The CPU sends input data to the GPU memory
and launches the computational kernel. The kernel’s code is executed, in parallel,
using multiple threads on the GPU. Once the execution is done, results are copied
from the GPU memory to the system’s RAM.

can be used for computing offsets in arrays that are being processed or (as we
will demonstrate in Chapter 6) otherwise used for performing computations.

SIMT architecture

CUDA-enabled GPUs employ an architecture called SIMT (Single Instruction,
Multiple Threads)1. As implied by the name, in SIMT architecture, multi-
ple threads execute the same instruction. Threads are executed in blocks by
computational units called Streaming Multiprocessors (SMs), and blocks are
distributed to multiprocessors on kernel launch. When a block is distributed
to SM, it is further partitioned into warps, groups of 32 threads each. All
threads in a warp are scheduled for execution together. Nevertheless, each of

1One can contrast SIMT architecture used by CUDA with SIMD instructions (Single
Instruction, Multiple Data) available on modern CPUs.



32 CHAPTER 3. QUANTUM ANNEALING AND GPU COMPUTING

Grid

Block (0, 0)

Block (1, 0)

Block (0, 1)

Block (1, 1)

Block (0, 2)

Block (1, 2)

Block (0, 1)

Thread (0, 0)

Thread (1, 0)

Thread (2, 0)

Thread (0, 1)

Thread (1, 1)

Thread (2, 1)

Thread (0, 2)

Thread (1, 2)

Thread (2, 2)

Thread (0, 3)

Thread (1, 3)

Thread (2, 3)

Figure 3.7: A schematic view of an example two-dimensional CUDA grid. Presented
here is a 2 × 3 grid of 3 × 4 blocks.

them has a separate program counter and thus their execution flow can di-
verge. At any given time, a thread in a warp can be either active (executing
the same instruction as the rest of the active threads in a warp) or inactive
(not executing any instruction at all). A thread may be inactive because its
execution diverged from the rest of the warp or because it terminated earlier.
It is interesting to note that starting from the Volta architecture, threads can



3.2. NVIDIA CUDA 33

be scheduled on a finer level of granularity, allowing them to diverge and re-
converge on the sub-warp level. Each multiprocessor manages a set of 32-bit
registers and a parallel data cache, called shared memory, distributed among
the thread blocks. Since those resources are limited, the number of warps that
can run in parallel on any SM is heavily dependent on the resource usage of
the kernel being executed.

Memory hierarchy

On CUDA-enabled devices, threads can access several memory types during
kernel execution, including global memory, local memory, constant and texture
memory and shared memory [55]. Physically, those different memory types
can be divided into device memory (global memory, local memory, constant
memory) and on-chip memory (shared memory). SM’s on-chip memory also
serves as the L1 cache.

Global memory is a device memory available to all threads. All accesses
to global memory are serviced in 32-, 64-, or 128- bytes memory transactions.
Accesses made from a single warp are coalesced into as many such transactions
as necessary, depending on the device’s architecture and access pattern. Reads
and writes targeting global memory are always cached in L2 and (depending
on configuration, compute capability and access pattern) may also be cached
in L1 cache.

Local memory in CUDA is only a logical concept. Physically, it resides in
the off-chip memory just like global memory and thus offers the same band-
width and latency. Just like global memory, it is always cached in L2 cache.
This type of memory is never used directly by the programmer. Instead, the
compiler might decide to use it for local variables of a thread in case there
is not enough register (so-called register spilling) or for dynamically indexed
local arrays. Local memory is arranged in such a way, that accesses are always
fully coalesced as long as all threads access the same relative address (e.g. the
same local variable, the same position of a local array etc.).

Constant and texture memory are two types of read-only memory2 residing
in global memory. Accesses to constant memory are cached in constant cache
and serialized. Therefore, each request is split into as many transactions as

2Read-only here means “Not writeable from inside the kernel”.



34 CHAPTER 3. QUANTUM ANNEALING AND GPU COMPUTING

there are different memory addresses in the original request. Texture memory
is cached in the texture cache, which is optimized for accessing spatial data.
Hence, the best performance is achieved if threads in a warp read or write to
the addresses that are placed closely on 2D tiles.

Threads can cooperate and share data through the use of the on-chip shared
memory. The amount of allocated shared memory is directly controlled by the
programmer either on the kernel definition level or during its launch. Shared
memory is organized in banks that can be accessed simultaneously, and the
best performance is achieved if each thread in a warp accesses memory in a
different bank. Otherwise, a bank conflict occurs, and the request is split into
as few conflict-free requests as possible.

Programming environment

CUDA devices can be programmed directly using either C/C++ or Fortran.
For both languages a Nvidia compiler is required to compile the CUDA pro-
gram, as CUDA extends C/C++ and Fortran languages with a syntax for
defining and launching kernels. The C/C++ CUDA code can be compiled
using Nvidia’s nvcc compiler, shipped out of the box with the CUDA toolkit.
For CUDA Fortran code, the Nvidia High-Performance Computing (HPC)
suite contains nvfortran compiler3. Giving a comprehensive walkthrough of
using either C/C++ or Fortran with CUDA is well beyond the scope of this
thesis, but for the sake of completeness, below we present a short example of
the CUDA C/C++ and CUDA Fortran code.

Example 3.3 (Implementing parallel vector addition with CUDA). Listings
3.1 and 3.2 below present an example implementation of a parallel vector
addition using CUDA. The addVec defined with global attribute is a kernel
and accepts two input vectors x, y (in the form of arrays) and their length n.
Since CUDA kernels cannot return a value, both versions of the code accept
an additional argument res designating where the result will be stored. The
addVec kernel can be launched on any one–dimensional grid of one–dimensional
blocks. Hence, some threads may need to handle more than one position in the

3The nvfortran compiler was previously a third–party program called pgfortran, de-
veloped by PGI [63]



3.2. NVIDIA CUDA 35

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Input index

Global thread index

Output index

Iteration 1 Iteration 2 Iteration 3 Iteration 4

Grid size

Figure 3.8: A schematic representation of a GPU kernel transforming an input array
into an output array of the same size using a grid-stride loop pattern. Here, both
arrays are of size k = 16 and the hypothetical grid comprises l = 5 threads (the exact
grid configuration is irrelevant). During the first iteration, the i-th thread accesses
i-th input element, transforms it and stores the new value in i-th element of the
output array. In subsequent iterations, each thread advances the index it processes
by the stride equal to the total grid size. Observe that for the last iteration only the
first thread needs to do processing and remaining 4 threads, marked with dashed line,
remain inactive.

input arrays. The pattern presented here, where i–th thread handles positions
i, i+N , i+2N , . . . with N equal total number of blocks is called a grid-stride
loop and is illustrated in Fig. 3.8.

There are several differences between the two code examples stemming
from the languages used. In CUDA Fortran we can copy data from the host
to the GPU using array assignment. On the other hand, the equivalent code
in C++ requires manually calling cudaMemcpy function. Similarly, the GPU
arrays in C++ are declared as pointers, for which the memory has to be
manually allocated and later deallocated using the combination of cudaMalloc
and cudaFree. Lastly, C/C++ uses zero-based indexing, whereas Fortran uses
one-based indexing. This affects how the global thread index, stored in tid
variable, is computed.

Software ecosystem

Along with the nvcc compiler, the CUDA toolkit contains several, more spe-
cialized libraries. Among others, those include:

• cuBLAS [64] – CUDA Basic Linear Algebra Subroutines library,



36 CHAPTER 3. QUANTUM ANNEALING AND GPU COMPUTING

module addVec
contains

attributes(global) subroutine addVec(x, y, res, n)
real, dimension(*) :: x, y, res
integer, value :: n, i, tid, gridsize

tid = (blockidx%x - 1) * blockdim%x + threadidx%x
gridsize = blockdim%x * griddim%x

do i = tid, n, gridsize
res(i) = x(i) + y(i)

end do
end subroutine

end module

program testAddVec
use addVec
use cudafor
implicit none
integer, parameter :: N = 100000
real :: x(N), y(N), res(N)
integer :: i, nBlocks=256, nThreads=128
real, device :: x_d(N), y_d(N), res_d(N)

do i = 1,N
call random_number(x(i))
call random_number(y(i))

end do

x_d = x
y_d = y

call addVec<<<nBlocks, nThreads>>>(x_d, y_d, res_d, N)
res = res_d

write(*,*) 'Max error: ', maxval(abs(res - (x + y)))
end program testAddVec

Listing 3.1: Example code in CUDA Fortran implementing parallel addition of vectors
on GPU.



3.2. NVIDIA CUDA 37

#include <algorithm>
#include <iostream>
#include <valarray>

__global__
void addVec(float* x, float* y, float* res, int n) {

int tid = blockIdx.x * blockDim.x + threadIdx.x;
int gridsize = blockDim.x * gridDim.x;

for(int i = tid; i < n; i += gridsize) { res[i] = x[i] + y[i]; }
}

int main() {
const int N = 100000, nBlocks = 256, nThreads=128;
std::valarray<float> x(N), y(N), res(N);
float* x_d, * y_d, * res_d;
int nBytes = N * sizeof(float);

srand(1234);

for(int i = 0; i < N; i++) {
x[i] = float(rand()) / RAND_MAX;
y[i] = float(rand()) / RAND_MAX;

}

cudaMalloc(&x_d, N * sizeof(float));
cudaMalloc(&y_d, N * sizeof(float));
cudaMalloc(&res_d, N * sizeof(float));

cudaMemcpy(x_d, &x[0], nBytes, cudaMemcpyHostToDevice);
cudaMemcpy(y_d, &y[0], nBytes, cudaMemcpyHostToDevice);

addVec<<<nBlocks, nThreads>>>(x_d, y_d, res_d, N);

cudaMemcpy(&res[0], res_d, nBytes, cudaMemcpyDeviceToHost);

std::cout << "Max error: "
<< std::abs(res - (x + y)).max()
<< std::endl;

cudaFree(x_d);
cudaFree(y_d);
cudaFree(res_d);
return 0;

}

Listing 3.2: Example code in CUDA C/C++ implementing parallel addition of vectors
on GPU.



38 CHAPTER 3. QUANTUM ANNEALING AND GPU COMPUTING

• cuFFT [65] – CUDA Fast Fourier Transform library,

• cuRAND [66] – CUDA Random Number Generation library,

• cuSPARSE [67] – CUDA library for manipulating sparse matrices,

• thrust [68] – parallel algorithms library. Thrust also provides parallel
implementations of its algorithms that can be run on traditional CPU,
making it usable even without CUDA.

For some high-level languages, there exist third-party libraries enabling the
usage of CUDA. For Python, one could mention e.g. PyCUDA [69], CuPy [70] or
recently introduced setuptools_cuda [71] created by the author of this thesis.
In Julia, integration with CUDA can be achieved with CUDA.jl [72] package.



Chapter 4

Simulating dynamics of
quantum systems using
quantum annealing

One of the leading motivations behind the development of quantum computing
devices is simulating quantum systems intractable by classical computers. But
how far are we from this goal? To answer this question, one might design an
algorithm for conducting such a simulation of a physical system and then test
how it performs on the current generation of quantum computers. In this chap-
ter, we follow this idea and present a possible approach for simulating quantum
systems (or any time-dependent dynamical system) that can be used with an-
nealing devices such as D-Wave quantum annealers and similar devices. To
illustrate the working of our algorithm, we simulate the simplest single-qubit
system and demonstrate that already near-term annealing devices are capable
of capturing its dynamics in a narrow regime of parameters. Furthermore, the
class of physics-inspired problem instances proposed in this chapter can be
valuable in benchmarking other (not necessarily quantum) solvers.

39



40 CHAPTER 4. SIMULATING DYNAMICS

4.1 Parallel in time simulation of dynamical
systems

Optimization problems that can be solved using quantum annealers exhibit
no time–dependence. Therefore, simulating any time-dependent phenomena
using those devices requires reformulating the problem as one that is static
in nature. In our case, it is possible by enlarging the Hilbert space of the
system under consideration, so that the states of this larger space encode also
temporal information [73].

Let us start by precisely defining the problem we want to address. Consider
an L–dimensional real or complex system, whose state at time t is described
by the vector |ψ(t)⟩ evolving according to a differential equation of the form:

∂ |ψ(t)⟩
∂t

= K(t) |ψ(t)⟩ . (4.1)

Here, K is the so-called Kamiltonian [74] and can be any linear operator
acting on RL or resp. CL. Observe that any isolated quantum system can be
described by equation (4.1), as putting K = − i

ℏH, where H is its Hamiltonian,
transforms the equation (4.1) into Schrödinger equation.

Given an initial state, |ψ(t0)⟩ the equation (4.1) admits a unique solution:

|ψ(t)⟩ := U(t, t0) |ψ(t0)⟩ , (4.2)

where operator U(t, t0) is a propagator transforming the initial state of the
system into its state at time t and is given by:

U(t, t0) = T exp

(∫ t

t0

K(τ)dτ

)
. (4.3)

Here, T denotes the time-ordering operation [75]. Note that in the case when
K(t) commutes with K(t′) for every t′ ̸= t, the time-ordering can be omitted.
In particular, this is the case if K is time-independent.

Given the initial state, we are interested in finding the state of the system
at some time t > t0. Numerical methods for solving this problem usually start
by partitioning the interval [t0, t] into N distinct time points t0 < t1 < . . . <

tN−1 = t. Then, the desired state |ψ(t)⟩ can be computed as:

|ψ(t)⟩ = UN−1 · · ·U1 |ψ(t0)⟩ , (4.4)



4.1. PARALLEL IN TIME SIMULATION OF DYNAMICAL SYSTEMS 41

where Ui is a shorthand notation for U(ti, ti−1). This is purely a rearrangement
of computations, which by itself gives no benefit over applying U(t, t0) directly.
However, shortening the interval allows for a more efficient approximation of
propagators, which can be done using a variety of methods, including Suzuki-
Trotter approximation [76], commutator-free expansion [77] or tensor-networks
based approaches [78].

This procedure, common to many sequential methods, gives a starting
point for a class of the so-called parallel in–time methods based on the Feyn-
man clock operator. In these approaches, one starts by suitably enlarging the
state space so that it can encode the temporal data [73]. This can be done
by considering a tensor product of a state space with the new Hilbert space
spanned by the orthonormal basis {|0⟩ , |1⟩ , . . . , |N − 1⟩}. Then, the following
superposition encodes states of the system in all N moments of time:

|Ψ⟩ =
N−1∑
n=0

|n⟩ ⊗ |ψ(tn)⟩ . (4.5)

Consider now the following clock operator C:

C =

N−2∑
n=0

|n+ 1⟩⟨n+ 1| ⊗ I − |n+ 1⟩⟨n| ⊗ Un+

|n⟩⟨n| ⊗ I − |n⟩⟨n+ 1| ⊗ U †
n.

(4.6)

One can see that |Ψ⟩ is a solution (although not unique) to the eigenequation:

C |x⟩ = 0. (4.7)

The non–uniqueness of the solution of (4.7) follows from the fact that the
definition of the clock operator C does not depend on the initial state. We can
fix this problem by adding a penalty term C0 = |0⟩⟨0| ⊗ (I − |ψ0⟩⟨ψ0|) to the
left-hand side. The equation to solve becomes then:

(C + C0) |x⟩ = 0. (4.8)

If one puts A = C+ |0⟩⟨0|⊗I and |Φ⟩ = |0⟩⊗|ψ0⟩, the equation (4.8) becomes:

Ax = |Φ⟩ . (4.9)



42 CHAPTER 4. SIMULATING DYNAMICS

Thus, using an approximation of evolution operators, we constructed a system
of linear equations encoding the solution to the equation (4.1) under the given
initial condition. At this point, however, it is not possible to solve it using a
quantum annealer yet. To do so, one first needs to convert this system into
an optimization problem with dichotomous variables, which will be the topic
of the next section.

4.2 Solving systems of linear equations as an
optimization problem

There is a straightforward way of converting equation (4.9) into an opti-
mization problem. One can observe that the solution minimizes the norm
∥A |x⟩ − |Φ⟩∥. Since the norm is non-negative, it follows that solving equation
(4.9) is equivalent to the following optimization problem:

|Ψ⟩ = argmin
x

f(x), f(x) = ∥A |x⟩ − |Φ⟩∥2 . (4.10)

However, f in the equation (4.10) is not the only choice of a target function.
If A is positive-definite, one can consider the following function h instead:

h(x) =
1

2
⟨x| A |x⟩ − ⟨x|Φ⟩ . (4.11)

Indeed, one can verify that solution to (4.9) also minimizes h by computing
its gradient and Hessian:

∇h(x) = A |x⟩ − |Φ⟩ , ∇2h(x) = A > 0 (4.12)

Since Hessian is positive and |Ψ⟩ is the only vector at which ∇h vanishes, it
follows that |Ψ⟩ is indeed a global minimum of h.

4.3 Discretizing variables

Thus far, we have been working with continuous variables. The next necessary
step before solving optimization problems (4.10) and (4.11) using annealer is
converting them in such a way that all unknowns are dichotomous. To this end,
we will follow a strategy presented in [79, 80]. The idea is to express each of



4.3. DISCRETIZING VARIABLES 43

the unknown coefficients of |x⟩ =[x1, . . . , xLN ]T in fixed-point approximation.
While this strategy was originally described for real matrices, it works for
complex matrices as well, since one can employ the natural embedding of C
into R2×2, a + bi 7→ aÎ + ibσ̂y. Henceforth, we assume that the considered
systems are real.

If one assumes (binary) order of magnitude of coefficients of x to be D
(i.e. xi ∈ [−2D, 2D] for each i), then it can be approximated up to R bits of
precision using the formula:

xi ≈ 2D

(
2

R−1∑
α=0

2−αqαi − 1

)
. (4.13)

Here variables qαi are consecutive bits of the fixed-points expansion of xi. Note
that approximation of xi in (4.13) is a linear combination of its bits, there-
fore plugging it into optimization problems (4.10) and (4.11) yields quadratic
unconstrained optimization problems of the form:

argmin
q

f(q) = argmin
q

∑
i,α

cαi q
r
i +

∑
i,j,α,β

dαβij q
α
i q

β
j + f0, (4.14)

argmin
q

h(q) = argmin
q

∑
i,α

aαi q
r
i +

∑
i,j,α,β

bαβij q
α
i q

β
j + h0. (4.15)

Coefficients in equations (4.14) and (4.15) can be straightforwardly computed
by appropriate substitutions into equations (4.10) and (4.11). For brevity, here
we present only the formulas for the equation (4.15), which reads:

bαβij = Aij2
1−α−β+2D

aαi =

2−α+DAii − 2D
∑
j

Aij − Φi

 21−α+D,

h0 = 2D

2D−1
∑
ij

Aij +
∑
i

Φi

 .

(4.16)

Our approach requires the order of magnitude D and precision R in equa-
tion (4.13) to be chosen beforehand. Choosing the right D requires knowledge
of the range in which coefficients lie. If its value is too small, the approxi-
mations will fail to capture the most significant bits of the real solution. On



44 CHAPTER 4. SIMULATING DYNAMICS

the other hand, choosing D that is too large will result in wasting variables
for encoding insignificant zeros. Fortunately, for many systems, a suitable D
can be determined. For instance, for qubit and multi-qubit systems, each xi

is bounded by ±1 which makes D = 0 the optimal choice for this case.
QUBOs in the equations (4.14) and (4.15) are defined on the graph of size

N · R · L. The number of edges (i.e. non-zero quadratic terms) depends on
the number of non-zero off-diagonal elements of the matrix A. It is interesting
to note that the overall density of the graph is an increasing function of R
(bigger precision requires a denser graph) while, on the other hand, it tends
to decrease with increasing L.

We converted the original problem of finding the dynamics of the system
into a binary optimization problem suitable for input to the quantum an-
nealer. In the next section, we will discuss experiments that we performed
using D-Wave 2000Q2.1 and D-Wave 2000Q5 machines to test the approach we
described. The results we discuss here were originally reported in [1].

4.4 Parallel-in-time simulations with quantum
annealer

Before discussing the results of our experiments, let us focus first on its design.
To exemplify our approach, we chose to simulate the dynamics of a two-level
system with an initial state |0⟩ and a Hamiltonian H:

H =
π

2
σ̂y, (4.17)

where σ̂y is a Pauli spin operator in the y-direction. This particular choice of
Hamiltonian and initial state makes the system suitable for implementation
on present-day quantum annealers for several reasons. One can easily see that
the evolution of the system is real (as opposed to complex), which halves the
number of needed variables. Secondly, for integral time points t0 = 0, t1 =

1, . . . coefficients of the wave function can be expressed exactly using only two
bits of precision per coefficient, which further reduces the number of variables.

We simulated the above system using values of R = 2, 3 and for several
numbers of time points N . We used annealing time τ spanning several orders
of magnitude, namely τ = 20µs, 200µs and 2000µs. Since the resulting graphs



4.4. PARALLEL-IN-TIME SIMULATIONS 45

024681012
0.0
0.1
0.2
0.3

a.

024681012

2000
200

20

b.

−1

0

1

0 1 2 3 4 5

c.

0 1 2 3 4 5

d.

Energy En

p
ro
b
.
d
en

si
ty
ρ

Energy En

τ (µs)

⟨σ̂
z
⟩

time t time t

Figure 4.1: Results of simulating dynamics of two-level system on D-Wave 2000Q2.1

(left) and low-noise D-Wave 2000Q5 (right). a.–b. Energy distribution of samples ob-
tained from D-Wave annealers for different annealing times τ . Notice a slight shift of
distributions towards the ground state for the 2000Q5 device. c.–d. Rabi oscillations
of the simulated system. The obtained samples were normed before plotting. As can
be seen in panel d., the low-noise device was able to faithfully capture oscillations for
τ = 200, 2000. The annealing time is color-coded: τ = – 20µs, – 200µs, – 2000µs.

were dense, we decided to use standard embedding of the complete graphKn on
Chimera [81]. To assess the quality of solutions obtained from the annealer,
we sampled each problem 104 times on DW-2000Q2.1 device as well as its
low-noise version, DW-2000Q5. Energy distributions of samples obtained for
N = 6 are depicted in Fig. 4.1. The same figure also illustrates the dynamics
of the expected value of σ̂z for the lowest energy sample obtained for a given
annealing time. Note that to preserve the physical meaning of the decoded
solution, the state vector was normed before plotting.

To put these results into context, we also compare them to the ones ob-
tained using two purely classical methods: CPLEX optimizer and recently
developed tensor network-based algorithm (which we describe later in Chap-
ter 5. The results of this comparison are depicted in Fig. 4.2.

Results depicted in figures 4.1 and 4.2 show that the DW-2000Q5 was



46 CHAPTER 4. SIMULATING DYNAMICS

a.

b.

c.

f.

d.

g. h.

e.

Figure 4.2: a.–b. Performance of the two state-of-the-art heuristic algorithms: the
CPLEX optimizer (CP) and a tensor networks-based (TN) solver (see Chapter 5) in
comparison to the D-Wave 2000Q quantum annealer (DW), cf. Fig 4.1. The graphs
on which the problems were defined had respectively |V | = 360 (a.) and |V | = 624
(b.) vertices. The annealing time was set to τ = 200µs. The numerical precision
of the solution vector is denoted as R. c.–h. Degradation of the solution quality
resulting from perturbing the problem by truncating its coefficients to a given nu-
merical precision denoted as r. The reference ground state obtained with tensor
networks (TN) is compared to the experimental data from the D-Wave 2000Q quan-
tum annealer (DW). This effect, expected to be predominant in the current quantum
annealing technology, is already visible on Fig. 4.1a.–d. and Fig. 4.2a.–b..

able to faithfully capture dynamics of qubit if the state of the system was
encoded using R = 2 bits of precision per coefficient when the annealing time
τ = 200 was used. For larger values of N and R one can observe that the
quality of solution degrades. Both CPLEX and tensor networks-based solvers
outperformed D-Wave annealers in terms of the quality of solutions. The
differences were especially noticeable for problem instances with larger graph
sizes, i.e. ones with higher precision (R ≥ 3, N = 6)), or with extra time points
(N > 6, R = 2). The observed degradation of the solution quality is consistent
with the results obtained in other works, especially for the problems requiring
complete graphs, see e.g. [82].

Discussion of error sources

The poor performance of D-Wave annealer is something certainly to be ex-
pected from such early-stage devices. Annealers are prone to errors stemming
from multiple sources [49], and it is hard to judge which of those sources con-
tributed most to the lackluster performance of a particular problem instance.



4.4. PARALLEL-IN-TIME SIMULATIONS 47

One of the possible sources of errors is DAC quantization, which essentially
limits the precision of both the quadratic and linear coefficients passed to the
annealer. As a result, the problem that the annealer physically solves is slightly
different than the problem the programmer intended to solve.

One can see that such quantization errors would mostly affect problems
with coefficients lying in close proximity to one another. Indeed, suppose
that DAC quantization errors limit the precision of the linear coefficients to d
decimal digits. Then any two coefficients, say hi, hj lying closer to each other
than d digits, i.e. |hi−hj | < 10−d, become physically undistinguishable to the
annealer. The issue also affects coefficients that are further apart, by possibly
diminishing their relative differences.

While it is hard to pinpoint which source contributed the most to the errors
in the case of the optimization problems discussed in this chapter, we argue
that in our case the poor performance of the annealer can be largely explained
by DAC quantization. Indeed, looking at the (4.16) one can immediately see
that the optimization problem can contain coefficients arbitrarily close to each
other as long as a large enough R is chosen. To justify this reasoning, we
studied how the tensor network solver performs when the coefficients of the
problem are perturbed by truncating their coefficients to a predefined number
of digits r. The results of this experiment are presented in Fig. 4.2c.–h.. One
can immediately observe that the error patterns resemble the ones obtained
from D-Wave, which might suggest that DAC quantization might indeed be
a significant source of errors in our case. However, we would like to point
out, that our analysis is by no means conclusive, and further analysis of error
patterns is still needed.





Chapter 5

Solving spin-glass problems
using tensor networks

Benchmarking quantum annealers requires adequate algorithms for providing
baselines for the obtainable solutions. While there exists a plethora of general-
purpose optimization algorithms, one might hope to achieve better results by
exploiting the topology of the problem’s underlying graph and thus locality
therein. In this chapter, we describe a recent, tensor network-based algorithm
[2] for finding the low-energy spectrum of Ising spin-glasses, designed for prob-
lems defined on Chimera-like quasi-two-dimensional graphs. The algorithm
exploits the sparsity and locality of the Chimera graph by representing the
Boltzmann distribution of spin-glass as a tensor network, whose approximate
contraction can be used for computing marginal probability distributions. This
procedure can then be combined with the well-known branch and bound al-
gorithm to iteratively select the most promising partial solutions, finally pro-
ducing an approximation of the low-energy spectrum.

5.1 Exploring the probability space

In the algorithm we are going to present in this chapter, we perform the search
in the probability space rather than in the energy space. This physics-inspired
approach is closely tied to the quantum computing paradigm. To explain why,
let us begin by replacing classical Ising Hamiltonian H(s) with its quantum

49



50 CHAPTER 5. SOLVING SPIN-GLASS PROBLEMS

counterpart H = H(σz) (i.e. replacing each variable si with a Pauli operator
σ̂z acting on the i-th spin. Naturally, there exists a one-to-one correspondence
between the eigenstates of H and the possible classical states. If one now wishes
to find the low-energy spectrum of size k ≪ 2N , the task is equivalent to finding
the k most probable states according to the Gibbs distribution ρ ∼ exp(−βH).
One way to achieve this is to prepare the system in a Gibbs state:

|ρ⟩ ∼
∑
s

exp(−βH/2) |s⟩ (5.1)

and then perform a measurement. If repeated multiple times, this procedure
would yield the desired low-energy spectrum with high probability.

While the above procedure is useful conceptually, it clearly cannot be di-
rectly used on a classical computer, as it would require preparing a dense vector
of 2N elements. Instead, in our algorithm we represent the Gibbs distribution
approximately via a suitable tensor–network. Then, instead of performing a
quantum measurement, we extract the needed information by traversing the
probability tree using the branch-and-bound method. In what follows, we
describe the procedure in detail, starting with the branch-and-bound part.

5.2 Branch and bound

Let us first consider an Ising spin-glass problem defined on a square lattice.
The state space of such a system can be viewed as a tree, in which k-th
level contains all partial configurations (s1, . . . , sk). This representation allows
one to explore the state space incrementally in search for low energy states,
and possibly prune the less promising branches. In the approach described
here, we use marginal probability p(s1, s2, . . . , sk) as a criterion for deciding
which partial configurations are most promising. More precisely, we explore
the solution tree in a top-down manner, keeping at most M states at k-th level
and branching them into 2M new partial configurations at level k + 1. The
new marginal probability distributions can be computed using the formula:

p(s1, s2, . . . , sk, sk+1) = p(s1, s2, . . . , sk)p(sk+1|, s1, . . . , sk). (5.2)

Importantly, in the Appendix B we prove that the conditional probability in
equation (5.2) can be effectively computed by exploiting the locality of the



5.2. BRANCH AND BOUND 51

p∅ = 1

↑

↑↑

↑↑↑

pcond
↑

↑↑↓

pcond
↓

pcond
↑

↑↓

↑↓↑

pcond
↑

↑↓↓

pcond
↓

pcond
↓

pcond
↑

↓

↓↑

↓↑↑

pcond
↑

↓↑↓

pcond
↓

pcond
↑

↓↓

pcond
↓

pcond
↓

Figure 5.1: An illustration of the branch and bound method. The state space is
explored one spin at a time. At each tree level, we branch each of at most M
configurations into 2M new configurations. Then, the tree is pruned, and only M
most promising branches are kept. In the depicted example M = 3. As a criterion
for pruning the tree, we use the marginal probability of the partial configurations
corresponding to each node. The marginal probabilities are computed using the
equation (5.2).

problem. The parameter M can be made iteration-dependent by keeping only
the states whose marginal probability divided by the maximal probability is
larger than sum probability cutoff δp.

Before discussing how probabilities in (5.2) can be computed, let us first
extend the above approach to the more general case of a quasi-two-dimensional
graph, i.e. one in which nodes can be grouped into clusters forming a two-
dimensional square lattice (see Fig. 5.2). One can easily see, that again we can
construct a tree-like structure representing state space, this time considering
joint configurations of spins in a single cluster. Therefore, for most of the time,
we might "forget" the underlying spin-glass structure and consider square lat-
tices in which spin clusters act like higher-dimensional systems. Furthermore,
by the same argument, it is clearly visible that our approach is not limited to
the Ising systems, but could be also used for systems of higher dimensions.



52 CHAPTER 5. SOLVING SPIN-GLASS PROBLEMS

Figure 5.2: Grouping spins into clusters in a quasi-two-dimensional graph. Here,
spins in the original graphs are grouped together to form a square lattice. Each site
in the new lattice then effectively serves as a higher-dimensional system.

5.3 PEPS network construction

We begin the construction of a PEPS network for a quasi-two-dimensional
graph by considering two spins at sites i and j connected by an edge Jij . This
edge can be decomposed as:

e−βJijsisj =
∑
γ=±1

B
si
γ C

sj
γ (5.3)

where

BSi
γ = δγsi C

sj
γ = e−βγJijsj (5.4)

Note that decomposition (5.4), although not unique, has the advantage of
comprising only non-negative coefficients, which positively affects numerical
stability. Next, with each cluster we associate a PEPS tensor:

Asc
lrud = e−βH(sc)Bscl

l Cscr

r Bscu

u Cscd

d (5.5)

Here, sc collects all spins in a given cluster, and sc
l, scr, scu, scd collect spins

interacting with it from the left, right, up and down respectively. Each such
tensor has five legs: the physical one sc of dimension 2m, where m denotes
the number of spins in the cluster, and the virtual ones l, r, u, d with dimen-
sions depending on the number of inter-cluster edges. Note that H in (5.5) is
restricted to the graph induced by spins belonging to the considered cluster.
The construction is depicted in Fig. 5.3. Combining the tensors gives an exact



5.4. BENCHMARKS 53

representation of the Gibbs distribution as:

exp(−βH(s)) ∼
∑
k

∏
ci

A
sci
ki (5.6)

Despite our tensor network representation of the Gibbs distribution being ex-
act, contracting the network to obtain the information is still a difficult task.
In principle, one could use some approximation schemes [83]. However, in
our approach, we decided to use another procedure exploiting the locality of
the problem graph. Namely, we employ a matrix product state (MPS) – ma-
trix product operator (MPO) based approach [84] approach. One starts by
considering the first row of the lattice as a vector in high dimensional space
having a natural decomposition in the form of MPS. Then, we add another
row, viewed as MPO, which enlarges the MPS representation. Adding subse-
quent rows would require an exponential growth of the bond dimension χ. To
prevent this, a sequence of truncation is performed, which results in a series
of boundary MPS. The new MPS are found by minimizing their distance from
the enlarged previous ones. The MPS-MPO construction is depicted in Fig.
5.3(e)–(f). In the end, the network can be contracted exactly resulting in the
desired conditional probability.

5.4 Benchmarks

To fully investigate the performance of our algorithm, we performed several
benchmarks, testing various metrics quantifying both execution time, as well
as the quality of the found solutions. We tested our algorithm for sets of droplet
instances specifically designed to be hard for classical heuristic solvers, espe-
cially ones relying on local updates. We benchmarked our algorithm against
classical solvers based on Parallel-Tempering, and D-Wave Quantum annealer
DW-2000Q6. As it is hard to directly compare samples obtained from the
D-Wave annealer with the output of our deterministic algorithm, we decided
to use time-to-solution as a metric. The time to solution TTS is defined as:

TTS = T
log(1− ptarget)

log(1− psucc)
, (5.7)

where ptarget is the desired probability of obtaining solution, psucc is the em-
pirical probability of obtaining the solution and T is the running time of the



54 CHAPTER 5. SOLVING SPIN-GLASS PROBLEMS

sr
c

cluster

×4
×8

r

d

l

sc

u

tensor

(a)

(b)

Asc

lrud

sr
c

cluster

×4
×8

r

d

l

sc

u

tensor

(a)

(b)

Asc

lrud

sr
c

cluster

×4
×8

r

d

l

sc

u

tensor

(a)

(b)

Asc

lrud

C
hi
m
er
a
4
×
4
×
8

PEPS 4× 4(c)

(d)

p(s) =

pcond(sc|sX) =
sc

X
≈

=

sc

pcond(sc|sX) ≈

sc

(e)

(f)

trace or
project s

a. c.

b. d.

e.

f.

Figure 5.3: Tensor network formalism for solving Ising spin-glasses on Chimera-like
graphs. a., b. Assignment of PEPS tensors to groups of l spins (clusters). Each
PEPS tensor has four virtual legs of dimension D = 2min(m,n) and one physical leg of
dimension 2l. Here, m is the number of spins in one cluster interacting with n of those
in the neighboring cluster. For the Chimera graph, depicted in panel d., n = m = 4.
Note that adding more complicated interactions not present in the Chimera topology
as in panel b. would not increase the bond dimension D. c. The resulting tensor
network used to represent probability distribution p(s) ∼ exp(−βH(s)). e. The
conditional probabilities p(sc|sX) are obtained by projecting the physical degrees of
freedom in the region X to given configuration sX and tracing out the remaining
ones. Next, the approximate MPO-MPS scheme is used to collapse the network in a
bottom-top fashion until only two rows remain. Finally, as in panel f., the remaining
tensors can be exactly contracted to obtain the desired conditional probability.

solver. In addition, for D-Wave annealers, we multiply TTS by the ratio
N/num_qubits, to account for the possibility of fitting multiple instances of
the problem on the device at the same time. Naturally, one might consider
TTS metric not only for finding a ground state, but also for finding a solution
approximating a ground state with a given approximation ratio (i.e. solution
lying in the desired lowest fraction of the full energy spectrum). The results
of these benchmarks are presented in Table 5.1. For all instances, our algo-
rithm was able to find the ground state, which was not the case for other
solvers. However, if one is not necessarily interested in finding the ground
state, both D-Wave annealers and classical parallel tempering solver might be
a better choice, as they were able to find a satisfying solution in a shorter time.
In Fig. 5.4, we show an example solution for a single instance with discreet
values of Jij with dJ = 1

75 . One can observe that increasing the β allows



5.4. BENCHMARKS 55

100 101 102 103 104 105 106 107
0

0.2

0.4

0.6

0.8

1

index of found states n

E
n
e
rg

y
H
n
−

H
1 β = 6

β = 5

β = 3

β = 2

(a)

2 3 4 5 6

10−6

10−9

10−12

10−15

10−18

β

p1

pd

(d)

100 101 102 103 104 105 106 107

10−11

10−9

10−7

β = 6

β = 5

index of found states n

P
ro

b
a
b
il
it
y
p
n

pn

p1e
−β(Hn−H1)

(c)

0 200 400 600 800
0

0.2

0.4

0.6

0.8

1

Hamming distance

H
n
−

H
1

(b)a.

c.

b.

d.

Figure 5.4: Example result of running our algorithm on a droplet instance with
N = 2048. a. Low energy spectrum found by a single run of our algorithm. Ob-
serve consistency between different values of β. b. Hamming distance of solutions
presented in a. from the ground state. c. Probabilities of each configuration found
for least numerically stable values of β. In the depicted example, we can see full con-
sistency between the probabilities obtained from contracting PEPS network pn and
the Boltzmann weights calculated from the configuration’s energy. d. Comparison of
largest discarded probability pd and the ground state probability p1. With increasing
β we were able to achieve pd < p1. This indicates that the algorithm was indeed able
to reach the ground state.

for obtaining tighter bounds on the possible error. It is also visible that the
algorithm demonstrates consistency between the probabilities obtained from
the tensor network contractions and the ones obtained from the Boltzmann
weights calculated from the corresponding configuration energies.

We also benchmarked our algorithm on the set of deceptive cluster loops
instances [85], also expected to be hard for the classical heuristic solvers. One



56 CHAPTER 5. SOLVING SPIN-GLASS PROBLEMS

(a) N = 512

100 102 104 106 108 1010 1012 1014
0

20

40

60

80

(b) N = 1152

100 102 104 106 108 1010 1012 1014
0

20

40

60

80

n
u
m
b
er

o
f
in
st
a
n
ce
s
(f
ro
m

2
0
0
)

(c) N = 2048

100 102 104 106 108 1010 1012 1014
0

20

40

60

80

ground state degeneracy

a.

b.

c.

Figure 5.5: Histogram of ground state degeneracy found by our algorithm for test
instances constructed by drawing couplings Jij uniformly from a set {±1,±2,±4}
and setting all local fields hi = 0.

particular reason for the hardness of these instances is their enormous ground-
state degeneracy. In 97% of the cases, we were able to recover the lowest
reference energy from [85]. In the other 3% of instances, we were able to find
a better solution.

In our final benchmark, we tested our algorithm with regard to fair sam-
pling. In order to do so, we solved instances of the Ising model with integer
coefficients and counted the identified ground-state degeneracy. The test in-
stances had Jij drawn uniformly at random from the set {±1,±2,±4}, follow-
ing similar tests performed for parallel tempering and parallel tempering with
isoenergetic cluster moves [86] in Ref. [87]. We present the results in Fig. 5.5.
For smaller system sizes, we observe consistency with the results reported in
[87]. For N = 1152, we observe some degeneracies approaching the order of
108, while the previously reported numbers were reaching only the magnitude
of 106. Moreover, we were able to reach beyond N = 1152 studied in [87].



5.4. BENCHMARKS 57

Method approx. ratio N = 512 N = 1152 N = 2048

TN g.s. 30s 150s 450s
PT (adaptive) g.s. 800s — —
PT (geometric) 0.01 0.53s 4.16s —
PT (geometric) 0.005 2.51s 56.4s —
PT (geometric) 0.001 158.4s timed-out —
PT (geometric) 0.0001 897.6s timed-out —
DWave 2000Q6 0.01 0.003s 0.006s 0.02s
DWave 2000Q6 0.005 0.2s timed-out timed-out
DWave 2000Q6 0.001 timed-out timed-out timed-out

Table 5.1: Comparison of time-to-solution metric for our tensor network-based algo-
rithm, in-house Parallel Tempering implementation and D-Wave 2000Q6. The adap-
tive and geometric terms refer to the distribution of inverse temperature β in Parallel
Tempering replicas. We bounded the running time of our solver to 30 minutes with
bond dimension χ = 16, β = 3 and probability cutoff δp = 10−3. For PT, the T
in the equation 5.7 is inferred from the running time and number of performed MC
sweeps: a single MC sweep took 0.00005s for N=512 and 0.00011s for N = 1024. For
the adaptive PT, we used 12 replicas. For geometric PT, we used 25 replicas with
geometrically distributed β, with βmin = 0.0001 and βmax = 10. For all probabilistic
samplers, we used target probability ptarget = 0.99. In the case of D-Wave annealers,
we modified instances by dropping inactive qubits. To obtain the reference ground
state, we once again used our algorithm. We optimized time to solution over anneal-
ing times of 5µs, 20µs and 200µs. For each instance and each annealing time, we
gathered 1000 samples for N = 512 and 2500 for other values of N . Also, we used
T = τ for the D-Wave annealers, i.e. we considered only annealing time and disre-
garded other factors contributing to overall solution time. This choice is justified by
the fact that the other contributions are minuscule. The “timed-out” string indicates
that the given algorithm could not find a solution within the given approximation
ratio (i.e. psucc = 0).





Chapter 6

Brute–forcing spin–glass
problems with CUDA

In Chapter 5 we presented a tensor network–based heuristic algorithm tailored
for Ising spin–glass problems defined on Chimera graphs. In stark contrast, in
this chapter we will shift our attention to a deterministic algorithm capable of
solving problems defined on arbitrary (but relatively small) graphs.

Conceptually, the simplest approach for solving any optimization problem
is a brute force approach, i.e. an exhaustive search through the set of all
possible solutions. For the QUBO or Ising spin–glass with N variables, this
would require iterating over 2N possible states and computing energy for each
of them, resulting in a superexponential algorithm. Although the approach
is clearly infeasible for large problems, it presents several advantages. The
algorithm is deterministic and can certify1 the solution. Moreover, it can be
used to compute a low energy spectrum of arbitrary size k (provided that it
can fit into memory). Lastly, it is trivially parallelizable and hence can be
efficiently accelerated using virtually any parallel computing paradigm, thus
significantly increasing attainable problem sizes.

In this chapter, we discuss such a brute–force algorithm using massively
parallel CUDA architecture. We start by outlining the basic version of the
algorithm and then discuss its recent optimizations for cases when the goal is
to find only the ground state (as opposed to finding a low energy spectrum).

1i.e., prove that the found solution is in fact optimal

59



60 CHAPTER 6. BRUTE–FORCING SPIN–GLASS PROBLEMS

Our implementation is capable of finding the ground state of instances of size
N = 54 in an hour using a commodity GPU and achieving the same task in less
than 5 minutes on a server-grade NVIDIA DGX H100. Lastly, we present a
possible application of our algorithm, which is validating a recent MPS–based
algorithm for solving Ising spin–glasses.

6.1 Finding low–energy spectrum with CUDA

Outline of the algorithm

An idealized brute force algorithm for solving QUBO problems running on a
hardware with infinite storage and an infinite number of execution units can
be summarized as follows:

1. Launch number of threads equal to the total number of possible states.

2. Let each thread compute the energy of one of the states.

3. Extract (e.g. by sorting) the desired number of low–energy states.

Naturally, an attempt to implement such an algorithm on real hardware is
doomed to fail. To exemplify this, consider a problem with N = 40 variables.
Assuming we use 32-bit floating point numbers, one would need an enormous
amount of 240 ·4B = 4398046511104B, or 4TB of working memory to store the
computed energies. For N = 50, this number grows to 4096TB. Clearly, such
an amount of needed memory is prohibitively large, and that is even before
we consider some form of storage for system states. Moreover, no current
hardware can execute 240 threads in parallel. Fortunately, we can adapt our
algorithm to take into account limited memory and parallelism. To do so, we
introduce the following assumptions:

1. We will process the space of possible solutions in chunks that can fit into
the GPU memory.

2. Number of states in a chunk can be larger than the total number of
threads. Should this be the case, the threads will process the chunk
using a grid–stride loop pattern.



6.1. FINDING LOW–ENERGY SPECTRUM WITH CUDA 61

As an added benefit of our assumptions, we decouple the grid size from the
problem size. The number of thread blocks and the block size become pa-
rameters of our algorithm, which facilitates further fine-tuning of the kernel
execution parameters.

The algorithm will keep track of k lowest–energy states computed so far.
This information will be updated after each new chunk is processed. The
downside of this approach is that the size of the low-energy spectrum we can
compute is limited by the chunk size. However, this limitation is not as severe
as it seems, because in a typical scenario, we have k ≪ 2N .

In the next section, we discuss another important aspect of our algorithm,
which is efficient storage and representation of system states.

Storage and representation of system states

Implementing efficient algorithms involves choosing the right storage strategy
for the data the algorithm operates on. This is especially the case for present-
day GPUs, which are equipped with fairly limited memory, as compared to
the operating memory available to the traditional CPU. Moreover, memory
transfers between host and GPU induce additional overhead that should be
avoided whenever possible. For this reasons one often aims for designing the
storage strategy such that it reuses information already available on the GPU
as much as possible, thus optimizing resource usage and minimizing the number
of memory transfers.

In principle, each configuration of a N–variable QUBO can be represented
by N integers. However, since each variable can be assigned only one of two
possible values, this wastes a lot of available memory, as out of each machine
word only a single bit is used. Instead, one can pack the whole state of the
system into a single integer by identifying each bit of the underlying machine
word with a single spin. In our implementation, we decided to use 64-bit in-
tegers. This particular implementation choice limits attainable problem sizes
to N = 64. However, considering that solving larger problems using the brute
force approach is not likely to be possible in the near future (as demonstrated
by our benchmarks presented further in this chapter), this is not a significant
limitation. Furthermore, should the need arise, one could extend the imple-
mentation to use multiple 64-bit integers for storing a single configuration.



62 CHAPTER 6. BRUTE–FORCING SPIN–GLASS PROBLEMS

Identifying states with integers greatly simplifies their enumeration, as it
boils down to iterating over an appropriate range of natural numbers. More
importantly, it allows GPU threads to identify the system state they have to
process using their index and additional offset designating the chunk. In our
implementation, we restrict ourselves to chunk sizes being power of two, i.e.
chunk size = 2M for some M < N . We conceptually split each configuration
into two parts:

1. A local part comprising least significant M bits. This is part is different
for each state in the chunk.

2. A suffix comprising the most significant N −M bits. This part is the
same for each state in the chunk.

Now, since there are 2N−M chunks, we can identify each chunk with a N −M

bit number. Finally we arrive for a formula for an integer representation qj
i of

an i-th configuration in j-th chunk:

qj
i = i+ 2M · j, i = 0, . . . , 2M − 1, j = 0, . . . , 2N−M − 1 (6.1)

The following example demonstrates the representation described above.

Example 6.1 (Processing solution space in chunks). Consider QUBO with
N = 8 variables. We decide to use M = 5. Hence, there are 2M = 32 states in
each chunk and a total of 2N−M = 8 chunks. The local part of the first state
in each chunk is 0, or (00000000)2 in binary. The local part of the last state
in each chunk is 31, or (00011111)2. The table 6.1 below enumerates ranges of
combined integer representation of states in each chunk.

Implementation details

In our approach we decided to store states and their corresponding energies in
arrays of size k + 2M , where k is the desired size of the low energy spectrum
and 2M is the chunk size. The arrays are always synchronized, i.e. at all times
i-th state corresponds to i-th energy. The first k elements store the lowest
energies and corresponding configurations found so far. When a new chunk is
being processed, the second part of the arrays is populated with new states
and energies by the energy–computing kernel. Next, the best k states from



6.1. FINDING LOW–ENERGY SPECTRUM WITH CUDA 63

Chunk First state Last state
Index Binary Decimal Binary Decimal Binary

0 (000)2 0 (00000000)2 31 (00011111)2
1 (001)2 32 (00100000)2 63 (00111111)2
2 (010)2 64 (01000000)2 95 (01011111)2
3 (011)2 96 (01100000)2 127 (01111111)2
4 (100)2 128 (10000000)2 159 (10011111)2
5 (101)2 160 (10100000)2 191 (10111111)2
6 (110)2 192 (11000000)2 223 (11011111)2
7 (111)2 224 (11100000)2 255 (11111111)2

Table 6.1: An example enumeration of chunks iterated over by brute force algorithm.

the current chunk are selected and moved into indices k, k + 1, . . . , 2k − 1.
In this way, the global best solutions from previous chunks and the lowest
energy states from the current chunk in a continuous space in memory, which
facilitates updating the best configurations.

One could use a parallel sorting procedure for extracting the k lowest–
energy states at each step. However, for improved performance, we decided
to use a combination of the bucketSelect [88] algorithm in tandem with
thrust::partition_by_key [68]. The bucketSelect algorithm is used to
find the pivot configuration that would reside at k–th position in the sorted
array. Then, thrust::partition_by_key is used to reorder both arrays such
that the configurations with energies lower than the one of the pivot are moved
to the beginning. The same procedure is used both for extracting the k-lowest
energy states in the given chunk, as well as to update the global solution by
extracting k-lowest energy configurations from the first 2k configurations. The
whole procedure is depicted in Fig. 6.1.

Lastly, we would like to note that the algorithm we just described can
also be implemented on homogenous, CPU-only architectures using any of
the available parallelization approaches. In our implementation, we used the
OpenMP[89] for a CPU–only version.



64 CHAPTER 6. BRUTE–FORCING SPIN–GLASS PROBLEMS

All chunks
processed?

Compute next suffix

Suffix + thread indices

states

energies

Current chunkk best states so far

Energy computing kernel

states

energies

Best k states
in chunk

Rest of chunk

states

Updated best k states

Lowe energy spectrum update

Return last k best states

Input:
-QUBO Q
-Suffix size M
-desired num. states k
-CUDA grid definition

No Compute new states

Compute corresponding
energies

Select best
k states
from chunk

Merge with current best states

Yes

Figure 6.1: Detailed representation of brute force algorithm for finding k-lowest en-
ergy states of a QUBO. The algorithm iterates over the set of all possible states in
chunks of size 2M , where M is a user-defined parameter. Throughout the algorithm
execution, we maintain arrays of states and corresponding energies. The first part of
those arrays stores the k best configurations encountered so far, and the second part
stores configurations belonging to the currently processed chunk. In the first phase
of the iteration, an energy-computing kernel is launched. Then, the k–lowest energy
configurations from the given chunk are selected and moved towards the part of the
array with the current best solutions. Finally, the best k states are selected from the
first 2k configurations and the algorithm proceeds to the next chunk or terminates if
all the chunks have been iterated over.



6.2. EXAMPLE APPLICATION: VERIFYING MPS-BASED
OPTIMIZATION ALGORITHM 65

Performance benchmarks

In order to test the performance of our algorithm, we run extensive benchmarks
using the following hardware:

• CPU: 10 Cores Intel® Core TMi7-6950X;

• GPU(1): Nvidia GeForce GTX 1080, 8GB GDDR5 global memory, 2560
CUDA Cores;

• GPU(2): Nvidia Titan V, 12GB HBM2 global memory, 5120 CUDA
Cores.

The hardware listed above is certainly not the most performant one available on
the market at the time of writing this thesis. However, these initial benchmarks
were performed in 2020 and originally published in [3].

For conducting our benchmarks we generated 100 spin-glass instances for
each N = 24, 26, . . . , 30, 32. Additionally, we generated 100 instances of size
N = 40 and single instances of sizes N = 48, 50 that were feasible to solve with
Titan V GPU (which was the most powerful card available to us at the time
of performing the benchmarks). Coefficients of each spin-glass were drawn
randomly from uniform distributions on the intervals [−2, 2] and [−1, 1] for
magnetic fields and couplings respectively. For each instance, we computed
the low energy spectrum of k = 100 states with our algorithm. We used a
maximum chunk size of 229 for Titan V and CPU and the chunk size of 227 for
GTX 1080. As already mentioned, larger instances (N > 32) were solved only
using Titan V GPU. For GTX 1080 and CPU implementation, the expected
time to solve those instances was estimated based on the timings for smaller
N . The results of our benchmarks are presented in Fig. 6.2.

6.2 Example application: verifying MPS-based
optimization algorithm

As an example application, in this section, we use our brute-force-based ap-
proach to verify the performance of a heuristic algorithm based on Matrix
Product States (MPS). The detailed description of this algorithm is outside



66 CHAPTER 6. BRUTE–FORCING SPIN–GLASS PROBLEMS

24 28 32 36 40 44 48
10−2

100

102

104

106

108

50

∼ (N
2 +1)2

N

system size N

tim
e

to
so

lu
tio

n
[s

]
1 core

10 cores
1080 GTX

Titan V

a.

8 12 16 20 24

10−3

10−1

101

24 28 32 36 40 44 48
10−2

10−1

100

101

102

103

50
system size N

sp
ee

du
p

10 v. 1 core
GTX 1080 v. 1 core

Titan V v. 1 core

b.

Figure 6.2: Results of benchmarks of our algorithm. a. Time to solution vs. system
size N . b. Speedup of multi-core/GPU implementation with respect to a single core
one vs. system size N . The solid lines represent the numerical results and the dashed
lines present estimates based on results obtained for smaller system sizes.

the scope of this thesis, and we refer the interested reader to the Supplementary
Material in [2]. Nevertheless, before we outline how the algorithm works.

Similarly to the algorithm presented in Chapter 5, in the MPS–based ap-
proach one explores the probability distribution (as opposed to exploring the
energy landscape directly). The basic idea behind is to approximate Boltz-
mann distribution as

e−βH(s)/2 ≈ As1As2 . . . AsL = |Ψ(β)⟩, (6.2)

for large enough β. Here, Asi are real matrices of limited dimension ≤ D. In
this context, the parameter D is referred to as the bond dimension. Fig. 6.3a
shows a pictorial representation of such approximation. At each bond, the
system is split into two halves. An exact decomposition would require bond D
of exponential (w.r.t. number of spins) size. Limiting D effectively limits the
amount of entanglement related to given bipartition [90]. Once the approxima-
tion in the equation (6.2) is constructed, it is possible to effectively compute
any marginal or conditional probability, and then systematically search for
the most probable (and thus, ones with lowest energy) classical configurations
using branch-and-bound procedure, constructing tree of most probable spin
configurations one variable at the time.

The search starts with β = 0, for which the MPS decomposition is trivial.
Then, the algorithm subsequently simulates the imaginary time evolution by



6.3. IMPROVING THE ALGORITHM USING GRAY CODE 67

a. b.

Figure 6.3: a. Approximation of the Boltzmann distribution using the MPS ansatz.
b. Compression scheme used in the MPS algorithm.

applying the sequence of gates:

Ui(dβ) = e−dβsi(
∑

j>i Jijsj+hi)/2, (6.3)

which totals to
∏N

i=1 Ui(dβ) = e−dβH(s)/2. One can observe that applying each
gate results in the doubling of the bond dimension. Hence, at each step, one
has to systematically find an approximation maintaining the fixed D. The
whole procedure is depicted in Fig. 6.3b.

By construction, the MPS-based ansatz outlined above is one-dimensional.
Hence, the question is to what end can it be used to find low-energy solutions
of spin-glasses defined on a complete graph? To answer this question, we ran
the MPS-based algorithm on 100 instances of different sizes and then compared
the results to the output of our brute-force algorithm. Instances were drawn
at random using the same procedure as described in the previous section. The
results of these tests are depicted in Fig. 6.4. One can observe that bond
dimension D = 128 and inverse temperature β = 1 are already sufficient to
find the ground state of all the test instances, and recover most of the k = 1000

lowest energy states. The results also demonstrate the significance of setting
the time-step parameter dβ to small enough value. As the last conclusion from
our benchmarks, we would like to point out the magnitude of compression of
the relevant information in the MPS representation. Indeed, an exact MPS
decomposition would require the bond dimension D = 2N/2 ≫ 128.

6.3 Improving the algorithm using Gray Code

The algorithm presented in the previous chapter is already highly performant.
However, we can still improve upon it by altering the order in which we enu-
merate the integral representation of states used by our algorithm.



68 CHAPTER 6. BRUTE–FORCING SPIN–GLASS PROBLEMS

28 32 36 40

0.92

0.94

0.96

0.98

1

system size N

su
cc
es
s
ra
te

D = 64, dβ = 0.5 D = 128, dβ = 0.5
D = 64, dβ = 0.25 D = 128, dβ = 0.25

0.86 0.88 0.9 0.92 0.94 0.96 0.98 1

0

20

40

60

fraction of lowest states found

p
ro
b
a
b
il
it
y
d
en
si
ty N = 40

a. b.

Figure 6.4: Results of the MPS benchmarks. In both panels β = 1. a. Success rate,
defined as a fraction of instances (out of 100) for which the MPS algorithm found the
ground state. b. Normalized histogram showing the number of instances for which
the MPS algorithm was able to find the given fraction of lowest k = 1000 states.

Single bit–energy difference

Suppose we are given a QUBO with F (q1, . . . , qN ) as in the equation (2.3).
Consider two states, say q(1) = (q

(1)
1 , . . . , q

(1)
N ) and q(2) = (q

(2)
1 , . . . , q

(2)
N ) such

that they only differ in the k-th bit, i.e. q
(2)
k = 1 − q

(1)
k and q

(2)
i = q

(1)
i for

i ̸= k. The energy difference F (q(2)) − F (q(1)) can be easily computed and
the formula reads

F (q(2))− F (q(1)) = bk(q
(2)
k − q

(1)
k ) +

∑
i ̸=k

aikq
(1)
i (q

(2)
k − q

(1)
k )

= (q
(2)
k − q

(1)
k )

b1 +∑
i ̸=k

aikq
(1)
i


= (1− 2q

(1)
k )

bk +∑
i ̸=k

aikq
(1)
i

 .

(6.4)

Interestingly, computing the difference in equation (6.4) requires only O(N)

multiplications. But how can this be used to improve the performance of the
exhaustive search through QUBO state space?

Moving F (q(1)) to the right-hand side, we obtain a formula for F (q(2)),
which allows for computing it with only N +1 instead of maximum of N(N +

1)/2 multiplications, provided that F (q(1)) is known. Remember that this
is only possible because q(1) and q(2) differ only by a single bit. If we could
enumerate states in such a fashion that every consecutive two states differ only



6.3. IMPROVING THE ALGORITHM USING GRAY CODE 69

def solve_qubo(F, q):
q = [0] * N # Start with all bits set to 0
best_state = current_state = q
best_energy = current_energy = F(q)

for i in range(2 ** N - 1):
k = find_next_bit_to_flip(i)
current_energy = current_energy + diff(q, k)
current_state = flip(q, k)
if current_energy < best_energy:

best_energy = current_energy
best_state = current_state

return best_state, best_energy

Listing 6.1: Pseudocode for algorithm solving the QUBO problem using energy dif-
ferences and bit flips.

by a single bit, we could leverage the above formula instead of recomputing
energy for each state from scratch. Before we describe how the procedure
works and how to implement this on GPU, let us first introduce the necessary
notation. Given a state q = (q1, . . . , qN ), by flip(q, k) we will denote a state
resulting from flipping k-th bit of q, i.e.

flip(q, k) := (q1, . . . , qk−1, 1− qk, qk+1, . . . , qN ) (6.5)

and by diffF (q, k) we will denote the difference between the energies of flip(q, k)
and q. Using the equation (6.4), we see that the expression for diffF (q, k) is

diffF (q, k) = F (flip(q, k))− F (q). (6.6)

The pseudocode for a serial algorithm for solving a QUBO problem using our
observations is outlined in listing 6.1. Before we can implement it on GPU
though, we need to answer the following questions:

1. How to produce a sequence of 2N − 1 bits such that executing them
enumerates a rll possible states?

2. How to divide work among CUDA threads?

The answer to the first question is well-known and involves enumerating inte-
gers using the Gray code, which we will describe now.



70 CHAPTER 6. BRUTE–FORCING SPIN–GLASS PROBLEMS

Gray code

When one talks about a binary encoding of integers, the first thing that comes
to mind is a usual positional base-2 system. This encoding certainly does not
fit our purpose. Indeed, suppose N = 3 and we are currently processing state
corresponding to number 3, whose representation in binary is (011)2. The
next state, corresponding to number 4, is encoded by the string (100)2, which
differs in all three bits.

Instead of using the positional system, we might utilize an encoding called
Gray code, or Reflected Binary Code (RBC) [91, 92], which is primarily used to
improve the robustness of electromechanical switches and in the error correc-
tion protocols. In this code, encoding of two successive integers always differs
by at most one bit, which makes it suitable for application in our algorithm.

The conceptual construction of the Gray code is straightforward. For Gray
code of length 1 we have two binary strings: 0 and 1. To obtain all Gray codes
for a given length N > 1, we first construct an ordered list of codes of length
N − 1 and call it L. Then, we reverse the list of codes and call it H, an
operation called reflection. Finally, we prepend 0 to all elements of L and
prepend 1 to all elements of H. The concatenation of L and H forms the N–
bit Gray Code. The process is illustrated in Fig. 6.5. One useful consequence
of the construction is that the shorter Gray code might be viewed as an initial
part of the larger one prepended with enough zeros. Thus, statements like
“n-th Gray code” make sense and are unambiguous.

An important thing to observe is that in our algorithm we need at most
two Gray code-encoded numbers at the time to determine the bit to be flipped.
The reflection–based construction outlined so far would require precomputing
a large part (if not all) of the encodings at once. Considering the size of the
state space, this is clearly infeasible. However, there exists an explicit formula
for computing n-th Gray code, which reads [93]:

gray(n) = n⊕ (n >> 1), (6.7)

where ⊕ denotes the bitwise xor operation and >> is right bitshift.
To compute which bit differs between consecutive Gray codes, we can xor

them, and then find the position of the only set bit in the resulting integer.
One can easily implement a function that finds the first set bit in a 64-bit



6.3. IMPROVING THE ALGORITHM USING GRAY CODE 71

0 0 0

0 0 1

0 1 1

0 1 0

1 1 0

1 1 1

1 0 1

1 0 0

0 0

0 1

1 1

1 0

1 0

1 1

0 1

0 0

0 0

0 1

1 1

1 0

0

1

1

0

0

1

reflect

prepend 0

prepend 1

reflect

prepend 0

prepend 1

N=3 N=2 N=1

Figure 6.5: Reflection–based construction of Gray code. The length of the code
is denoted by N . For N = 1, the code comprises two binary strings, 0 and 1. To
construct the code of length N > 1, the code of length N−1 and its vertical reflection
are stacked. Then, the first, unreflected half is prepended with 0 while the second,
reflected half is prepended with 1.

def find_bit_to_flip(i): # i starts from 0
return ffs(gray(i) ^ gray(i+1))

Listing 6.2: Pseudocode for a function generating bit flips for Gray code construction

integer, or use one of the available library or compiler built-in functions. For
instance, POSIX–compatible C standard libraries include ffsll function [94].
In CUDA, there is a __ffsll function available [55]. For both of the above
cases, the function counts bits from 1. Using this convention, we can write a
pseudocode for a function find_bit_to_flip, occurring in the listing 6.1, like
in the listing 6.2.

Now that we know how to construct a correct sequence of bit flips, it is
time we design a parallelization strategy, which is what we will do next.

Parallelization using GPU

The algorithm presented in 6.1 is fully serial. Our task is now to parallelize it
so that it can be executed on GPU. Unsurprisingly, we will once again employ
the strategy of dividing each state into a suffix and a prefix part. This time,
however, it is the suffix that will stay fixed between iterations. The prefix part



72 CHAPTER 6. BRUTE–FORCING SPIN–GLASS PROBLEMS

0 0 0 0 0

0 0 0 0 1

0 0 0 1 1

0 0 0 1 0

0 0 1 1 0

0 0 1 1 1

0 0 1 0 1

0 0 1 0 0

0 1 0 0 0

0 1 0 0 1

0 1 0 1 1

0 1 0 1 0

0 1 1 1 0

0 1 1 1 1

0 1 1 0 1

0 1 1 0 0

1 1 0 0 0

1 1 0 0 1

1 1 0 1 1

1 1 0 1 0

1 1 1 1 0

1 1 1 1 1

1 1 1 0 1

1 1 1 0 0

1 0 0 0 0

1 0 0 0 1

1 0 0 1 1

1 0 0 1 0

1 0 1 1 0

1 0 1 1 1

1 0 1 0 1

1 0 1 0 0

Iteration 1
Prefix: 000

Iteration 2
Prefix: 001

Iteration 3
Prefix: 011

Iteration 4
Prefix: 010

Iteration 5
Prefix: 110

Iteration 6
Prefix: 111

Iteration 7
Prefix: 101

Iteration 8
Prefix: 100

Kernel invocation 1

Kernel invocation 2

Kernel invocation 3

Kernel invocation 4

Figure 6.6: Parallel processing of N = 5–variable QUBO configurations in Gray code
order. In our example, suffix length M = 2, and hence 2M = 4 states are processed
in each iteration. Consequently, there are 2N−M = 8 iterations. For this example,
we consider a kernel that processes two iterations per kernel invocation, resulting in
2N−M/2 = 4 kernel invocations total.

will be updated in each iteration by flipping a single bit in Gray code order.
The process is illustrated in Fig. 6.6.

Throughout the execution of the algorithm, we maintain four arrays of size
2M . In each array, the i-th item always corresponds to the i-th suffix. The
best_states and best_energies arrays store the best states found so far
amongst states with i-th suffix. The current_states and current_energies
store configuration and corresponding energy of current state being processed
for i-th suffix. Each iteration starts by determining the index of the next bit
to be flipped. This value is the same for all suffixes. Next, the algorithm
computes the energy difference using the equation 6.4 and updates the corre-
sponding energy accordingly. After all 2N−M iterations, the best_states and
best_energies arrays are used to extract the ground state.

It is crucial to note that since we are only interested in finding the ground
state, we can group several iterations in one kernel invocation. In fact, it
is entirely possible to implement a kernel that runs all the iterations, which



6.3. IMPROVING THE ALGORITHM USING GRAY CODE 73

would avoid kernel launch overhead. Moreover, such kernel could use thread–
local variables to store current state and energy instead of using global arrays,
which would further increase performance. However, as we will see further in
this chapter, we will propose further optimizations that would require us to
split the algorithm into several kernel invocations.

Further optimizing parallel execution

There are two optimizations we can make to further reduce the number of
operations performed in each iteration. Let us first notice that the only bit
flips that can happen, do so in the prefix part. Going back to equation (6.4),
we can rewrite the expression for F (q(2))− F (q(1)) into a sum of two parts:

F (q(2))− F (q(1)) =(1− 2q
(1)
k )

bk + N−M−1∑
i=0,i ̸=k

aikq
(1)
i

+ (6.8)

(1− 2q
(1)
k )

(
bk +

N−1∑
i=N−M

aikq
(1)
i

)
(6.9)

Since the first summand (6.8) is independent from the suffix, which means
that for each of the considered suffixes in any given iteration, it has the same
value. Since the states in the iteration are processed in parallel by GPU
threads, we have to either redo the same computation multiple times, or use
some synchronization mechanism, e.g. compute the prefix in one thread in
each block and then propagate the result to the whole block through shared
memory. However, there is a third approach. For each iteration, we compute
the prefix part of the energy difference using CPU, and then use it as a kernel
parameter. More precisely, we compute L values of the prefix part of the
energy difference and pass it to the kernel as an additional array. Since the
information about which bit to flip is also relevant, we pass the bit sequence
as another array as well.

As for the (6.9) part, observe that for each given prefix there are only
N −M possible values of k (again, that’s because the bit flips happen only
in the prefix part, and there are N −M prefix bits). However, not all values
of k are equally common. Examining the Gray code construction (c.f. Fig.
6.5) reveals that the least significant bit flips half of times and the second least



74 CHAPTER 6. BRUTE–FORCING SPIN–GLASS PROBLEMS

Initialize partial
differences buffer

All prefixes
processed?

Compute next K bit flips and
prefix parts of energy differences

suffix diff cache

bit flips

pref diffs

Current states
Current energies

Best states
Best energies

Kernel

Find ground energy
and ground state

Input:
- QUBO Q
- Suffix size M
- CUDA grid definition
- Number of iterations
per kernel invocation K

- Partial differences
buffer depth L

No

Yes

a.

Figure 6.7: Schematic representation of the GPU–enabled brute force algorithm for
finding ground state of a QUBO problem using Gray codes.

significant bit flips a quarter of times. Generally, for k = 0, . . . , N −M −1 the
k-th bit flips constitutes approximately 2 1/2k+1 of times. Therefore, we can
cache the value of (6.9) for the K most commonly–occuring bit flips, where K
is a user–controlled parameter.

Performance evaluation of the optimized algorithm

We performed a preliminary performance evaluation of the Gray code–based
algorithm for finding the ground state. For our benchmarks, we used several
setups with different Nvidia GPUs. Some setups were equipped with more than

2Approximately, because there is an odd number of 2N−M -1 flips performed, because
we do not perform last bit flip which would take us back to (0, . . . , 0)2 prefix.



6.3. IMPROVING THE ALGORITHM USING GRAY CODE 75

ce = current energies[s]

cs= current state[s]

be = best energies[s]

bs = best state[s]

i=0

bit = bit flips[i]

diff1 = pref diffs[i]

bit < L diff2 = compute suffix diff(cs, bit)

sign=(2 * (cs >> bit) & 1) - 1

diff2 = sign * suffix diff cache[i]

cs = flip(cs, bit)

ce = ce + diff1 + diff2

ce < be
cs = flip(cs, bit)

be = ce + diff1 + diff2

i < Ki = i + 1

current energies[s] = ce

current state[s] = cs

best energies[s] = be

best state[s] = bs

Strided loop over suffix s

Figure 6.8: Implementation of the strided loop for kernel in fig 6.7.



76 CHAPTER 6. BRUTE–FORCING SPIN–GLASS PROBLEMS

one copy of the same GPU. The summary of test setups, as well as capabilities
of the used GPUs is presented in table 6.2.

Kernel launch parameters Algorithm parameters
GPU(s) Block size Grid size Suffix size # Steps per

kernel launch

# Fixed
variables

A10 512 4096 27 4096 N/A
A100 512 4096 27 4096 N/A
A6000 1024 4096 27 4096 N/A
V100 x8 1024 4096 27 4096 3
DGX H100 x8 1024 8192 29 8192 3
RTX 4090 x8 512 4096 28 4096 1

Table 6.2: Parameters used for benchmarking

Since each of the test setups was available to us only for a limited amount
of time, we were only able to measure execution times for a very limited subset
of parameters, and we needed to make some educated guesses. We decided to
use a constant depth of the prefix differences buffer equal to 10. Depending
on the available memory size, we used suffix sizes of 27, 28 and 29. The tested
kernel executions grids included blocks of 256, 512 or 1024 threads, and 4096
or 8192 blocks per grid. We also considered 2048, 4096 and 8192 algorithm
steps per single kernel execution. The best parameters found for each setup
are presented in table 6.2. We would like to stress out, however, that such
a coarse–grained process of parameter tuning does not guarantee their global
optimality. Further parameter tuning could be achieved by searching through
a finer grid of parameters, possibly combined with profiling. Lastly, for multi-
GPU setups, we solved each instance by distributing the work equally between
GPUs by splitting the problem into chunks of equal size. The splitting was
done by constructing new QUBOs by fixing the values of l variables, resulting
in 2l total subproblems.

The figure Fig. 6.9 shows the results of our benchmarks. Observe that
for multi-GPU setups and system sizes N ≤ 40, the execution time is almost
constant. This is because the time presented on the graph factors in the
time of scattering work among GPUs and gathering the results, which for
small system sizes dominates the actual solver execution times. Aside from
these plateaus, as expected, the graphs of measured solution times resemble
exponential curves. On the setup with eight DGX H100 GPUs, the optimized



6.3. IMPROVING THE ALGORITHM USING GRAY CODE 77

32 34 36 38 40 42 44 46 48 50
10−1

100

101

102

103

1 second

10 seconds

1 minute

10 minutes

30 minutes

System size N

M
ea
n
so
lv
e
ti
m
e
[s
]

A10
A100
A6000
RTX 4090 x2
DGXH100 x8
V100 x8

Figure 6.9: Benchmarking results for Gray code–based brute force algorithm for find-
ing a ground state of Ising model. The dashed lines between data points are provided
for visual guidance. For each system size N , the solution times were averaged over 20
different instances with known ground states. Observe that for setups with multiple
GPUs and small system sizes, the solution time remains virtually constant. This is
because, for small system sizes, the execution time is dominated by tasks related to
distributing work and gathering results. The parameters used for benchmarking in
each setup are summarized in table 6.2.

code was able to find the ground state of instances with system size N = 50

in less than 5 minutes.





Chapter 7

Application to railway conflict
management

As the last point in the thesis, in this chapter we describe how the methods
presented so far can be applied in the field of operational research. Namely, we
propose an approach to solving the railway dispatching problem using quantum
annealing. We benchmark the implementation of our algorithm on the current
generation of D-Wave annealers, using solutions obtained via tensor networks
and exhaustive search as a baseline for comparison.

7.1 Overview of the problem

We will consider a part of a railway network, which we will simply refer to
as a network. The network is divided into block sections or simply blocks. In
our approach, we focused only on the single–track lines, which means that the
network can only comprise the following types of blocks:

• Line blocks, or single track sections, pieces of infrastructure that can be
occupied by one train at a time.

• Sidings, or parallel tracks (occurring e.g. at stations). At the sidings,
trains passing in the same direction can meet–and–overtake, and trains
passing in the opposite directions can meet–and–pass. Each siding com-
prises two or more tracks, each of which can also be occupied by one

79



80 CHAPTER 7. RAILWAY CONFLICT MANAGEMENT

train at a time. In our examples, the sidings will occur at the station,
and hence we will also call them station blocks.

Fig. 7.1 shows an example network. -

... ...
1(3)

2 3 4 5(2) 6

1(2)

1(4)

1(1)

5(1)

Figure 7.1: An example network. Sections 2, 3, 4 and 6 are line blocks, while sections
1 and 5 are sidings with respectively 4 and 2 tracks. Rectangles represent platforms.
Circles represent points where a line block and a siding join (white) or where two line
blocks join (blue). Superscripts denote tracks within a siding.

The trains move through the network according to a timetable. It is as-
sumed that this timetable is conflict-free, i.e. at any time no two trains occupy
the same track.

Now, suppose the network is affected by a disturbance, which has prevented
some trains from running according to their original timetable. Examples of
possible disturbances include, but are not limited to, a malfunction of one
or more trains or a malfunction of railway tracks. After the disturbance,
some trains occupy different parts of the networks than they are supposed
to and resuming operations according to the original timetable might not be
possible. The problem might be viewed from various perspectives, e.g. that
of a passenger or transport operation company [95–97]. In this chapter, we
look at the problem from the perspective of the infrastructure manager whose
task, in the presence of a disturbance, is to create a new, conflict-free timetable.
Naturally, in most cases, there will be multiple possible solutions to the arising
conflicts, and hence one has to decide on what criteria make one timetable more
appealing than another. In our approach, we assume that the dispatcher aims
to minimize some function of the trains’ delays, which we will describe later.
There are also other possible choices of the objective function [98] such as the
total passenger delay or the total cost of operations.



7.2. THE MATHEMATICAL MODEL 81

Let us observe that independently from the algorithm for constructing a
new timetable, some delays after the disturbance might be inevitable, e.g. due
to engineering or even physical limits1. Moreover, by taking into account the
maximum speed with which the trains can move through each section, one can
calculate the lower bounds on the delays. These lower bounds are known as
unavoidable, or primary, delays [99].

In the ideal case, if all the trains could travel at their maximum speed,
all trains would be delayed only by their primary delays and there would be
nothing to optimize. However, it might not always be possible. Suppose for
instance, that two trains going in the same direction are already delayed at a
station neighboring a line block. From each train’s perspective, the optimal
solution is to start its route immediately when possible. However, as only
one of them can do this because a line block can only be occupied by one
train at a time. Hence, at least one of these two trains will have a delay
larger than the primary one. What is important is that this additional delay
is not a consequence of some physical or engineering limitations, but rather
a consequence of the dispatcher’s decision made to avoid a potential conflict.
All such delays are called the secondary delays and, unlike the primary ones,
they are subject to optimization.

The distinction between primary and secondary delays might seem artifi-
cial at first, but it has profound consequences. Namely, when constructing a
function to be minimized we only need to take into account the secondary de-
lays. For instance, we might want to minimize their total sum or their weighted
sum, with weights corresponding to the trains’ priorities.

The above high-level description of the problem needs now a mathematical
formulation, which we present in the next section.

7.2 The mathematical model

Before we can formulate the optimization problem to be run on D-Wave, we
need first to formally describe the railway model. The first idea that comes to

1For instance, if a train has been broken for some time, it can only follow the timetable
if it is not already late and it can make up for the time it already lost – and this can only
happen if it can reach a sufficiently large speed. If this is not the case, the train will be
necessarily delayed.



82 CHAPTER 7. RAILWAY CONFLICT MANAGEMENT

mind is to define quantities corresponding to the departure and arrival times
of each train and relevant station blocks and express all other quantities in
the model in terms of their difference with respect to the times found in the
original timetable. However, as we will soon see, one can almost completely
forget about arrival and departure times, and instead express all quantities
in the model using delays. Moreover, we will further simplify our model by
assuming all secondary delays are integers falling into some finite range.

We assume that the analyzed network segment is a sequence N blocks,
with first and the last blocks being station blocks. The set of all trains will be
denoted by J . This set is naturally partitioned into the set J0 of trains going
into one direction and the set J1 of trains going into the opposite direction.
This is a proper partition, i.e.:

J0 ∪ J1 = J J0 ∩ J1 = ∅ (7.1)

We assume that each train travels through the whole analyzed network seg-
ment. The route Bj of a train j comprises sequence of blocks:

Bj := (bj,1, bj,2, . . . , bj,N ) (7.2)

Our model forbids recirculation, i.e. each train passes every block in its route
exactly once. Therefore, the route of each train is uniquely identified by a
sequence of station blocks Sj :

Sj := (sj,1, sj,2, . . . , sj,end) . (7.3)

We will denote the time at which the train j should leave a block b ∈ Bj

according to the original timetable by ttimetable
out (j, b). Similarly, the time at

which the train j is supposed to enter block b will be denoted by ttimetable
in (j, b).

In our model, we assume that the time at which a train leaves one block is
precisely the same as the time it enters the next block, i.e.

ttimetable
out (j, bj,k) = ttimetable

in (j, bj,k+1). (7.4)

It is clear that the original timetable determines how long it takes for a train
j to travel through a given block b ∈ Bj . We call this time the passage time,
and denote it by ptimetable(j, b):

ptimetable(j, b) := ttimetable
out (j, b)− ttimetable

in (j, b). (7.5)



7.2. THE MATHEMATICAL MODEL 83

An important observation is that the passage times defined by the timetable
may not be the minimum physically achievable passing times pmin(j, b). There-
fore, one can define a time reserve α(j, b) which can be used by train j to
compensate for the delay when traveling through block b:

0 ≤ α(j, b) := ptimetable(j, b)− pmin(j, b). (7.6)

The time reserve will become important when discussing the propagation of
the primary delays.

Delay representation

Suppose the disturbance happened, resulting in some trains not being able to
meet the schedule. Hence, the actual leaving and arrival times (denoted by
tout and tin) differ from the scheduled ones. The delay d(j, s) of the train j at
station block s ∈ Sj is defined as the difference:

d(j, s) := tout(j, s)− ttimetable
out (j, s) (7.7)

As already mentioned, d(j, s) can be expressed as a sum:

d(j, s) = dU (j, s) + dS(j, s) (7.8)

where dU denotes the primary (or unavoidable) delay, and dS denotes the
secondary delay [99]. In the absence of time reserve, one would simply have
dU (j, s) = dU (j, s

′) for any given train j and blocks s, s′ ∈ Sj . However, the
time reserve allows to somewhat compensate delays, and hence we have

dU (j, sj,k+1) = max

{
0, dU (j, sj,k)−

∑
b

α(j, b)

}
, (7.9)

where the sum runs over all blocks starting from the one following sj,k and
ending on sj,k+1. The secondary delays can be, in principle, arbitrarily large.
However, it is convenient to assume that all secondary delays for the train j

are bound from above by some constant dmax(j). One can find a reasonable
upper bound by running some fast heuristic, or determine it manually (e.g.
there might be an a priori established maximum allowable delay of the train).
Henceforth, we will consider dmax(j) to be parameters of the model. With this
assumption, we have the following bounds on the overall delays:

dU (j, s) ≤ d(j, s) ≤ dU (j, s) + dmax(j). (7.10)



84 CHAPTER 7. RAILWAY CONFLICT MANAGEMENT

7.3 Discretizing delays

Formulation of the problem presented so far can facilitate the construction of
a linear, constrained model of the dispatching problem. However, since the
secondary delay values are continuous variables, such a model would not be
compatible with the quantum annealer. We circumvent this issue by discretiz-
ing the delays. One way to do it is to require all secondary delays to be natural
numbers, i.e.:

∀j∈J ∀s∈Sj dS(j, s) ∈ {0, 1, . . . , dmax(j)}. (7.11)

As a consequence, the total delays become discretized as well. We will denote
the set of possible values for d(j, s) by Aj,s, i.e.:

∀j∀s∈SjAj,s := {dU (j, s), dU (j, s) + 1, . . . , dU (j, s) + dmax(j)}. (7.12)

Notice that this discretization is not particularly restrictive, as timetables typ-
ically have a finite resolution of minutes anyway.

We can now use one-hot encoding for d(j, s) and introduce the decision
binary variables xs,j,m:

∀j∈J ∀s∈Sj∀m∈Aj,s xs,j,m =

1, d(j, s) = m

0, otherwise
. (7.13)

Naturally, possible values for d(j, s) are mutually exclusive, which can be ex-
pressed as the following constraint:

∀j∈J ∀s∈Sj

∑
m∈Aj,s

xs,j,m = 1 (7.14)

As for the cost function, we decided to use a simple weighted sum of the delays,
i.e. the cost function of the form:

f(x) =
∑
j∈J

∑
s∈S∗

j

∑
m∈Aj,s

w(s, j,m) · xj,s,m, (7.15)

where S∗
j = Sj \{sj,end}. For instance, choosing w(s, j,m) = m would result in

an objective of minimizing the sum of all delays. In general, however, one could
take into account the relative importance of the trains, as we will describe later
when introducing the real railway sections considered in our research.



7.4. DISPATCHING CONDITIONS AND THE PENALTIES 85

7.4 Dispatching conditions and the penalties

The cost function (7.15) together with constraint (7.14) is not enough to con-
struct a meaningful optimization problem. We also have to take into account
other constraints stemming from dispatching conditions. For instance, we can-
not allow a schedule in which two trains occupy the same track at the same
time. We describe the precise forms of the constraints in detail in the Ap-
pendix C, and in this section, we will only provide their brief overview. The
dispatching conditions are:

1. The minimum passing time condition. Train cannot travel through
a block faster than the corresponding minimum passing time.

2. The single block occupation condition. Two trains cannot occupy
the same part of a single railway track.

3. The deadlock condition. Suppose trains j and j′ are heading in op-
posite directions on a route determined by two consecutive stations sj,k
and sj,k+1. In this case, j has to arrive at sj,k+1 before j′ can leave
sj,k+1, or vice versa.

4. The rolling stock circulation condition. Our model assumes that
some trains are assigned the same train set. The rolling stock circulation
condition ensures there exists some minimum turnover time, before a
train set can be reused.

The dispatching conditions together with the cost function (7.15) and one-
hot encoding constraint (7.14) define a constrained 0−1 problem. However, in
order to use a quantum annealer, we must convert it to QUBO, which means
we have to incorporate those constraints into the objective function.

One might observe that penalties defined by the dispatching conditions
(c.f. Appendix C) are of the form:∑

(l,l′)∈Vp

xlxl′ = 0, (7.16)

for some set Vp of pairs of multiindices. For every feasible solution (i.e. one
meeting all the constraints) the sum in the equation (7.16) is 0, whereas vi-
olation of the corresponding condition gives a strictly positive value. Hence,



86 CHAPTER 7. RAILWAY CONFLICT MANAGEMENT

one can add such a sum to the cost function, effectively penalizing the infea-
sible solutions. More generally, one might multiply the sum by some constant
ppair > 0, to further increase the value of the cost function for the infeasi-
ble solutions. Finally, taking into account all penalties from all dispatching
conditions gives the following term that can be added to the objective function:

Ppair(x) = ppair
∑
Vp

∑
(l,l′)∈Vp

xlxl′ . (7.17)

The same reasoning cannot be applied e.g. to the constraint (7.14), which
comprises equations of the form: ∑

l∈Vs

xl = 1. (7.18)

If one added sums from the equation (7.18) to the cost function, it would
favor the infeasible solution comprising all 0s. Instead, one can consider the
following quadratic form of the same penalty:∑

l∈Vs

xl − 1

2

= 0 (7.19)

In contrast to (7.18), this time the left-hand side is equal to 0 for feasible
solutions, and takes a positive value for any solution violating the one-hot
encoding constraint. As with previous, quadratic penalties, we might want
to multiply such penalties by some constant psum > 0. An important thing
to mention here is that the expansion of the left-hand side in (7.19) gives a
nonzero constant offset, which we will ignore. Therefore, the final form of the
penalty corresponding to the one-hot encoding constraint is:

Psum(x) = psum
∑
Vs

 ∑
(l,l′)∈V×2

s ,l ̸=l′

xlxl′ −
∑
l∈Vs

xl

 . (7.20)

Lastly, the total objective function for our QUBO reads:

f ′(x) = f(x) + Psum(x) + Ppair(x). (7.21)



7.5. RESULTS 87

7.5 Results

Studied railway segments

In our work, we considered two single-track railway lines managed by the Polish
state-owned company PKP Polskie Linie Kolejowe:

• Railway line No. 216 (Nidzica – Olsztynek section)

• Railway line No. 191 (Goleszów – Wisła Uzdrowisko section)

The segments are depicted in Fig. 7.2a and Fig. 7.3a. For the railway
line No. 216, we considered its official train schedule (as of April 2020). The
line No. 191 was undergoing a renovation at the time we were conducting our
original experiments [4], and hence it had no available timetable. Based on the
planned parameters of the line, as described in the official documents [100], we
constructed a cyclic timetable. Initial, undisturbed timetables are depicted in
Fig. 7.2b and Fig. 7.3b.

Timetable for the network segment of line No. 216 includes two Inter-City
trains, IC5320 and IC3521, and a regional Regio train R90602. For the line No.
191, the timetable includes two Inter-City trains IC1, IC2 and four regional
trains Ks1–Ks4. We assume both Inter-City trains in line No. 191 are operated
with the same train set, with a minimum turnover time (see Appendix C) of
R(j, j′) = 20 minutes.

For both network segments, we assume that the minimum waiting times at
all considered stations are 1 minute. Also, we assume that the passing times
through all the line blocks were initially scheduled according to the maximum
permissible speeds. As a result of those assumptions, the only possible nonzero
time reserve occurs at the station blocks.

Disturbance scenarios

For the Nidzica–Olsztynek railway segment, we considered a single scenario
with two delays. The purpose of this scenario is to illustrate our approach on a
simple and yet real-world example. The first one is a 15-minute delay of IC5320
starting from station block 5. The second one is that of the IC3521 leaving
first station block 5 minutes late. Considering this and our assumptions, this



88 CHAPTER 7. RAILWAY CONFLICT MANAGEMENT

a.

... ...

Nidzica Waplewo Olsztynek

1(1) 2 3(1) 4 5(1)

1(3) 3(3) 5(3)

5(2)

b.

14:00 14:10 14:20 14:30 14:40 14:50
time

1

3

5

st
at

io
n 

bl
oc

k

IC3521

IC3521IC5
32

0

IC5
32

0

R9
06

02

R9
06

02

initial timetable

Figure 7.2: a. Nidzica – Olsztynek segment of line No. 216. The segment comprises
three station blocks (1 – Nidzica, 3 – Waplewo, 5 – Olsztynek), and two line blocks
(2, 4). We assume that passing through the station block takes the same amount
of time independently of which track is used. b. Train diagram for the undisturbed
timetable of the line in a.. The timetable features two Inter–City trains IC3521 and
IC3520 and one Regio train R90602. The paths for the Inter-City trains are marked
with red and path of the Regio train is marked with black.



7.5. RESULTS 89

a.

... ...

Goleszów Ustroń Ustroń
Zdrój

Ustroń
Poniwiec

Ustroń
Polana

Wis la
Jawornik

Wis la
Uzdrowisko

1(2) 2

3(1)

4 5 6 7(1) 8 9 10(1)

1(5)

1(1)

1(4)

7(3)

3(2)

10(3)

10(2)

b.

08:00 08:15 08:30 08:45 09:00 09:15 09:30 09:45 10:00
time

1

3

7

10

st
at

io
n 

bl
oc

k

Ks1
Ks1

Ks1
IC1

IC1
IC1

Ks3
Ks3

Ks3Ks
2

Ks
2

Ks
2

Ks
4

Ks
4

Ks
4

IC
2

IC
2

IC
2

initial timetable

Figure 7.3: a. Goleszów – Wisła Uzdrowisko segment of line No. 191. The segment
comprises 4 station blocks (1 – Goleszów, 3 – Ustroń, 7 – Ustroń Polana, 10 – Wisła
Uzdrowisko) and 6 line blocks (2, 4, 5, 6, 8, 9). Between line blocks there are ad-
ditional passenger platforms at Ustroń Zdrój, Ustroń Poniwiec and Wisła Jawornik.
b. Train diagram for the timetable of the line in a.. The timetable features two
Inter–City trains (IC1 and IC2) and four regional trains (Ks1–Ks4). The paths of
the Inter–City trains are marked with red and the paths of the regional trains are
marked with black.



90 CHAPTER 7. RAILWAY CONFLICT MANAGEMENT

a.

14:00 14:10 14:20 14:30 14:40 14:50
time

1

3

5

st
at

io
n 

bl
oc

k

IC3521

IC5
32

0

IC5
32

0
R9

06
02

R9
06

02

conflicted timetable

b.

14:00 14:10 14:20 14:30 14:40 14:50
time

1

3

5

st
at

io
n 

bl
oc

k

IC3521

IC3521IC5
32

0

IC5
32

0
R9

06
02

R9
06

02

AMCC heuristics

Figure 7.4: a. Conflicted timetable for railway segment of line No. 216. Compared to
the original timetable (Fig. 7.2b), two trains are delayed, resulting in two conflicts.
The conflicts can be quickly identified visually as intersections of train paths at line
blocks. b. Conflict resolution via AMCC heuristics. The same solution was obtained
using FCFS and FLFS heuristics.

creates conflicts where two Inter–City trains, as well as an Inter–City train
and the Regio train, have conflicts at block 4. The conflicted, infeasible train
diagram for this situation is depicted in Fig. 7.4.

For the Goleszów – Wisła Uzdrowisko line, we considered several different
scenarios, which were designed to illustrate our approach on a larger example:

1. A moderate delay of the Inter–City train starting from the station block
1. This results in a single conflict between IC1 and Ks2.

2. A moderate delay of all the trains starting from station block 1, resulting
in two conflicts.

3. A significant delay of some trains starting from station block 1. Results
in two conflicts.

4. A significant delay of the Inter–City train IC1 starting from the station
block 1. Results in a single conflict, which is straightforward to resolve.

The delays in all the aforementioned scenarios were chosen so that they
indeed result in conflicts. The conflicted timetables are presented in Fig. 7.5.



7.5. RESULTS 91

a.

08:00 08:15 08:30 08:45 09:00 09:15 09:30 09:45 10:00
time

1

3

7

10

st
at

io
n 

bl
oc

k

Ks1
Ks1

Ks1

IC1
IC1

IC1

Ks3
Ks3

Ks3

Ks
2

Ks
2

Ks
4

Ks
4

Ks
4

IC
2

IC
2

IC
2

case1, conflicted timetable

b.

08:30 08:45 09:00 09:15 09:30 09:45 10:00
time

1

3

7

10

st
at

io
n 

bl
oc

k
Ks1

Ks1
Ks1

IC1
IC1

IC1

Ks3
Ks3Ks

2
Ks

2

Ks
4

Ks
4

Ks
4

IC
2

IC
2

IC
2

case2, conflicted timetable

c.

08:40 08:50 09:00 09:10 09:20 09:30 09:40 09:50 10:00
time

1

3

7

10

st
at

io
n 

bl
oc

k

Ks1

Ks1

Ks1

IC1
IC1

Ks3

Ks3

Ks3Ks
2

Ks
2

Ks
2

Ks
4

Ks
4

Ks
4

IC
2

IC
2

IC
2

case3, conflicted timetable

d.

08:00 08:30 09:00 09:30 10:00 10:30
time

1

3

7

10

st
at

io
n 

bl
oc

k
Ks1

Ks1
Ks1

IC1
IC1

Ks3
Ks3

Ks3Ks
2

Ks
2

Ks
2

Ks
4

Ks
4

IC
2

IC
2

IC
2

case4, conflicted timetable

Figure 7.5: Conflicted timetables for line No. 216. a. Single conflict, observe that
the additional delay of Ks2 will propagate to the delay of Ks3. b. Two conflicts, with
no impact of Ks2 on Ks3. c. Multiple conflicts. d. One conflict, straightforward to
resolve.

Solution using simple heuristics

To establish a baseline for Quantum Annealing, we solved the problems de-
scribed in the previous section using simple heuristics common in the railways
practice. Those heuristics are:

• FCFS (First Come First Served),

• FLFS (First Leave First Served),

• AMCC (Avoid Maximum Current Cmax).

In FCFS (resp. FLFS) the way is given to the train that first arrives
(resp. first leaves) the considered station block at which the conflict occurs.



92 CHAPTER 7. RAILWAY CONFLICT MANAGEMENT

AMCC [101] is slightly more complex. In this heuristic, one tries to minimize
the maximum secondary delays of the trains. We want to stress that those
heuristics facilitate different objective functions, and hence it is not possible to
directly compare them – nevertheless, it might be useful to discuss qualitative
differences between the solutions they produce. The solutions provided by
the AMCC heuristic also provide a lower bound for the values of maximum
secondary delays dmax(j), which we will use when constructing QUBO.

For the case of Nidzica–Olsztynek line, all heuristics returned the same
solution, depicted in Fig. 7.4b. The conflict is avoided by delaying IC3521
by another 3-minutes, and allowing R9062 to enter the block not earlier than
14:25, i.e. 4 minutes later than in the conflicted timetable. In this case, the
additional 4 minutes constitute the maximum secondary delay of the solution.

We also applied the aforementioned simple heuristics to all the considered
disturbances in the Goleszów – Wisła Uzdrowisko segment. For brevity, we
refrain from presenting a detailed discussion of the solutions for all the cases
and limit ourselves to the summary of the maximum secondary delay, which
is presented in Table 7.1:

Heuristics case 1 case 2 case 3 case 4

FLFS 6 13 4 2
FCFS 5 5 5 2
AMCC 5 5 4 2

Table 7.1: The maximum secondary delays, in minutes, resulting from simple heuris-
tics. Observe that for each case, there are solutions far below dmax = 10.

Details on QUBO construction

To formulate our dispatching problems as QUBO and solve them on the D-
Wave annealer (or using any other method), we first need to decide on the
values of several parameters of the model, as well as the precise form of the
cost function. We start with the latter.

We decided on using the cost function proportional to the secondary delays
of all trains entering their last station block. Additionally, we weight the
contributions of each delay with a coefficient depending on the prioritization



7.5. RESULTS 93

of the corresponding train, resulting in the cost function of the form:

f(x) =
∑
j∈J

 ∑
m∈Aj,send−1

wj
d(j, s∗)− dU (j, s

∗)

dmax(j)
xj,s∗,m

 , (7.22)

where s∗ = send−1. The priorities wj are chosen specifically for both networks.
One can immediately observe that larger values of wj increase contribution
stemming from the delay of a given train, and hence the objective function
favors solutions with smaller delays for the trains with larger priorities. For
the segment of line No. 216, we assume wj = 1.5 for all Inter-City trains, and
wj = 1.0 for the regional train. This prioritization coincides with the usual
prioritization of trains in Poland (and many countries). For the segment of
line No. 191, we decided to adopt a slightly more complicated prioritization.
For the trains heading toward block 10, we set a lower priority of wj = 0.9. For
the trains heading in the opposite direction, we set wj = 1.5 and wj = 1.0 for
Inter-City and regional trains respectively. This is because the trains heading
towards block 1 (Goleszów) also head towards important junctions in the Polish
railway network (Katowice for regional trains, and the capital city of Warsaw
for Inter-city trains). Our strategy therefore tries to avoid larger delays in this
direction to limit further disturbance to the rest of the network.

As for the maximum secondary delay dmax, for simplicity, we assume it is
the same for all trains. On the one hand, its value cannot be smaller than the
one returned by the AMCC heuristics. On the other hand, setting this value
too high increases the number of decision variables and complicates the objec-
tive function, which is especially undesirable because of the limited number of
qubits on D-Wave annealers. For line No. 216, we set dmax = 7 and for line
No. 191 we set dmax = 10. The total number of decision variables is given by

#variables = (#station blocks − 1) · (#number of trains) · (dmax + 1) (7.23)

Using formula (7.23) we get 2 · 3 · 8 = 48 decision variables for line No. 216
and 3 ·6 ·11 = 198 variables for line No. 191. Importantly, the moderately low
number of variables for line no. 216 allows us to solve it using the brute-force
algorithm presented in Chapter 6.

Lastly, we need to choose values for ppair and psum penalty weights. This
is a very subtle choice. On the one hand, setting it too low may cause some of



94 CHAPTER 7. RAILWAY CONFLICT MANAGEMENT

−9 −8 −7 −6

Energy

101

102

103

C
ou

n
t

ppair = psum = 1.75

Feasible Infeasible

−10 −9 −8

Energy

ppair = psum = 2.0

Feasible Infeasible

−17 −16 −15 −14 −13 −12

Energy

ppair = psum = 3.0

Feasible Infeasible

Figure 7.6: Energy histogram for feasible (green) and infeasible (red) solutions of
QUBO defined for line No. 216 with varying penalty weights. The figure takes into
account the first 5000 low-energy states.

the infeasible solutions to have the value of the objective function smaller than
that of feasible solutions, which is undesirable. On the other hand, if penalty
weights are too high, the actual cost function becomes merely a perturbation
for the penalty terms, which is also undesirable. To illustrate the difference
those weights make to the energy landscape, we computed the low-energy
spectrum for the problem defined on line No. 216 for several different values
of ppair and psum. The obtained energy histograms are presented in Fig. 7.6.

In our experiments, we used several combinations of ppair and psum. For D-
Wave 2000Q series devices, which we used for the experiments reported in [4],
we used ppair = 2.7, psum = 2.2 and ppair = psum = 1.75. Additionally, in this
thesis, we extend these results by running experiments with ppair = psum = n

for n = 2, 3, 4 on Advantage and Advantage2 prototype devices.

Initial experiments on D-Wave annealers

In our initial experiments, reported in [4], we used mostly the D-Wave 2000Q
device. We were able to successfully embed all the problem instances, except
case 3 for Line 191. As for the QUBO parameters, we used ppair = 2.2,
psum = 2.7 and ppair = psum = 1.75. We used several values of the chain
strengths, all of them being a multiplicity of max |Jij | (computed separately
for each problem before the embedding). Following convention from [4], we
call the multiplier chain strength scale (css), and in our experiments, it ranged
from 1 to 9. The annealing time varied between 5–2000µs.



7.5. RESULTS 95

a.

14:00 14:10 14:20 14:30 14:40 14:50
time

1

3

5

st
at

io
n 

bl
oc

k

IC3521

IC3521IC5
32

0

IC5
32

0
R9

06
02

R9
06

02

D-Wave result

b.

14:00 14:10 14:20 14:30 14:40 14:50
time

1

3

5

st
at

io
n 

bl
oc

k

IC3521

IC3521IC5
32

0

IC5
32

0
R9

06
02

R9
06

02

D-Wave result

c.

2 3 4 5 6 7
css

12

10

8

6

4

be
st

 so
lu

tio
n 

en
er

gy

d.

2 3 4 5 6 7
css

9

8

7

6

5

4

3
be

st
 so

lu
tio

n 
en

er
gy

D-Wave 2000 s
D-Wave 1000 s
D-Wave 5 s
ground state

Figure 7.7: a. – b. Best solutions obtained with D-Wave 2000Q annealer, optimized
over all annealing times and chain strength scales. c. – d. Energy of the best D-
Wave solution as the function of css scale. For panels a. and c. we used ppair = 2.2,
psum = 2.7 and for panels b, d. we used ppair = 1.75, psum = 1.75.

For QUBO defined for Line 216, the D-Wave annealers failed to reach the
ground state for all the tested parameters. However, the lowest energy–solution
found by the annealer was equivalent to the ground state from the dispatching
perspective2. The Fig. 7.7 shows the solutions obtained from the D-Wave
annealer, as well as the deviation from the ground state energy. Since the best
solution was obtained for css = 2, we decided to use the same value for the
consecutive experiments.

Finding a feasible solution for QUBOs defined for Line 191 proved to be
much more difficult for the D-Wave 2000Q annealer. Hence, we increased
the total number of obtained samples to 250k. Still, even with the increased
number of samples we were unable to reach a feasible solution. The best
solutions found by the annealer for case 1 and case 2 violate a single constraint

2Here, equivalent from the dispatching perspective means that the order of trains leaving
any given station is the same.).



96 CHAPTER 7. RAILWAY CONFLICT MANAGEMENT

a.

08:00 08:15 08:30 08:45 09:00 09:15 09:30 09:45 10:00
time

1

3

7

10

st
at

io
n 

bl
oc

k

Ks1
Ks1

Ks1

Ks3

Ks3
Ks3

IC1
IC1

IC1 Ks
2

Ks
2

IC
2

IC
2

IC
2

Ks
4

Ks
4

Ks
4

D-Wave result

b.

08:30 08:45 09:00 09:15 09:30 09:45 10:00
time

1

3

7

10

st
at

io
n 

bl
oc

k

Ks1

Ks1

Ks1

Ks3

Ks3

IC1
IC1

IC1 Ks
2

Ks
2

Ks
2

IC
2

IC
2

IC
2

Ks
4

Ks
4

Ks
4

D-Wave result

Figure 7.8: Lowest energy solutions obtained for QUBO problems defined for Line
191. In all panels ppair = 2.2, psum = 2.7 and css = 2.0. a. Solution obtained for case
1 (with annealing time τ = 1400). The solution is infeasible because the train Ks3
stays at the station block 7 shorter than 1 minute. The solution can be turned into
a feasible one by prolonging the stay of Ks3 at station block 7. b. The best solution
obtained for case 2 (τ = 1200). The solution is infeasible as Ks3 does not stop at
station 7. This solution can be made into an optimal one by shortening the stays of
Ks3 at station 3 and IC2 at station 7.

and can be easily corrected to obtain a feasible (and in case 2, even optimal)
solution, see Fig. 7.8.

In comparison, the QUBOs for cases 1–4 turn out to not be that challenging
for the classical solvers. Both the tensor networks algorithm, described in
Chapter 5, and the IBM CPLEX solver were able to find high-quality solutions
equivalent to the ground state from the dispatching point of view, with CPLEX
slightly outperforming the tensor network algorithm in cases 3 and 4. The
values of the cost function obtained from these solvers are presented in table
7.2. In the same table, we also present, for reference, values of our objective
function for solutions obtained with simple heuristics.

At the time we were conducting experiments presented in [4], the new
Advantage System 1.1 device was entering the market, and we were able to
run a very limited set of experiments. We decided to try a slightly larger
problem, constructed by extending the timetable for Line 191 with more trains.
Although we were able to embed it on the device, our attempts to find a feasible
solution on this early Pegasus-based system were futile. For the details of this
part of the experiment, we refer the interested reader to [4].



7.5. RESULTS 97

Method Case 1 Case 2 Case 3 Case 4

QUBO model CPLEX 0.54 1.40 0.73 0.20
Tensor Networks 0.54 1.40 1.65 0.29

Simple heuristics
AMCC 0.77 1.30 0.73 0.20
FLFS 0.54 1.71 0.73 0.20
FCFS 0.77 1.30 0.95 0.20

Table 7.2: Values of the cost functions obtained by the classical solvers for the QUBO
problems defined for line 191. Values marked with blue represent solutions equivalent
(from the dispatching perspective) to the ground state of the corresponding problem.
Values for the solutions obtained with simple heuristics are provided for reference,
but it should be noted that those methods use different objective functions and hence
cannot be directly compared to CPLEX or tensor networks-based solver.

Extended experiment on the Advantage System annealers

Since the time of our experiments described in the previous section, new mod-
els of the annealers from the Advantage System generation became available.
Furthermore, the first Advantage2 Prototype devices entered the market. We
decided to extend our experiment and run further tests to investigate the per-
formance of these devices for a broader range of parameters. To this end, we
decided to test how the newer Pegasus-based devices perform on the QUBO
problem defined on Line 216. We decided that due to the limitation of our
resources, we could not run comprehensive experiments with the problem cases
defined on Line 191, and instead opted for a more comprehensive sweep through
the parameter space for the smaller problem.

In this new scenario, we decided to increase ppair and psum values, to in-
vestigate if a wider energy separation between feasible and infeasible solutions
will be beneficial for the annealers’ performance. As previously, the annealing
times varied from τ = 5 to τ = 2000. We used chain strengths varying between
4 and 12. We would like to stress, that here we mean absolute values of the
chain strengths and not scales of chain strengths in relation to the maximum
absolute value of quadratic terms of the problem like in the initial experiment.

All of the annealers were able to find a feasible solution to the problem for
at least some combination of parameters. However, their performance varied
highly depending on the parameter range. The frequency of finding a feasible
solution by the annealers is depicted in Fig. 7.10. As seen there, the Advan-



98 CHAPTER 7. RAILWAY CONFLICT MANAGEMENT

a.

14:00 14:10 14:20 14:30 14:40 14:50
time

1

3

5

st
at

io
n 

bl
oc

k

IC3521

IC3521IC5
32

0

IC5
32

0
R9

06
02

R9
06

02

b.

14:00 14:10 14:20 14:30 14:40 14:50
time

1

3

5

st
at

io
n 

bl
oc

k

IC3521

IC3521IC5
32

0

IC5
32

0
R9

06
02

R9
06

02

Figure 7.9: Example ground state solutions for the conflicted timetable of Line 216.
All other ground states are equivalent from the dispatching point of view.

Solver chain strength annealing time # occurrences
Advantage System4.1 10 200 1
Advantage System4.1 12 500 1
Advantage System6.3 10 500 1
Advantage System6.3 12 100 1

Advantage2 Prototype1.1 12 5 1
Advantage2 Prototype1.1 12 100 3
Advantage2 Prototype1.1 12 1000 4
Advantage2 Prototype1.1 12 2000 1

Table 7.3: Parameters for which the D-Wave annealers managed to find the optimal
solution to the problem defined on Line 216. All samples with ground states occurred
at ppair = psum = 4.0.

tage System6.3 and Advantage2 Prototype1.1 devices exhibited much better
performance than the older Advantage System4.1 device. As for the quality
of the solutions, all solvers managed to find an optimal solution, although
with different success rates. The summary of parameters for which a ground
state was obtained is presented in table 7.3. Example ground states found are
depicted in Fig. 7.9.

One of the interesting observations one could make about the results pre-
sented in Fig. 7.10 is the performance difference between different models of
the annealers, which seem to be highly dependent on the regime of parameters.
Determining the sources of these differences requires further research, but it
is possible that they can be partially explained by differences in the avail-



7.5. RESULTS 99

0.00

0.05

0.10

0.15

fe
as

ib
ili

ty
p

er
ce

nt
ag

e

ppair = 2.0, psum = 2.0, ppair = 3.0, psum = 3.0,

ch
ain

stren
gth

=
4.0

ppair = 4.0, psum = 4.0,

0.00

0.05

0.10

0.15

fe
as

ib
ili

ty
p

er
ce

nt
ag

e ch
ain

stren
gth

=
6.0

0.00

0.05

0.10

0.15

fe
as

ib
ili

ty
p

er
ce

nt
ag

e ch
ain

stren
gth

=
8.0

0.00

0.05

0.10

0.15

fe
as

ib
ili

ty
p

er
ce

nt
ag

e

ch
ain

stren
gth

=
10.0

5 10 20 10
0

20
0

25
0

50
0

10
00

20
00

annealing time

0.00

0.05

0.10

0.15

fe
as

ib
ili

ty
p

er
ce

nt
ag

e

5 10 20 10
0

20
0

25
0

50
0

10
00

20
00

annealing time

5 10 20 10
0

20
0

25
0

50
0

10
00

20
00

annealing time

ch
ain

stren
gth

=
12.0

Advantage2 prototype1.1 Advantage system4.1 Advantage system6.3

Figure 7.10: Frequency of finding a feasible solution for the problem defined for
Line 216. Rows in the grid correspond to different values of chain strength and the
columns correspond to different values of penalty scalings. In each cell, the X-axis
depicts the annealing time τ , while the Y -axis depicts the obtained fraction of the
feasible solution (out of 1000 samples)



100 CHAPTER 7. RAILWAY CONFLICT MANAGEMENT

able range of quadratic coefficients between the devices (see D-Wave QPU
datasheets [49]), which in turn might affect the DAC quantization effect (see
discussion of error sources in Section 4.4).



Summary

In this thesis, we focused on benchmarking quantum annealers and validat-
ing their usefulness in practical settings. One of the most anticipated uses of
quantum computers is simulating physics, or, more precisely, simulating the
dynamics of quantum systems. Therefore, it seems there is no better bench-
mark for a quantum computer than to test how far it is from achieving this
long–awaited goal. To this end, we described in detail a proof-of-concept al-
gorithm for simulating the dynamics of a quantum (or in fact, any dynamical)
system using quantum annealers. Although the applicability of the algorithm
to current devices is limited by their small number of qubits and sparse con-
nectivity, our experiments indicated that already the present-day D-Wave an-
nealers can capture the dynamics of a very simple two-level system. We also
contrasted the obtained results with the ones produced by several classical
solvers, concluding that they perform better than the tested quantum devices.
We also provided a possible explanation why the particular optimization prob-
lems solved in our experiments are particularly hard for D-Wave devices and
checked our predictions with numerical experiments.

To assist in the process of benchmarking the annealers, we developed two
distinctive algorithms. The recent, tensor network-based algorithm allows one
to solve Ising spin–glass instances defined on Chimera graph and other similar
layouts. The algorithm is useful in itself as an optimization approach, but for
other research conducted for this thesis, provided a classical baseline for the
results obtained by the D-Wave annealer. The second of our algorithms, a
massively parallelizable distributed brute-force algorithm, allows for the exact
computation of the low–energy spectrum of small, but otherwise arbitrary,
spin-glass instances. Importantly, this simple yet efficient algorithm is exact

101



102 CHAPTER 7. RAILWAY CONFLICT MANAGEMENT

and deterministic. We used the brute-force algorithm to obtain low-energy
spectra for some of the smaller instances used throughout our experiments.
This provided us not only with a means of assessing the quality of solutions
obtained from other solvers or annealers but also with valuable insights into
the structure of the solution space.

To benchmark another anticipated use of quantum annealers, i.e. solving
hard optimization problems stemming from real-life problems, we described
an approach for solving railway-dispatching problems by converting them to
QUBO. We then conducted experiments testing our approach on two genera-
tions of D-Wave quantum annealers. Remarkably, for our tests, we used real
railway timetables from two Polish railway segments. In our experiments, D-
Wave annealers were able to successfully find an optimal solution to the small
problem instances, although the performance varied greatly depending on the
parameters such as the annealing time and chain strength.



Bibliography

[1] K. Jałowiecki, A. Więckowski, P. Gawron, and B. Gardas, Parallel in time
dynamics with quantum annealers, Sci. Rep. 10 (2020).

[2] M. M. Rams, M. Mohseni, D. Eppens, K. Jałowiecki, and B. Gardas, Ap-
proximate optimization, sampling, and spin-glass droplet discovery with tensor
networks, Phys. Rev. E 104 (2021).

[3] K. Jałowiecki, M. M. Rams, and B. Gardas, Brute-forcing spin-glass problems
with CUDA, Comput. Phys. Commun. 260, 107728 (2021).

[4] K. Domino, M. Koniorczyk, K. Krawiec, K. Jałowiecki, S. Deffner, and B.
Gardas, Quantum annealing in the NISQ era: railway conflict management,
Entropy 25 (2023).

[5] K. Jałowiecki and Ł. Pawela, Omnisolver: An extensible interface to Ising
spin–glass and QUBO solvers, SoftwareX 24, 101559 (2023).

[6] K. Jałowiecki, P. Lewandowska, and Ł. Pawela, PyQBench: A Python li-
brary for benchmarking gate-based quantum computers, SoftwareX 24, 101558
(2023).

[7] E. Winsberg, Science in the Age of Computer Simulation (University of Chicago
Press, 2010).

[8] R. P. Feynman, Simulating physics with computers, Int. J. Theor. Phys. 21,
467–488 (1982).

[9] R. Poplavskĭı, Thermodynamic models of information processes, Sov. Phys.
Uspekhi 18, 222 (1975).

[10] C. A. Mack, Fifty years of Moore’s law, IEEE Trans. Semicond. Manuf. 24,
202–207 (2011).

[11] M. M. Waldrop, The chips are down for Moore’s law, Nat. News 530, 144
(2016).

[12] S. Kumar, Fundamental limits to Moore’s law, (2015), arXiv:1511.05956.

103

https://www.nature.com/articles/s41598-020-70017-x
https://journals.aps.org/pre/abstract/10.1103/PhysRevE.104.025308
https://www.sciencedirect.com/science/article/abs/pii/S001046552030360X
https://www.mdpi.com/1099-4300/25/2/191
https://www.sciencedirect.com/science/article/pii/S2352711023002558
https://www.sciencedirect.com/science/article/pii/S2352711023002546
https://www.sciencedirect.com/science/article/pii/S2352711023002546
https://press.uchicago.edu/ucp/books/book/chicago/S/bo9003670.html
https://doi.org/10.1007/BF02650179
https://doi.org/10.1007/BF02650179
https://dx.doi.org/10.1070/PU1975v018n03ABEH001955
https://dx.doi.org/10.1070/PU1975v018n03ABEH001955
https://ieeexplore.ieee.org/document/5696765
https://ieeexplore.ieee.org/document/5696765
https://www.nature.com/news/the-chips-are-down-for-moore-s-law-1.19338
https://www.nature.com/news/the-chips-are-down-for-moore-s-law-1.19338
https://arxiv.org/abs/1511.05956


104 BIBLIOGRAPHY

[13] P. Benioff, The computer as a physical system: A microscopic quantum me-
chanical Hamiltonian model of computers as represented by Turing machines,
J. Stat. Phys. 22, 563–591 (1980).

[14] D. Deutsch, Quantum theory, the Church–Turing principle and the universal
quantum computer, Proc. R. Soc. A. 400, 97–117 (1985).

[15] T. Kadowaki and H. Nishimori, Quantum annealing in the transverse Ising
model, Phys. Rev. E 58, 5355 (1998).

[16] E. Farhi, J. Goldstone, S. Gutmann, and M. Sipser, Quantum computation by
adiabatic evolution, (2000), arXiv:quant-ph/0001106.

[17] D. Aharonov, W. Van Dam, J. Kempe, Z. Landau, S. Lloyd, and O. Regev,
Adiabatic quantum computation is equivalent to standard quantum computa-
tion, SIAM rev. 50, 755–787 (2008).

[18] P. W. Shor, “Algorithms for quantum computation: discrete logarithms and
factoring,” in Proceedings 35th annual symposium on foundations of computer
science (Ieee, 1994), pp. 124–134.

[19] T. Kleinjung, K. Aoki, J. Franke, A. K. Lenstra, E. Thomé, J. W. Bos, P.
Gaudry, A. Kruppa, P. L. Montgomery, D. A. Osvik, et al., “Factorization of
a 768-bit RSA modulus,” in Annual cryptology conference (Springer, 2010),
pp. 333–350.

[20] L. K. Grover, “A fast quantum mechanical algorithm for database search,” in
Proceedings of the twenty-eighth annual acm symposium on theory of com-
puting (1996), pp. 212–219.

[21] P. Chapman, Introducing the World’s Most Powerful Quantum Computer,
https://ionq.com/posts/october-01-2020-introducing-most-powerful-
quantum-computer, Accessed: 2023-11-23.

[22] J. Bohnet, A. Hankin, D. Gresh, J. Gaebler, D. Francois, K. Lee, C. Baldwin,
K. Mayer, D. Hayes, and R. Stutz, Benchmarking the Honeywell H1 QCCD
Trapped-Ion Quantum Computer, Bull. Am. Phys. Soc. (2021).

[23] M. W. Johnson, M. H. Amin, S. Gildert, T. Lanting, F. Hamze, N. Dickson,
R. Harris, A. J. Berkley, J. Johansson, P. Bunyk, et al., Quantum annealing
with manufactured spins, Nature 473, 194–198 (2011).

[24] N. Dattani, S. Szalay, and N. Chancellor, Pegasus: The second connectivity
graph for large-scale quantum annealing hardware, (2019), arXiv:1901.07636.

[25] S. Mandra, H. G. Katzgraber, and C. Thomas, The pitfalls of planar spin-
glass benchmarks: raising the bar for quantum annealers (again), Quantum
Sci. Technol. 2, 038501 (2017).

https://doi.org/10.1007/BF01011339
https://doi.org/10.1098/rspa.1985.0070
https://link.aps.org/doi/10.1103/PhysRevE.58.5355
https://arxiv.org/abs/quant-ph/0001106
https://ieeexplore.ieee.org/document/1366223
https://ieeexplore.ieee.org/document/365700
https://ieeexplore.ieee.org/document/365700
https://link.springer.com/chapter/10.1007/978-3-642-14623-7_18
https://dl.acm.org/doi/10.1145/237814.237866
https://dl.acm.org/doi/10.1145/237814.237866
https://ionq.com/posts/october-01-2020-introducing-most-powerful-quantum-computer
https://ionq.com/posts/october-01-2020-introducing-most-powerful-quantum-computer
https://meetings.aps.org/Meeting/DAMOP21/Session/X10.9
https://doi.org/10.1038/nature10012
https://arxiv.org/abs/1901.07636
https://dx.doi.org/10.1088/2058-9565/aa7877
https://dx.doi.org/10.1088/2058-9565/aa7877


BIBLIOGRAPHY 105

[26] J. Preskill, Quantum computing in the NISQ era and beyond, Quantum 2, 79
(2018).

[27] W. Lenz, Beitrag zum Verständnis der magnetischen Erscheinungen in festen
Körpern, Z. Phys. 21, 613–615 (1920).

[28] E. Ising, Beitrag zur theorie des ferromagnetismus, Z. Phys. 31, 253–258
(1925).

[29] F Barahona, On the computational complexity of Ising spin glass models, J.
Phys. A: Math. Gen. 15, 3241–3253 (1982).

[30] S. Arora and B. Barak, Computational complexity: a modern approach (Cam-
bridge University Press, 2009).

[31] L. Fortnow, The status of the P versus NP problem, Commun. ACM 52, 78–86
(2009).

[32] A. Cobham, “The Intrinsic Computational Difficulty of Functions,” in Logic,
methodology and philosophy of science: proceedings of the 1964 international
congress (studies in logic and the foundations of mathematics) (North-Holland
Publishing, 1965), pp. 24–30.

[33] A. Lucas, Ising formulations of many NP problems, Front. Phys. (Lausanne)
2, 5 (2014).

[34] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to
Algorithms, Third Edition, 3rd (The MIT Press, 2009).

[35] I. Beichl and F. Sullivan, The Metropolis algorithm, Comput. Sci. Eng. 2, 65–
69 (2000).

[36] C. Cook, H. Zhao, T. Sato, M. Hiromoto, and S. X.-D. Tan, Gpu-based ising
computing for solving max-cut combinatorial optimization problems, Integra-
tion 69, 335–344 (2019).

[37] S. Isakov, I. Zintchenko, T. Roennow, and M. Troyer, Optimized simulated
annealing for Ising spin glasses, Comput. Phys. Commun. 192 (2014).

[38] R. H. Swendsen and J.-S. Wang, Replica Monte Carlo Simulation of Spin-
Glasses, Phys. Rev. Lett. 57, 2607–2609 (1986).

[39] Z. Zhu, A. J. Ochoa, and H. G. Katzgraber, Efficient cluster algorithm for
spin glasses in any space dimension, Phys. Rev. Lett. 115, 077201 (2015).

[40] E. Bittner, A. Nußbaumer, and W. Janke, Make life simple: Unleash the full
power of the parallel tempering algorithm, Phys. Rev. Lett. 101, 130603 (2008).

https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.22331/q-2018-08-06-79
http://cds.cern.ch/record/460663?ln=pl
https://doi.org/10.1007/BF02980577
https://doi.org/10.1007/BF02980577
https://dx.doi.org/10.1088/0305-4470/15/10/028
https://dx.doi.org/10.1088/0305-4470/15/10/028
https://theory.cs.princeton.edu/complexity/book.pdf
https://doi.org/10.1145/1562164.1562186
https://doi.org/10.1145/1562164.1562186
https://philpapers.org/rec/COBTIC
https://philpapers.org/rec/COBTIC
https://philpapers.org/rec/COBTIC
https://doi.org/10.3389/fphy.2014.00005
https://doi.org/10.3389/fphy.2014.00005
https://dahlan.unimal.ac.id/files/ebooks/2009%20Introduction%20to%20Algorithms%20Third%20Ed.pdf
https://dahlan.unimal.ac.id/files/ebooks/2009%20Introduction%20to%20Algorithms%20Third%20Ed.pdf
https://ieeexplore.ieee.org/document/814660
https://ieeexplore.ieee.org/document/814660
https://www.sciencedirect.com/science/article/pii/S0167926019301348
https://www.sciencedirect.com/science/article/pii/S0167926019301348
https://www.sciencedirect.com/science/article/pii/S0010465515000727
https://link.aps.org/doi/10.1103/PhysRevLett.57.2607
https://link.aps.org/doi/10.1103/PhysRevLett.115.077201
https://link.aps.org/doi/10.1103/PhysRevLett.101.130603


106 BIBLIOGRAPHY

[41] W. Wang, J. Machta, and H. G. Katzgraber, Comparing Monte Carlo methods
for finding ground states of Ising spin glasses: Population annealing, simulated
annealing, and parallel tempering, Phys. Rev. E 92, 013303 (2015).

[42] F. Rendl, G. Rinaldi, and A. Wiegele, Solving max-cut to optimality by inter-
secting semidefinite and polyhedral relaxations, Math. Program. 121, 307–335
(2010).

[43] F. Baccari, C. Gogolin, P. Wittek, and A. Acín, Verifying the output of quan-
tum optimizers with ground-state energy lower bounds, Phys. Rev. Res. 2,
043163 (2020).

[44] F. Sheldon, F. L. Traversa, and M. Di Ventra, Taming a nonconvex landscape
with dynamical long-range order: Memcomputing Ising benchmarks, Phys. Rev.
E 100, 053311 (2019).

[45] M. Born and V. Fock, Beweis des adiabatensatzes, Z. Phys. 51, 165–180 (1928).

[46] W. Vinci and D. A. Lidar, Non-stoquastic Hamiltonians in quantum annealing
via geometric phases, npj Quantum Inf. 3 (2017).

[47] C. T. Rigetti, Quantum gates for superconducting qubits, PhD thesis (Yale
University, Connecticut, 2009).

[48] T. Bauch, T. Lindstrom, F. Tafuri, G. Rotoli, P. Delsing, T. Claeson, and F.
Lombardi, Quantum dynamics of a d-wave josephson junction, Science 311,
57–60 (2006).

[49] D-Wave, D-Wave System Documentation, https://docs.dwavesys.com/
docs/latest/doc_qpu.html, Accessed: 2023-18-11.

[50] K. Boothby, P. Bunyk, J. Raymond, and A. Roy, Next-generation topology of
d-wave quantum processors, (2020), arXiv:2003.00133.

[51] K. Boothby, A. D. King, and J. Raymond, Zephyr topology of D-Wave quan-
tum processors, D-Wave Technical Report Series (2021).

[52] J. T. Kajiya, I. E. Southerland, and E. C. Cheadle, “A random-access video
frame buffer,” in Seminal graphics: pioneering efforts that shaped the field
(1998), pp. 315–320.

[53] C. J. Thompson, S. Hahn, and M. Oskin, “Using modern graphics architectures
for general-purpose computing: a framework and analysis,” in 35th Annual
IEEE/ACM International Symposium on Microarchitecture, 2002.(MICRO-
35). Proceedings. (IEEE, 2002), pp. 306–317.

[54] E. S. Larsen and D. McAllister, “Fast matrix multiplies using graphics hard-
ware,” in Proceedings of the 2001 ACM/IEEE Conference on Supercomputing
(2001), pp. 55–55.

https://link.aps.org/doi/10.1103/PhysRevE.92.013303
https://doi.org/10.1007/s10107-008-0235-8
https://doi.org/10.1007/s10107-008-0235-8
https://link.aps.org/doi/10.1103/PhysRevResearch.2.043163
https://link.aps.org/doi/10.1103/PhysRevResearch.2.043163
https://link.aps.org/doi/10.1103/PhysRevE.100.053311
https://link.aps.org/doi/10.1103/PhysRevE.100.053311
https://doi.org/10.1007/BF01343193
https://doi.org/10.1038/s41534-017-0037-z
https://www.proquest.com/openview/bcf3b0939707d655478dd1f0a8b7fe4e/1?pq-origsite=gscholar&cbl=18750
https://pubmed.ncbi.nlm.nih.gov/16400142/
https://pubmed.ncbi.nlm.nih.gov/16400142/
https://docs.dwavesys.com/docs/latest/doc_qpu.html
https://docs.dwavesys.com/docs/latest/doc_qpu.html
https://arxiv.org/abs/2003.00133
https://www.dwavesys.com/media/2uznec4s/14-1056a-a_zephyr_topology_of_d-wave_quantum_processors.pdf
https://dl.acm.org/doi/pdf/10.1145/280811.281022
https://ieeexplore.ieee.org/document/1176259
https://ieeexplore.ieee.org/document/1176259
https://ieeexplore.ieee.org/document/1176259
https://dl.acm.org/doi/10.1145/582034.582089


BIBLIOGRAPHY 107

[55] NVIDIA, CUDA Programming Guide, https://docs.nvidia.com/cuda/
cuda-c-programming-guide/contents.html, Accessed: 2023-09-06.

[56] K. Karimi, N. G. Dickson, and F. Hamze, A performance comparison of CUDA
and OpenCL, (2010), arXiv:1005.2581.

[57] M. Garland, S. Le Grand, J. Nickolls, J. Anderson, J. Hardwick, S. Morton,
E. Phillips, Y. Zhang, and V. Volkov, Parallel Computing Experiences with
CUDA, IEEE Micro 28, 13–27 (2008).

[58] A. Bayoumi, M. Chu, Y. Hanafy, P. Harrell, and G. Refai-Ahmed, Scientific
and Engineering Computing Using ATI Stream Technology, Comput. Sci. Eng.
11, 92–97 (2009).

[59] G. Chen, G. Li, S. Pei, and B. Wu, “High Performance Computing via a GPU,”
in 2009 first international conference on information science and engineering
(2009), pp. 238–241.

[60] AMD and various open-source contributors, ROCm, https://github.com/
RadeonOpenCompute/ROCm, Accessed: 2023-09-06.

[61] N. Otterness and J. H. Anderson, “AMD GPUs as an alternative to NVIDIA
for supporting real-time workloads,” in 32nd Euromicro conference on real-
time systems (ECRTS 2020) (Schloss Dagstuhl-Leibniz-Zentrum für Infor-
matik, 2020).

[62] N. Kondratyuk, V. Nikolskiy, D. Pavlov, and V. Stegailov, GPU-accelerated
molecular dynamics: State-of-art software performance and porting from Nvidia
CUDA to AMD HIP, Int. J. High Perform. Comput. Appl. 35, 312–324 (2021).

[63] PGI, PGI Compilers & Tools, https://www.pgroup.com/index.htm, Ac-
cessed: 2023-09-06.

[64] NVIDIA, cuBLAS, https://developer.nvidia.com/cublas, Accessed:
2023-09-09.

[65] NVIDIA, cuFFT, https://developer.nvidia.com/cufft, Accessed: 2023-
09-09.

[66] NVIDIA, cuRAND, https://developer.nvidia.com/curand, Accessed:
2023-09-09.

[67] NVIDIA, cuSPARSE, https://developer.nvidia.com/cusparse, Accessed:
2023-09-09.

[68] NVIDIA, Thrust: The C++ parallel algorithhms library, https://github.
com/NVIDIA/thrust, Accessed: 2023-09-09.

https://docs.nvidia.com/cuda/cuda-c-programming-guide/contents.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/contents.html
https://arxiv.org/abs/1005.2581
https://ieeexplore.ieee.org/document/4626815
https://doi.org/10.1109/MCSE.2009.204
https://doi.org/10.1109/MCSE.2009.204
https://ieeexplore.ieee.org/document/5455096
https://github.com/RadeonOpenCompute/ROCm
https://github.com/RadeonOpenCompute/ROCm
https://www.cs.unc.edu/~anderson/papers/ecrts20a.pdf
https://www.cs.unc.edu/~anderson/papers/ecrts20a.pdf
https://doi.org/10.1177/10943420211008288
https://www.pgroup.com/index.htm
https://developer.nvidia.com/cublas
https://developer.nvidia.com/cufft
https://developer.nvidia.com/curand
https://developer.nvidia.com/cusparse
https://github.com/NVIDIA/thrust
https://github.com/NVIDIA/thrust


108 BIBLIOGRAPHY

[69] A. Klöckner, N. Pinto, Y. Lee, B. Catanzaro, P. Ivanov, and A. Fasih, Py-
CUDA and PyOpenCL: A Scripting-Based Approach to GPU Run-Time Code
Generation, Parallel Comput. 38, 157–174 (2012).

[70] R. Okuta, Y. Unno, D. Nishino, S. Hido, and C. Loomis, “CuPy: A NumPy-
Compatible Library for NVIDIA GPU Calculations,” in Proceedings of work-
shop on machine learning systems (learningsys) in the thirty-first annual con-
ference on neural information processing systems (nips) (2017).

[71] K. Jałowiecki, Setuptools plugin for compiling CUDA-enable extension mod-
ules, https://github.com/euro- hpc- pl/setuptools_cuda, Accessed:
2023-09-06.

[72] T. Besard, C. Foket, and B. De Sutter, Effective Extensible Programming: Un-
leashing Julia on GPUs, IEEE Trans. Parallel Distrib. Syst. (2018), arXiv:1712.
03112 [cs.PL].

[73] J. R. McClean, J. A. Parkhill, and A. Aspuru-Guzik, Feynman’s clock, a
new variational principle, and parallel-in-time quantum dynamics, Proc. Natl.
Acad. Sci. U.S.A. 110, E3901–E3909 (2013).

[74] H. Goldstein, C. Poole, and J. Safko, Classical Mechanics (Addison Wesley,
2002).

[75] Y. N. Kosovtsov, The chronological operator algebra and formal solutions of
differential equations, (2004), arXiv:math-ph/0409035.

[76] N. Hatano and M. Suzuki, “Finding Exponential Product Formulas of Higher
Orders,” in Quantum annealing and other optimization methods (Springer
Berlin Heidelberg, Berlin, Heidelberg, 2005), pp. 37–68.

[77] A. Alvermann and H. Fehske, High-order commutator-free exponential time-
propagation of driven quantum systems, J. Comput. Phys. 230, 5930–5956
(2011).

[78] U. Schollwöck, The density-matrix renormalization group, Rev. Mod. Phys.
77, 259–315 (2005).

[79] M. L. Rogers and R. L. Singleton Jr, Floating-point calculations on a quan-
tum annealer: Division and matrix inversion, Front. Phys. (Lausanne) 8, 265
(2020).

[80] C. C. Chang, A. Gambhir, T. S. Humble, and S. Sota, Quantum annealing for
systems of polynomial equations, Sci. Rep. 9, 10258 (2019).

[81] T. Boothby, A. D. King, and A. Roy, Fast clique minor generation in Chimera
qubit connectivity graphs, Quantum Inf. Process. 15, 495–508 (2016).

https://doi.org/10.1016/j.parco.2011.09.001
http://learningsys.org/nips17/assets/papers/paper_16.pdf
http://learningsys.org/nips17/assets/papers/paper_16.pdf
http://learningsys.org/nips17/assets/papers/paper_16.pdf
https://github.com/euro-hpc-pl/setuptools_cuda
https://arxiv.org/abs/1712.03112
https://arxiv.org/abs/1712.03112
https://doi.org/10.1073/pnas.1308069110
https://doi.org/10.1073/pnas.1308069110
https://www.math.toronto.edu/khesin/biblio/GoldsteinPooleSafkoClassicalMechanics.pdf
https://arxiv.org/abs/math-ph/0409035
https://link.springer.com/book/10.1007/11526216
https://doi.org/10.1016/j.jcp.2011.04.006
https://doi.org/10.1016/j.jcp.2011.04.006
https://link.aps.org/doi/10.1103/RevModPhys.77.259
https://link.aps.org/doi/10.1103/RevModPhys.77.259
https://doi.org/10.3389/fphy.2020.00265
https://doi.org/10.3389/fphy.2020.00265
https://doi.org/10.1038/s41598-019-46729-0
https://doi.org/10.1007/s11128-015-1150-6


BIBLIOGRAPHY 109

[82] R. Hamerly et al., Experimental investigation of performance differences be-
tween coherent Ising machines and a quantum annealer, Sci. Adv. 5, eaau0823
(2019).

[83] S.-J. Ran, E. Tirrito, C. Peng, X. Chen, G. Su, and M. Lewenstein, Tensor
Network Contractions (Springer, 2020).

[84] F. Verstraete, V. Murg, and J. I. Cirac, Matrix product states, projected entan-
gled pair states, and variational renormalization group methods for quantum
spin systems, Adv. Phys. 57, 143–224 (2008).

[85] S. Mandrà and H. G. Katzgraber, A deceptive step towards quantum speedup
detection, Quant. Sci. Technol. 3, 04LT01 (2018).

[86] Z. Zhu, A. J. Ochoa, and H. G. Katzgraber, Efficient cluster algorithm for
spin glasses in any space dimension, Phys. Rev. Lett. 115, 077201 (2015).

[87] Z. Zhu, A. J. Ochoa, and H. G. Katzgraber, Fair sampling of ground-state con-
figurations of binary optimization problems, Phys. Rev. E 99, 063314 (2019).

[88] T. Alabi, J. D. Blanchard, B. Gordon, and R. Steinbach, Fast k-selection
algorithms for graphics processing units, J. Exp. Algorithmics. 17, 4–1 (2012).

[89] R. Chandra, L. Dagum, D. Kohr, R. Menon, D. Maydan, and J. McDonald,
Parallel programming in OpenMP (Morgan kaufmann, 2001).

[90] D. Jaschke, M. L. Wall, and L. D. Carr, Open source Matrix Product States:
Opening ways to simulate entangled many-body quantum systems in one di-
mension, Comput. Phys. Commun. 225, 59 –91 (2018).

[91] C. Savage, A survey of combinatorial Gray codes, SIAM rev. 39, 605–629
(1997).

[92] H. M. Lucal, Arithmetic Operations for Digital Computers Using a Modified
Reflected Binary Code, IRE Trans. Electron. Comput. EC-8, 449–458 (1959).

[93] A. Ahmad and M. M. B. Suwailam, A less complex algorithmic procedure for
computing Gray codes, J. Eng. Res. 6, 12–19 (2009).

[94] F. S. Foundation, ffs(3) — Linux manual page, https://man7.org/linux/
man-pages/man3/ffs.3.html, Accessed: 2023-20-11.

[95] J. Törnquist and J. A. Persson, N-tracked railway traffic re-scheduling during
disturbances, Transport Res. B Meth. 41, 342 –362 (2007).

[96] L. Lamorgese, C. Mannino, D. Pacciarelli, and J. T. Krasemann, in Handbook
of optimization in the railway industry (Springer International Publishing,
Cham, 2018), pp. 265–283.

https://www.science.org/doi/abs/10.1126/sciadv.aau0823
https://www.science.org/doi/abs/10.1126/sciadv.aau0823
https://link.springer.com/book/10.1007/978-3-030-34489-4
https://link.springer.com/book/10.1007/978-3-030-34489-4
https://doi.org/10.1080/14789940801912366
http://stacks.iop.org/2058-9565/3/i=4/a=04LT01
https://doi.org/10.1103/PhysRevLett.115.077201
https://link.aps.org/doi/10.1103/PhysRevE.99.063314
https://doi.org/10.1145/2133803.2345676
https://dl.acm.org/doi/10.5555/355074
https://dx.doi.org/10.1088/1751-8121/aae4d1
https://doi.org/10.1137/S0036144595295272
https://doi.org/10.1137/S0036144595295272
https://ieeexplore.ieee.org/document/5222057
https://doi.org/10.24200/tjer.vol6iss2pp12-19
https://man7.org/linux/man-pages/man3/ffs.3.html
https://man7.org/linux/man-pages/man3/ffs.3.html
https://doi.org/https://doi.org/10.1016/j.trb.2006.06.001
https://doi.org/10.1007/978-3-319-72153-8_12
https://doi.org/10.1007/978-3-319-72153-8_12


110 BIBLIOGRAPHY

[97] J. Jensen, O. Nielsen, and C. Prato, Passenger Perspectives in Railway
Timetabling: A Literature Review, English, Transp. Rev. 36, 500–526 (2016).

[98] C. Wen, P. Huang, Z. Li, J. Lessan, L. Fu, C. Jiang, and X. Xu, Train Dis-
patching Management With Data- Driven Approaches: A Comprehensive Re-
view and Appraisal, IEEE Access 7, 114547–114571 (2019).

[99] A. D’Ariano, D. Pacciarelli, and M. Pranzo, A branch and bound algorithm
for scheduling trains in a railway network, 183, 643–657 (2007).

[100] PKP Polskie Linie Kolejowe S.A., Public procurement website, https : / /
zamowienia.plk-sa.pl/, Accessed: 2023-11-23.

[101] A. Mascis and D. Pacciarelli, Job-shop scheduling with blocking and no-wait
constraints, Eur. J. Oper. Res 143, 498–517 (2002).

[102] P. D’Alberto and A. Nicolau, “Adaptive Strassen’s Matrix Multiplication,” in
Proceedings of the 21st annual international conference on supercomputing,
ICS ’07 (2007), 284–292.

https://doi.org/10.1080/01441647.2015.1113574
https://doi.org/10.1109/ACCESS.2019.2935106
https://www.sciencedirect.com/science/article/abs/pii/S0377221706010678
https://zamowienia.plk-sa.pl/
https://zamowienia.plk-sa.pl/
https://www.sciencedirect.com/science/article/abs/pii/S0377221701003381
https://dl.acm.org/doi/abs/10.1145/1274971.1275010


Appendix A

Asymptotic notation

In order to characterize the complexity of algorithms, it is useful to use asymp-
totic big-O notation. Consider two functions f, g : N → R. We say that f is
O(g) if and only if there exists a constant C > 0 and a natural number nC
such that the inequality 0 ≤ f(n) ≤ C · g(n) holds for all n > nC [34].

It is common to write f = O(g) instead of “f is O(g)”, slightly abusing the
mathematical notation [34]. One should notice that big-O notation does not
provide a tight bound. For instance, we have n+1 = O(n) (since n+1 ≤ 2 ·n)
but also n+ 1 = O(n10).

In the context of computational complexity, big-O notation is most com-
monly used for expressing upper bound on number of (dominating) operations
performed by an algorithm as a function of its input size N . Since the number
of performed operations is roughly proportional to the algorithm’s execution
time, it follows that algorithms with better bound can be considered as more
performant. However, care must be taken when applying this reasoning to
judge practical performance. In particular, one should be mindful of the con-
stant factor C in the definition above, as well as any bottlenecks stemming from
the working of the underlying hardware. As a concrete example, Strassen’s al-
gorithm for multiplying two N ×N matrices requires O(Nα) multiplications,
where 2 < α < 3, and yet may perform worse than naive algorithm peforming
N3 multiplications, even for N of order of several hundreds [102].

We conclude this section by mentioning that there exist several other
asymptotic notations. For instance, Ω, describing the asymptotic lower bound

111



112 APPENDIX A. ASYMPTOTIC NOTATION

of a function, and Θ combining big-O and Θ. For more details, we refer the
reader to [34].



Appendix B

Conditional probability on
square lattice

Consider a square lattice, such as the one depicted in Fig. B.1. We will prove
that the conditional probability for spins in the region X conditioned on the
values of spins in the region X depends only on the configurations of the spins

X

∂X

X

Figure B.1: An example Ising spin-glass of 16 spins on a square lattice. The condi-
tional probability for spins in the region X conditioned on the values of spins in the
region X depends only on the configuration on the border ∂X.

113



114 APPENDIX B. CONDITIONAL PROBABILITY

on the border ∂X.
Let denote by HX the usual Hamiltonian H restricted to the graph induced

by vertices in X. Further, let HX,X = H − HX − HX . Notice that HX,X

contains only quadratic terms Jijsisj such that i ∈ X and j ∈ X. Slightly
abusing the notation, one may thus write

H(s1, . . . , sN ) = HX(s1, . . . , sk) +HX(sk+1, . . . , sN ) +HX,X(s1, . . . , sN ) (B.1)

Using definition of conditional probability applied to Boltzmann distribution,
one thus gets

p(sk+1|s1, . . . , sk) =

∑
(zk+2,...,zN )

e−βH(s1,...,sk+1,zk+2,...,zN )

∑
(zk+1,...,zN )

e−βH(s1,...,sk,zk+1,...,zN )
(B.2)

=

∑
(zk+2,...,zN )

e−β(HX(s1,...,sk)+HX(sk+1,zk+2,...,zN )+HX,X(s1,...,zN ))

∑
(zk+1,...,zN )

e−β(HX(s1,...,sk)+HX(zk+1,...,zN )+HX,X(s1,...,zN ))
(B.3)

=

e−βHX(s1,...,sk)
∑

(zk+2,...,zN )

e−β(HX(sk+1,zk+2,...,zN )+HX,X(s1,...,zN ))

e−βHX(s1,...,sk)
∑

(zk+1,...,zN )

e−β(HX(zk+1,...,zN )+HX,X(s1,...,zN ))
(B.4)

=

∑
(zk+2,...,zN )

e−β(HX(sk+1,zk+2,...,zN )+HX,X(s1,...,zN ))

∑
(zk+1,...,zN )

e−β(HX(zk+1,...,zN )+HX,X(s1,...,zN ))
(B.5)

Note, in both numerator and denominator, spins with indices from X appear
non-trivially only in HX,X , i.e. the whole expression depends only on those
spins in X that directly interact with spins in X, which was to be shown.



Appendix C

Dispatching conditions

In the following appendix, we use the notation from Chapter 7.

C.1 The minimum passing time condition.

Any train j cannot travel through a block b ∈ Bj faster than the corresponding
minimum passing time:

tout(j, b) ≥ tin(j, b) + pmin(j, b). (C.1)

Using (7.7) and (7.6) one can easily verify that inequality (C.1) is equivalent
to the following inequality for station blocks:

d(j, sj,k+1) ≥ d(j, sj,k)−
∑
b

α(j, b), (C.2)

where the sum runs over all blocks starting form the one succeeding sj,k and
ending in sj,k+1. In binary variables, it means that if, for a fixed j, s,m, the
xj,s,m = 1, then delays d(j, s) smaller than m−∑b α(j, b) are prohibited and
thus the corresponding variables have to zero out. Hence, we arrive at the
following condition:

∀j∀s∈Sj\{sj,end}
∑

m∈Aj,s

 ∑
m′∈D(m)∩Aj,sj,k+1

xj,s,mxj,sj,k+1,m′

 = 0, (C.3)

where D(m) = {0, 1, . . . ,m−∑b α(j, b)− 1}.

115



116 APPENDIX C. DISPATCHING CONDITIONS

C.2 The single block occupation condition.

Two trains cannot occupy the same line block. Consider two trains, j, j′ ∈ J0

leaving the same station sj,k ∈ Sj in the direction of the next station block
sj,k+1. Suppose further that the train j leaves first. i.e. tout(j

′, s) > tout(j, s).
Since two trains cannot occupy the same block, some headway time has to
pass after tout(j, s) before the train j′ can leave. This headway is dependent
on both j and a sequence of blocks, and hence we denote it by τ(1)(j, sj,k).
Thus, the condition becomes:

tout(j
′, sj,k) ≥ tout(j, sj,k) + τ(1)(j, sj,k). (C.4)

Substituting for tout in (C.4) yields the following inequality for delays:

d(j′, sj,k) ≥ d(j, sj,k) + ttimetable
out (j, sj,k)− ttimetable

out (j′, sj,k)+

+ τ(1)(j, sj,k)
(C.5)

or,
d(j′, sj,k) ≥ d(j, sj,k) + ∆(j, j′, sj,k) + τ(1)(j, sj,k) (C.6)

where
∆(j, j′, sj,k) = ttimetable

out (j, s)− ttimetable
out (j′, s) (C.7)

The precise form of the headway τ(1) depends on the dispatching detail of the
problem. In our approach, we propose the following form:

τ(1)(j, sj,k) = max
b

{ptimetable(j, b)} (C.8)

where the maximum is taken over all blocks between stations sj,k and sj,k+1.
For our decision variables, we use a similar scheme as with the previous con-
straint and the condition becomes:

∀i=0,1∀j,j′∈J i∀s∈S∗
j ∩S∗

j′

∑
m∈Aj,s

 ∑
m′∈B(m)∩Aj′,s

xj,s,mxj′,s,m′

 = 0, (C.9)

where, as previously, S∗
j = Sj \ {sj,end}, and B(m) = {m + ∆(j, j′, s),m +

∆(j, j′, s) + 1, . . . ,m + ∆(j, j′, s) + τ(1)(j, s) − 1} is a set of delays violating
condition (C.5).



C.3. THE DEADLOCK CONDITION 117

C.3 The deadlock condition

The deadlock condition is analogous to the single block occupation condition
but for trains going in opposite directions. Suppose trains j and j′ are heading
in opposite directions on a route determined by two consecutive stations sj,k
and sj,k+1. Note that for j′ the order is reversed, i.e. it starts at sj,k+1 and
travels in the direction of sj,k. In this case, if j is supposed to to leave sj,k
before j′ leaves sj,k+1, the following condition has to be satisfied:

tout(j
′, sj,k+1) ≥ tout(j, sj,k) + τ(2)(j, s), (C.10)

where τ(2)(j, sj,k) is the minimum time required for train j to get from station
block sj,k to sj,k+1. Rewritten in terms of delays, the inequality (C.10) reads:

d(j′, sj,k+1) ≥ d(j, sj,k) + ∆(j, j′, s) + τ(2)(j, s). (C.11)

In decision variables, the deadlock condition in its basic form looks as follows:

∀s∈S∗
j ∩S∗

j′

∑
m∈Aj,s

 ∑
m′∈C(m)∩Aj′,s

xj,s,mxj′,s,m′

 = 0, (C.12)

and has to be applied for a limited number of trains j ∈ J 0(J 1) and j′ ∈
J 1(J 0). Here, C(m) is, similarly to B(m), the set of delays violating the
condition for the given pair.

C.4 The rolling stock circulation condition

Our model assumes that some trains might be assigned the same train set.
Naturally, there exists some necessary turnover time, before a train set can be
reused. Formally, if trains j and j′ going in opposite directions are assigned
the same train set, then the following inequality has to hold:

tout(j
′, sj′,1) > tout(j, sj,end) + ∆(j, j′) (C.13)

where ∆(j, j′) is the minimum turnover time. In the delay representation, the
inequality becomes:

d(j′, sj′,1) + ttimetable
out (j′, sj′,1) > d(j, sj,end−1) + ttimetable

out (j, sj,end−1)+

τ(2)(j, sj,end−1) + ∆(j, j′).

(C.14)



118 APPENDIX C. DISPATCHING CONDITIONS

Inequality (C.14) can be simplified to:

d(j′, sj′,1) > d(j, sj,end−1)−R(j, j′), (C.15)

by setting:

R(j, j′) :=ttimetable
out (j′, sj′,1)− ttimetable

out (j, sj,end−1)

− τ(2)(j, sj,end−1)−∆(j, j′).
(C.16)

In decision variables, the rolling stock circulation condition for trains j and j′

can be written as∑
m∈Aj,s(j,end−1)

∑
m′∈E(d)∩Aj′,s(j′,1)

xj,s(j,end−1),mxj′,s(j′,1),m′ = 0 (C.17)

where E(d) = {0, 1, . . . ,m−R(j, j′)}.

C.5 The capacity condition

Let s be a station block with b tracks and let {j1, . . . , jb+1} ⊂ J be any
b+ 1-tuple of trains. There should not exist time t for which all the following
conditions are simultaneously satisfied:

tin(j1, s) ≤t ≤ tout(j1, s)

. . .

tin(jb+1, sj,k) ≤t ≤ tout(jb+1, s).

(C.18)

In delay representation, the conditions read:

d(j1, sj1,k1−1) + ttimetable
out (j1, sj1,k1−1) ≤ t

≤ d(j1, sj1,k1) + ttimetable
out (j1, sj1,k1)

. . .

d(jb+1, sjb+1,kb+1−1) + ttimetable
out (jb+1, sjb+1,kb+1−1) ≤ t

≤ d(jb+1, sjb+1,kb+1
) + ttimetable

out (jb+1, sjb+1,kb+1
),

(C.19)

where kji is the index of station s in sequence Sj .
The condition (C.19) translated into binary variables can give a lot of

additional terms. In our problem instances, we ignore this condition, but
verify the obtained solutions against it.


	Acknowledgements
	Published work
	Abstract
	Streszczenie
	Introduction
	Ising model and QUBO problem
	Ising model
	Algorithms and complexity
	Complexity classes
	Ising model and complexity
	Algorithms for solving Ising model
	Quadratic Unconstrained Binary Optimization

	Quantum annealing and GPU computing
	Adiabatic quantum computation and quantum annealing
	Nvidia CUDA

	Simulating dynamics of quantum systems using quantum annealing
	Parallel in time simulation of dynamical systems
	Solving systems of linear equations as an optimization problem
	Discretizing variables
	Parallel-in-time simulations with quantum annealer

	Solving spin-glass problems using tensor networks
	Exploring the probability space
	Branch and bound
	PEPS network construction
	Benchmarks

	Brute–forcing spin–glass problems with CUDA
	Finding low–energy spectrum with CUDA
	Example application: verifying MPS-based optimization algorithm
	Improving the algorithm using Gray Code

	Railway conflict management
	Overview of the problem
	The mathematical model
	Discretizing delays
	Dispatching conditions and the penalties
	Results

	Bibliography
	Asymptotic notation
	Conditional probability on square lattice
	Dispatching conditions
	The minimum passing time condition.
	The single block occupation condition.
	The deadlock condition
	The rolling stock circulation condition
	The capacity condition


