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Streszczenie w języku polskim

W ostatniej dekadzie możemy obserwować, jak urzeczywistnia się idea budowy i
praktycznego wykorzystania komputerów kwantowych. Producenci urządzeń typu
NISQ (Noisy Intermediate-Scale Quantum) weszli szturmem na rynek techniki in-
formatycznej, dzięki czemu mamy obecnie szeroki wybór komputerów kwantowych,
opartych na różnych architekturach i odpowiadających im rodzajach oprogramowa-
nia. Wśród dostawców sprzętu, którzy oferują publiczny dostęp do urządzeń
opartych na bramkowym modelu obliczeń, można wymienić takie firmy jak Rigetti,
IBM, Oxford Quantum Group, IonQ czy Xanadu. Jeśli natomiast wziąć pod uwagę
urządzenia wykorzystujące inne paradygmaty, to warto wspomnieć o D-Wave i ich
kwantowych wyżarzaczach, czy urządzeniach QuEra opartych na atomach neutral-
nych. Jak już wspomniano wyżej, większość producentów zapewnia użytkownikom
własne oprogramowanie czy interfejsy aplikacji służących uzyskiwaniu dostępu do
urządzeń. Dzięki temu obecnie każdy jest w stanie wykonywać proste obliczenia na
komputerach kwantowych.

Powszechnie wiadomo jednak, że urządzenia typu NISQ mają swoje ograniczenia.
Powstaje więc naturalne pytanie: w jakim stopniu wiarygodne będą obliczenia
przeprowadzane z ich wykorzystaniem? Odpowiedzi na to pytanie może dostarczyć
nam proces walidacji. Przez pojęcie walidacji architektur kwantowych rozumiemy
testowanie poprawności ich funkcjonowania i zdolności do wykonywania zadań,
do których zostały zaprojektowane. Ze względu na licznie występujące błędy
istnieje zatem istotna potrzeba opracowania procesów walidujących, które pozwolą
dokładnie ocenić, na ile precyzyjnie działają pewne platformy obliczeniowe.

Celem niniejszej dysertacji jest opracowanie sposobów walidacji współczesnych
architektur kwantowych typu NISQ opartych na bramkowym modelu obliczeń. W
pracy analizujemy zarówno aspekty teoretyczne, jak i inżynierskie. Szczególną
uwagę poświęcamy konstruowaniu metod walidacji, a następnie implementacji
modeli na współczesnych architekturach kwantowych. Chcemy bowiem pokazać, że
skonstruowane przez nas modele teoretyczne pozwolą również na uzyskanie prakty-
cznych metod benchmarkowania współczesnych systemów kwantowych. Ostatnim,
lecz nie mniej ważnym aspektem dysertacji jest wdrożenie i zaimplementowanie
powstałych algorytmów na urządzeniach kwantowych.
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Rozpoczynamy od rozpatrzenia metody walidacji opartej na schemacie uczenia
się pomiarów von Neumanna. W tym przypadku rozważamy sytuację, w której
używamy nieznanego pomiaru N razy eksperymentalnie, a następnie chcemy przy-
bliżyć jego postać, gdy utracimy do niego dostęp. Strategię tę zwykle wykonuje się
w dwóch etapach. Pierwszy z nich polega na przygotowaniu pewnego początkowego
stanu kwantowego i zaimplementowaniu nieznanego pomiaru N razy, co pozwala
nam przechowywać informację o tym pomiarze do późniejszego wykorzystania.
Natomiast drugi etap polega na zaimplementowaniu operacji odzyskiwania, dzięki
której otrzymujemy przybliżenie nieznanego pomiaru. Schemat jest optymalny, gdy
osiąga najwyższą możliwą wierność przybliżenia. Zadanie to ma na celu wyznacze-
nie wierności przybliżenia oryginalnego pomiaru względem pomiaru nauczonego.
Ponadto chcemy wyznaczyć najefektywniejszy algorytm, który realizuje to zadanie.

W standardowym schemacie uczenia się pomiarów von Neumanna wykorzysty-
wane są sieci kwantowe, znane również jako kwantowe komby. W rozprawie rozsz-
erzamy to podejście dzięki wykorzystaniu kwantowej teorii struktur przyczynowo-
skutkowych. Pokazujemy potencjał i przewagę nad standardowym schematem
użycia tej teorii w problemie uczenia się pomiarów von Neumanna. W tym celu
opisujemy część strategii odpowiedzialną za przechowywanie operacji kwantowej za
pomocą macierzy procesu, i wówczas liczymy wartość funkcji wierności. W efekcie
funkcja wierności przybliżenia rośnie, a co za tym idzie – zwiększa się precyzja
pomiaru nauczonego.

W naszej pracy wprowadzamy również metodę walidacji na podstawie schematu
rozróżniania pomiarów von Neumanna. Aby zobrazować schemat rozróżniania,
rozpatrzmy eksperyment, w którym wykorzystujemy nieznane urządzenie pomi-
arowe. Wiemy jedynie, że wykonuje ono jeden z dwóch pomiarów kwantowych.
Naszym celem jest wskazanie – możliwie z jak największych prawdopodobieńst-
wem – który z pomiarów został wykonany w trakcie eksperymentu. Następnie
chcielibyśmy opracować optymalną strategię rozróżniania, czyli taką, dla której
uzyskujemy maksymalne prawdopodobieństwo poprawnego rozróżnienia. Będziemy
zainteresowani głównie schematem rozróżniania w zakresie pewnej rodziny ku-
bitowych pomiarów von Neumanna. Dla tej rodziny pomiarów obliczymy dokładną
wartość prawdopodobieństwa poprawnego rozróżnienia i skonstruujemy optymalną
strategię.

Jako inżynieryjny aspekt pracy wprowadzamy PyQBench – innowacyjną plat-
formę open source przeznaczoną do testów porównawczych komputerów kwantowych
opartych na bramkowym modelu obliczeń. PyQBench weryfikuje poprawność dzi-
ałania urządzeń typu NISQ dzięki wykorzystaniu schematu rozróżniania pomiarów
von Neumanna. Oferujemy potencjalnym użytkownikom także interfejs wiersza
poleceń (CLI) do uruchamiania testów porównawczych przy użyciu parametry-
zowanej rodziny pomiarów kubitowych w bazie Fouriera. Dodatkowo – w przypadku
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bardziej zaawansowanych scenariuszy rozróżniania – PyQBench może być wyko-
rzystywany jako biblioteka Python. Dzięki PyQBench pokażemy, że zaproponowane
modele walidacji i uzyskane wyniki przyczyniły się do powstania nowego aspektu
benchmarkingu urządzeń typu NISQ.

Rozważamy również schemat certyfikacji pomiarów von Neumanna rozumi-
any jako kwantowe testowanie hipotez. W tej rozprawie jesteśmy zainteresowani
dwupunktowym schematem certyfikacji, w którym hipotezy – zerowa i alternaty-
wna – są zbiorami jednoelementowymi. Naszym celem jest zminimalizowanie praw-
dopodobieństwa popełnienia błędu II rodzaju, przy założeniu pewnego ustalonego
poziomu istotności. Podobnie jak w zadaniu rozróżniania chcemy wyznaczyć opty-
malną strategię certyfikacji, dla której prawdopodobieństwo popełnienia błędu II
rodzaju będzie minimalne. Ponownie szczególną uwagę poświęcamy schematowi
certyfikacji dla pewnej rodziny kubitowych pomiarów von Neumanna. Na podstawie
otrzymanych wyników mamy zamiar rozszerzyć platformę PyQBench o kolejny
schemat benchmarkowania komputerów kwantowych typu NISQ.

Wyniki przedstawione w niniejszej rozprawie można streścić w dwóch hipotezach:
1. Wykorzystanie kwantowej teorii struktur przyczynowo-skutkowych w prob-

lemie uczenia się pomiarów von Neumanna zapewnia wydajniejsze metody walidacji
urządzeń kwantowych.

2. Metody walidacji, których podstawą jest zadanie rozróżniania i certyfikacji po-
miarów von Neumanna, stanowią efektywne narzędzie benchmarkowania współczes-
nych komputerów kwantowych opartych na bramkowym modelu obliczeń.

Niniejsza praca składa się z dziewięciu rozdziałów oraz trzech dodatków. Pier-
wszy rozdział zawiera wstęp do teorii informacji kwantowej i opis motywacji prowad-
zonych badań. W Rozdziale 2 zamieszczono wprowadzenie do matematycznego
języka informatyki kwantowej. Rozdział 3 poświęcony jest podstawowym pojęciom
wykorzystywanym w teorii informacji kwantowej. Pozostała część dysertacji została
napisana na podstawie trzech opublikowanych artykułów naukowych oraz jednego
artykułu będącego w procesie recenzji.

Pierwsza z wymienionych wyżej prac [1], zaprezentowana w Rozdziale 4, dotyczy
schematu uczenia się pomiarów von Neumanna. Następnie w Rozdziale 5 przedstaw-
iono możliwość wykorzystania kwantowej teorii struktur przyczynowo-skutkowych
w problemie uczenia się pomiarów von Neumanna. Rozdział ten stanowi mój
autorski wkład w dysertację. W Rozdziale 6 omówiono kolejną metodę walidacji,
jaką jest rozróżnianie pomiarów kwantowych. Należy nadmienić, że Rozdział 6 jest
inspirowany pracą [2], w odniesieniu do której rozważany jest problem rozróżniania
kubitowej rodziny pomiarów w bazie Fouriera. Ta część rozdziału stanowi mój
autorski wkład w niniejszą dysertację. W rozdziale 7 zaprezentowano PyQBench,
czyli innowacyjną platformę typu open source do testów porównawczych komput-
erów kwantowych wykorzystujących bramkowy model obliczeń. Rozdział ten został
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napisany na podstawie pracy [3]. Natomiast w rozdziale 8 przedstawiono schemat
certyfikacji pomiarów von Neumanna. W pierwszej części teoretycznych rozważań
skupiono się na opracowaniu schematu certyfikacji dla dowolnie zdefiniowanych
pomiarów von Neumanna, a następnie – na stworzeniu benchmarku komputerów
kwantowych typu NISQ na podstawie schematu certyfikacji kubitowych pomiarów
w bazie Fouriera. Rozdział ten został napisany z wykorzystaniem pracy [4] w
części poświęconej omówieniu schematu certyfikacji dla stanów czystych, kanałów
unitarych i pomiarów von Neumanna. Użycie schematu certyfikacji do bench-
markowania komputerów kwantowych stanowi mój autorski wkład w dysertację.
Rozdział 9 zawiera wnioski z rozprawy i podsumowanie wyników przedstawionych
badań. Do tekstu głównego załączono również trzy dodatki, które zawierają dowody
twierdzeń, lematy i przykłady zbyt długie i techniczne, aby można je było umieścić
w tekście głównym.
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Abstract in English

In the last decade the idea of quantum computing has become a reality. Noisy
Intermediate-Scale Quantum (NISQ) devices are storming the market, with a wide
selection of devices based on different architectures and accompanying software
solutions. Among hardware providers offering public access to their gate-based
devices, one could mention Rigetti, IBM, Oxford Quantum Group, IonQ or Xanadu.
Other vendors offer devices operating in different paradigms. Especially, one
could mention D-Wave and their quantum annealers or QuEra devices based on
neutral atoms. Most vendors provide their own software stack and application
programming interface for accessing their devices. Nowadays, everyone can make
simple computations on these devices.

It is well known that NISQ devices have limitations. For that, a natural question
arises: what extent can those devices perform meaningful computations? To answer
this question, one has to devise a methodology for validating them. As a validation
of quantum architectures, we refer to testing the correctness of their functioning
and ability to perform the tasks they were designed for. The validation task
has been highlighted as a significant challenge to scalable quantum computing
technology. Due to the numerous errors, there is therefore a significant need to
develop validation processes that allow for the best imaging of the accuracy and
precision of the operation of computing platforms.

This dissertation aims to investigate a new validation methods for modern gate
model NISQ devices. In the work, we analyze both theoretical and engineering
aspects. We focus on the construction of validation methods and their adaptation
to available NISQ quantum architectures. We want to show that the created
theoretical models will also allow obtaining new concepts of benchmarking modern
quantum systems. Another aspect of the dissertation is the implementation of
obtained algorithms on quantum NISQ devices.

Initially, we consider a validation method based on the problem of learning
von Neumann measurements known also as the storage and retrieval (SAR). In
the general approach of SAR, we want to approximate an unknown von Neumann
measurement which we were able to perform N times experimentally. This strategy
usually consists of preparing some initial quantum state, applying the unknown
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measurement N times, which allows us to store this operation for later use, and
finally, a retrieval operation that returns an approximation of the unknown mea-
surement. The scheme is optimal when it achieves the highest possible fidelity of
the approximation. Our main goal is to estimate the asymptotic behaviour of the
maximum value of the average fidelity function for storage and retrieval of von
Neumann measurements and determine possibly the best approximation of the
optimal scheme.

The primary tools used in storage and retrieval are quantum combs. In addition
to quantum combs, we will also use the quantum causal structures theory – a
completely new approach in quantum information theory. We will show the potential
and advantage of this approach in the problem of learning quantum operations. For
this purpose, we describe the part responsible for storing the quantum operation
with a process matrix and then calculate the value of the fidelity function.

Next, we introduce a validation method based on the scheme of discrimination
of von Neumann measurements. To illustrate the scheme of discrimination, let us
consider an experiment in which we use an unknown measurement device. The only
information we have is that it performs one of two measurements. Our goal is to
indicate, with as high probability as possible, which of the measurements was used
during the experiment. Next, we would like to construct an optimal discrimination
strategy, for which we get the maximum probability of correct discrimination. We
will be mainly interested in the scheme for distinguishing between a family of qubit
von Neumann measurements. For this case, we will calculate the exact value of the
probability of correct discrimination and construct the optimal strategy.

As an engineering aspect of the dissertation, we introduce PyQBench – an
innovative open-source framework for benchmarking gate-based quantum computers.
PyQBench benchmarks NISQ devices by verifying their capability based on the
discrimination scheme. PyQBench offers a simplified, ready-to-use, command line
interface (CLI) for running benchmarks using a predefined parametrized Fourier
family of measurements. For more advanced scenarios, PyQBench offers a way of
employing user-defined measurements instead of predefined ones. We will show that
the proposed models and obtained results have led to a new aspect of benchmarking
NISQ devices.

Finally, we consider the task of certification of von Neumann measurements.
Here, we are interested in a binary certification scheme in which the null and
alternative hypotheses are single-element sets. The goal of certification is to
minimize the probability of the type II error given some fixed statistical significance.
Next, we would like to construct an optimal certification strategy, which minimizes
such a probability. Again, for the parameterized family of qubit measurements
in the Fourier basis we calculate the exact value of the probability of the type II
error and create the optimal certification scheme. Based on the obtained results,
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we extend PyQBench creating benchmarks of NISQ devices using certification
approach.

The results presented in this dissertation can be summarized in two hypotheses.

1. The usage of the quantum causal structure theory provides more efficient
methods for the problem of learning von Neumann measurements.

2. The problem of distinguishing and certifying von Neumann measurements
can be used to create a new aspect of benchmarking for modern gate model-
inspired NISQ devices.

The work consists of nine chapters. The first Chapter presents an introduction
to quantum information theory and the motivation for the research. Chapter 2
presents the necessary mathematical framework. Chapter 3 devotes the basic
concepts used in quantum information theory. The rest of the dissertation was
based on three published articles and one preprint.

The first paper [1], described in Chapter 4, concerns the von Neumann mea-
surement learning scheme. Next, in Chapter 5, we explore the possibility of using
the quantum causal structure theory in the task of von Neumann measurement
learning. This Chapter is my contribution to the dissertation. In Chapter 6, we
focus on the problem of distinguishing von Neumann measurements. This Chapter
is inspired by the work [2]. Due to this work, we solve the problem of discrimination
for the parameterized family of qubit von Neumann measurements in the Fourier
basis, which is my contribution to the dissertation. In Chapter 7, we introduce
PyQBench, an innovative open-source framework for benchmarking gate-based
quantum computers. This chapter is written based on [3]. In Chapter 8 we will
focus on a validation scheme by certifying two von Neumann measurements. This
chapter is partly based on the work [4] describing the certification scheme of pure
states, unitary channels, and von Neumann measurements. My contribution to
the dissertation is using a certification scheme of von Neumann measurements
for benchmarking quantum computers. Chapter 9 contains the conclusions of the
dissertation and summarizes the results of the presented research. We also include
three appendices that contain e.g. proofs of theorems, lemmas or examples too
long and technical to be stated in the main text.
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Chapter 1

Introduction

In the last decade the idea of quantum computing has become a reality. Noisy
Intermediate-Scale Quantum (NISQ) [5] devices are storming the market with
a wide selection of devices based on different architectures and accompanying
software solutions. Among hardware providers offering public access to their
gate-based devices, one could mention IBM [6], Rigetti [7], Oxford Quantum
Group [8], IonQ [9], or Xanadu [10]. Other vendors offer devices operating in
different paradigms. Notably, one could mention D-Wave [11] and their quantum
annealers, or QuEra devices [12] based on neutral atoms. Most vendors provide
their own software stack and application programming interface for accessing their
devices. To name a few, Rigetti’s computers are available through their Forest
SDK [13] and PyQuil library [14] and IBM Q [6] computers can be accessed through
Qiskit [15] or IBM Quantum Experience web interface [16]. Some cloud services,
like Amazon Braket [17], offer access to several quantum devices under an unified
API. On top of that, several libraries and frameworks can integrate with different
hardware vendors. Examples of such frameworks include IBM Q’s Qiskit or Zapata
Computing’s Orquestra [18]. Nowadays, everyone can make simple computations
on these devices.

It is well known that NISQ devices have limitations [19]. For that, a natural
question arises: what extent can those devices perform meaningful computations?
To answer this question, one has to devise a methodology for validating them. As
a validation of quantum architectures, we refer to testing the correctness of their
functioning and ability to perform the tasks they were designed for. The validation
task has been highlighted as a significant challenge to scalable quantum computing
technology. Due to the numerous errors, there is therefore a significant need to
develop validation processes that allow for the best imaging of the accuracy and
precision of the operation of computing platforms. The search for practical and
reliable tools for the validation of quantum architecture has attracted a lot of
attention in recent years [20–25].
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There are many approaches to testing NISQ devices. The method of choice
may depend on, for example, the amount and type of information we have or want
to obtain, the system size or structure, the computational resources, or obtained
noise. Many times, the complexity of a protocol can be traded for the amount of
information about the validated device (Fig. 1.1).

Discrimination
Certification

Fidelity estimation

Compressed sensing
tomography

Randomized
benchmarking

Cross entropy
validation

Tensor network
tomography

Self-testing

Full or gateset
tomography

More information
More complex

Less information
Low complex

Chapter 4
Chapter 5

Chapter 8Chapter 6
Chapter 7

Figure 1.1: Validation methods of NISQ devices depending on the amount of
information and complexity.

The most powerful but at the same time most resources demanded validating
techniques are the full quantum tomography [26,27] and the gateset tomography
[28, 29]. The first idea is to obtain knowledge of the entire quantum state or
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transformation by performing sufficiently many measurements. The second one,
instead of focusing on a single component of the experiment, characterizes an entire
set of quantum gates used during the experiment. However, as we mentioned before,
the tomography process is excessively costly in the size of the quantum system.
Fortunately, many quantum states and operations used in realistic experiments
have strict structures. For example, quantum states are often close to being pure
or having a fixed low rank. For such cases, one may use compressed sensing
tomography [30]. Another approach is tensor network tomography which gives
excellent approximation under the assumption reconstructing of a quantum state
by product operators [31,32].

In contrast to quantum tomography, fidelity estimation aims merely at determin-
ing the distance between the actual quantum state or operation and the theoretical
one. While fidelity estimation yields much less information than full tomography,
one saves tremendously in measurement, sample complexity and resources. The
initial research estimated the fidelity of an imperfect preparation of pure quan-
tum states [33]. This protocol is extended to estimating the fidelity of quantum
channels [34] and, as we see in the dissertation, von Neumann measurements [1].

Another quantity used for validating NISQ devices is certification of quantum
operations [35,36], which can be viewed as the extension of quantum hypotheses
testing. The standard certification scheme assumes that we have two hypotheses
– the null and the alternative and there is possibly one of two outcomes: either
we accept or reject the null hypothesis. Like in classical hypothesis testing, here,
we also have two possible types of errors. The type I error happens if we reject
the null hypothesis when it is actually true, whereas the type II error happens if
we accept the null hypothesis when we should have rejected it. The main aim of
certification is finding the optimal strategy that minimizes one type of error when
the other is fixed.

Certification of quantum objects is closely related to the other well-known
method of validation, which is the problem of discrimination of those objects [37].
Intuitively, in the discrimination problem we are given one of two quantum objects
sampled according to a given a priori probability distribution. Hence, the probability
of making an error in the discrimination task is equal to the average of the type
I and type II errors over the assumed probability distribution. Therefore, the
discrimination problem can be seen as symmetric distinguishability instead of
certification, which is asymmetric. In other words, the main difference between
both approaches is that the main task of discrimination is the minimization over
the average of both types of possible errors, while the certification concerns the
minimization over one type of error when the bound of the other one is assumed.
Both symmetric and asymmetric discrimination schemes have been developed for
quantum states [38], unitary channels [36,38] and general quantum channels [39], SIC
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POVM [40], or unknown quantum measurements [41]. This dissertation will extend
these issues to the discrimination task of the von Neumann measurements [2, 42].

A still weaker method aims at the concept of randomized benchmarking [43]. In
this approach, one sample circuits to be run from some predefined set of gates (e.g.
from the Clifford group [44], or the random unitary gates [45]) and tests how much
the output distribution obtained from the device running these circuits differs from
the ideal one. It is also common to concatenate randomly chosen circuits with
their inverses, which should yield the identity circuit, and run those concatenated
circuits on the device.

We also mention validating methods characterizing an arbitrary quantum system
based only on its classical input-output correlations. Examples include the cross-
entropy benchmarking [46], or self-testing [47]. Building upon such notions of
fidelities, specific quality measures have been introduced in different contexts.
Examples include the cross-entropy function [48] strictly related to the maximum
likelihood. Like the classical cross-entropy validation, this task aimed at verifying
classical distributions and calculating the entropy function between the ideal and
sampled distribution of the quantum system.

The work [49] has given birth to the field of self-testing. This work sets the
terminology and formalism which was adopted by later works. In particular, a
self-testing protocol can be seen as a device-independent validation of a quantum
system, assuming that the system can be prepared many times in an independent,
identically distributed manner.

In the scope of the dissertation, we aim to investigate new validation methods
for modern gate model-inspired NISQ devices. In the work, we analyze both
theoretical and engineering aspects. Initially, the key aspect of the dissertation is
to constrain validation methods. Secondly, we focus on introducing new concepts
for benchmarking current available NISQ devices.

The first method concerns the quantum learning of von Neumann measurements.
This approach is also known in the literature as storage and retrieval (SAR). In
the general approach of SAR, we want to approximate an unknown von Neumann
measurement which we were able to perform N times experimentally. This strategy
is usually divided into two parts. The first one consists of preparing some initial
quantum state and applying the unknown measurement N times, which allows us
to store this operation for later use. The second one, whereas, consists a retrieval
operation that returns an approximation of the unknown measurement. The scheme
is optimal when it achieves the highest possible fidelity of the approximation. Our
main goal is to estimate the asymptotic behaviour of the maximum value of the
average fidelity function for storage and retrieval of von Neumann measurements
and determine possibly the best approximation of the optimal scheme.

The main tools used in SAR are quantum networks, also known as quantum
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combs. Additionally, we will also use the quantum causal structures theory – a
completely new approach in quantum information theory. We explore the possibility
of using the quantum causal structure theory in the task of storage and retrieval of
von Neumann measurements. For this purpose, we describe the part responsible
for storing the quantum operation with a process matrix and then calculate the
value of the fidelity function. This idea will be focused around Hypothesis 1.

The usage of quantum causal structure theory can improve the value of fidelity
function, providing a more efficient method of the storage and retrieval of von

Neumann measurements.

Next, we introduce a validation method based on the scheme of discrimination
of von Neumann measurements. We have calculated the maximum value of the
probability of correct discrimination between the parameterized family of qubit
measurements in the Fourier basis and computational basis. Furthermore, we
construct the optimal strategy, which maximizes the probability for this case. Next,
we consider the certification task between two von Neumann measurements. Here,
we are interested in a binary certification scheme in which the null and alternative
hypotheses are single-element sets. The goal is to minimize the probability of the
type II error given some fixed statistical significance. Again, for the parameterized
family of qubit measurements in the Fourier basis we calculate the exact value of
the probability of the type II error and create the optimal certification scheme.

As an engineering aspect of the dissertation, we introduce PyQBench – an
innovative open-source framework for benchmarking gate-based quantum com-
puters. PyQBench benchmarks NISQ devices by verifying their capability based
on the discrimination and certification scheme. PyQBench offers a simplified,
ready-to-use, command line interface (CLI) for running benchmarks using a prede-
fined parametrized Fourier family of measurements. For more advanced scenarios,
PyQBench offers a way of employing user-defined measurements instead of pre-
defined ones. We will show that the proposed models and obtained results have
led to a new aspect of benchmarking NISQ devices. Due to that, we formulate
Hypothesis 2.

Validating techniques based on discrimination and certification of von Neumann
measurements can provide efficient methods for benchmarking current gate

model-inspired NISQ devices.

The work consists of nine chapters. The first Chapter presents an introduction
to quantum information theory and the motivation for the research. Chapter 2
presents necessary mathematical framework. Chapter 3 devotes the basic concepts
used in quantum information theory. The rest of the dissertation was based on
three published articles and one preprint.
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The first paper [1], described in Chapter 4, concerns the storage and retrieval
of von Neumann measurements. In Chapter 5, we explore the possibility of using
the quantum causal structure theory in the task of von Neumann measurement
learning. This chapter is my contribution to the dissertation. In Chapter 6,
we focus on the problem of discrimination von Neumann measurements. Due to
obtained results, we introduce PyQBench, an innovative open-source framework for
benchmarking gate-based quantum computers. We put the detailed description of
PyQBench [3] in Chapter 7. Next, the work [4] presented in Chapter 8 focuses on
another validation scheme based on the certification of von Neumann measurements.
This chapter is partly based on the work [4] describing the certification scheme of
pure states, unitary channels, and von Neumann measurements. My contribution
to the dissertation is using a certification scheme of von Neumann measurements
for benchmarking quantum computers. Chapter 9 contains the conclusions of the
dissertation and summarizes the results of the presented research. We also include
three appendices that contain e.g. proofs of theorems too long and technical to be
stated in the main text.
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Chapter 2

Mathematical preliminaries

Quantum information theory relies heavily on linear algebra and functional analysis
in finite-dimensional Hilbert spaces. This section that follows presents an overview
of the mathematical aspects that are most relevant to the theory of quantum
information to be used throughout this dissertation. This chapter is written mostly
based on the books [37, 50]. Unlike the other chapters in this dissertation, the
present chapter does not include proofs.

2.1 Complex Euclidean spaces and Dirac notation

Let us consider complex Euclidean space denoted by scripted capital letters near
the end of the alphabet, such as X ,Y ,Z. The dimension of a complex Euclidean
space X will be denoted by dim(X ).

In this dissertation we will use the Dirac notation. Its use in quantum mechanics
is quite widespread to denote complex vectors and linear forms. This notation was
introduced by Paul Dirac in 1939.

Let X be a complex Euclidean space of dimension dim(X ) = d. In Dirac
notation, a column vector in X is called a ket and denoted by

|ψ⟩ := (ψ0, . . . , ψd−1)
⊤, ψi ∈ C, i ∈ {0, . . . , d− 1}, (2.1)

whereas a row vector in X ∗ is called a bra and denoted by

⟨ψ| := (ψ0, . . . , ψd−1), (2.2)

where ψi denotes complex conjugate of ψi. From Riesz’s representation theorem,
each finite-dimensional complex Euclidean space X and its dual space are isometri-
cally isomorphic. Then, the isomorphism defining a one-to-one mapping between
kets and bras are indicated as †, that is |ψ⟩† := ⟨ψ|. Whereas, the inner product
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between two vectors |ψ⟩, |ϕ⟩ is denoted by ⟨ψ|ϕ⟩, more precisely

⟨ψ|ϕ⟩ =
d−1∑
i=0

ψiϕi. (2.3)

The inner product satisfies the following conditions:

1. Linearity in the second argument:

⟨ψ|αϕ1 + βϕ2⟩ = α⟨ψ|ϕ1⟩+ β⟨ψ|ϕ2⟩, (2.4)

for all |ψ⟩, |ϕ1⟩, |ϕ2⟩ ∈ X and scalars α, β ∈ C.

2. Conjugate symmetry
⟨ψ|ϕ⟩ = ⟨ϕ|ψ⟩, (2.5)

for all |ψ⟩, |ϕ⟩ ∈ X .

3. Positive definiteness:
⟨ψ|ψ⟩ ≥ 0, (2.6)

for all |ψ⟩ ∈ X , and ⟨ψ|ψ⟩ = 0 if and only if |ψ⟩ = 0.

The induced Euclidean norm of a vector |ψ⟩ ∈ X is defined as

|||ψ⟩|| =
√

⟨ψ|ψ⟩. (2.7)

The Euclidean norm is the special case (p = 2) of a wider class of p-norms defined
for each |ψ⟩ ∈ X as

|||ψ⟩||p =
(
d−1∑
i=0

|ψi|p
) 1

p

, (2.8)

for p <∞. Moreover, we define ∞-norm as

|||ψ⟩||∞ = max{|ψi| : i ∈ {0, . . . , d− 1}}. (2.9)

Two vectors |ψ⟩, |ϕ⟩ ∈ X are said to be orthogonal if ⟨ψ|ϕ⟩ = 0. We say that a
collection of vectors {|ψi⟩}ki=0 creates an orthogonal set if for each pair of vectors
holds ⟨ψi|ψj⟩ = 0 for all choices i, j such that i ̸= j. Naturally, a collection of
nonzero orthogonal vectors is necessarily linearly independent. An orthogonal
set {|ψi⟩}ki=0 is called orthonormal if it additionally holds ⟨ψi|ψi⟩ = 1 for all
i ∈ {0, . . . , k}. If k = dim(X )− 1, then the orthogonal set {|ψi⟩}dim(X )−1

i=0 forms a
basis of X . Nevertheless, if the basis is additionally orthonormal set, then it is
called an orthonormal basis. We distinguish the orthonormal basis of the form

18



{|i⟩}d−1
i=0 , where |i⟩ is a vector with the i-th entry equal to one and others equal to

zero. Such a basis is called the computational basis.

Direct sum and tensor product of complex Euclidean spaces

Let |x⟩ = (x0, . . . , xk)
⊤ ∈ X and |y⟩ = (y0, . . . , yl)

⊤ ∈ Y . We define the direct sum
of |x⟩ and |y⟩ as

|x⟩ ⊕ |y⟩ = (x0, . . . , xk, y0, . . . , yl)
⊤, (2.10)

We define the direct sum of spaces X and Y , denoted by X ⊕ Y as

X ⊕ Y = span {|x⟩ ⊕ |y⟩ : |x⟩ ∈ X , |y⟩ ∈ Y} . (2.11)

Observe that dim(X ⊕ Y) = dim(X ) + dim(Y). We can define the direct sum for
more then two complex Euclidean spaces in an analogues way.

We further introduce the notion of the tensor product of complex Euclidean
spaces. We define the tensor product of |x⟩ ∈ X and |y⟩ ∈ Y as

|x⟩ ⊗ |y⟩ = (x0 · y0, . . . , x0 · yl, . . . , xk · y0, . . . xk · yl)⊤, (2.12)

By X ⊗ Y we denote the tensor product of spaces X and Y given by

X ⊗ Y = span {|x⟩ ⊗ |y⟩ : |x⟩ ∈ X , |y⟩ ∈ Y} . (2.13)

Observe, dim(X ⊗ Y) = dim(X ) · dim(Y). As previously we can generalize the
tensor product for more then two complex Euclidean spaces.

Let X0, . . . ,Xn−1 be Euclidean spaces. Then, we fix the notation

n−1⊕
i=0

Xi = X0 ⊕ . . .⊕Xn−1 (2.14)

and
n−1⊗
i=0

Xi = X0 ⊗ . . .⊗Xn−1, (2.15)

respectively. It is often convenient to make the identification X⊕n or X⊗n under the
assumption that X0, . . . ,Xn−1 and X refer to the same complex Euclidean space.
Similarly, we will use a notation |x⟩⊕n and |x⟩⊗n refer to the n-fold direct sum and
tensor product of |x⟩.
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2.2 Linear operators

For a given complex Euclidean spaces X and Y , one writes L(X ,Y) to refer to the
set of all linear operators of the form

A : X → Y . (2.16)

For simplify notation, let L(X ) := L(X ,X ). The identity operator will be denoted
by 1lX ∈ L(X ) .

The set L(X ,Y) forms a complex vector space when addition and scalar multi-
plication are defined as follows:

1. Addition: For operators A,B ∈ L(X ,Y), the operator A + B ∈ L(X ,Y) is
defined by the equation (A+B)|x⟩ = A|x⟩+B|x⟩ for all |x⟩ ∈ X .

2. Scalar multiplication: for an operator A ∈ L(X ,Y) and a scalar α ∈ C the
operator αA ∈ L(X ,Y) is defined by the equation (αA)|x⟩ = αA|x⟩ for all
|x⟩ ∈ X .

Matrices and their correspondence with operators

For any choice of complex Euclidean spaces X and Y, there is a bijective linear
correspondence between the set of operators L(X ,Y) and the collection of all
matrices of size dim(Y)× dim(X ) having the form

M = (mij) i∈{0,...,dim(Y)−1}
j∈{0,...,dim(X )−1}

. (2.17)

For each operator X ∈ L(X ,Y) we associate the matrix M defined as mij = ⟨i|X|j⟩
for i ∈ {0, . . . , dim(Y) − 1}, j ∈ {0, . . . , dim(X ) − 1}, |i⟩ ∈ Y, and |j⟩ ∈ X . The
operator A is uniquely determined by the matrix M . With respect to this corre-
spondence, matrix multiplication is equivalent to operator composition. Hereafter
in this dissertation, linear operators will be associated with matrices implicitly, and
hence we will be using the words operator and matrix interchangeably.

Direct sum and tensor product of linear operators

Let X0,X1,Y0,Y1 be complex Euclidean spaces and let A0 ∈ L(X0,Y0), A1 ∈
L(X1,Y1) be linear operators. The direct product

A0 ⊕ A1 ∈ L(X0 ⊕X1,Y0 ⊕ Y1), (2.18)
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of these operators is uniquely defined by the equation

(A0 ⊕ A1)(|x0⟩ ⊕ |x1⟩) = (A0|x0⟩)⊕ (A1|x1⟩), (2.19)

for all choices |x0⟩ ∈ X0 and |x1⟩ ∈ X1.
The tensor product

A0 ⊗ A1 ∈ L(X0 ⊗X1,Y0 ⊗ Y1), (2.20)

of A0 ∈ L(X0,Y0) and A1 ∈ L(X1,Y1) to be the unique operator that satisfies

(A0 ⊗ A1)(|x0⟩ ⊗ |x1⟩) = (A0|x0⟩)⊗ (A1|x1⟩), (2.21)

for all choices |x0⟩ ∈ X0 and |x1⟩ ∈ X1.
As previously, we can also generalize the notion of direct sum and tensor product

for more then two linear operators. We will use a notation

A⊕n = A⊕ . . .⊕ A︸ ︷︷ ︸
n

, (2.22)

and, for tensor product, we assume A⊗n = A⊗ . . .⊗ A.

2.2.1 Properties of linear operators

Image and rank a of an operator

Te image of A ∈ L(X ,Y) is defined as a subspace of Y given by

im(A) = {A|x⟩ : |x⟩ ∈ X}. (2.23)

The rank of an operator A ∈ L(X ,Y) is the dimension of the image of A, that
means

rank(A) = dim(im(A)). (2.24)

Trace of an operator

The trace of a square operator X ∈ L(X ) is defined as the sum of its diagonal
entries, that is tr(X) =

∑dim(X )−1
i=0 xii. Equivalently, the trace is the unique linear

function tr : L(X ) → C such that

tr(|x⟩⟨y|) = ⟨y|x⟩, (2.25)
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for all vectors |x⟩, |y⟩ ∈ X . Using the trace, we define an inner product on the
space L(X ,Y) as

⟨A,B⟩ = tr(A†B), (2.26)

for all A,B ∈ L(X ,Y), where A† denotes the Hermitian conjugate of A, that is
A† = A⊤.

The trace mapping possess a variety of properties, including the ones summarized
in the following list:

1. The trace mapping is cyclic, that is

tr(AB) = tr(BA), (2.27)

for any A ∈ L(X ,Y), B ∈ L(Y ,X ).

2. For every X ∈ L(X ) and Y ∈ L(Y) it holds that

tr(X ⊕ Y ) = tr(X) + tr(Y ). (2.28)

3. For every X ∈ L(X ) and Y ∈ L(Y) it holds that

tr(X ⊗ Y ) = tr(X)tr(Y ). (2.29)

Vectorization

There is a correspondence between the space L(X ,Y) and Y ⊗ X for any choice
of complex Euclidean spaces X , Y. This correspondence, called vectorization, is
given by the linear mapping

|·⟩⟩ : L(X ,Y) → Y ⊗X , (2.30)

defined for any A ∈ L(X ,Y) by

|A⟩⟩ :=
dim(Y)−1∑

i=0

|i⟩ ⊗ A⊤|i⟩, (2.31)

where |i⟩ ∈ Y. This mapping is a linear bijection between spaces L(X ,Y) and
X ⊗ Y. It implies that every vector |x⟩ ∈ Y ⊗ X can be uniquely determined by
an operator A ∈ L(X ,Y) such that |A⟩⟩ = |x⟩. Moreover, it can be shown that the
following holds

⟨A,B⟩ = ⟨⟨A|B⟩⟩. (2.32)

22



Another crucial property of the vectorization mapping will be useful throughout
the dissertation, e.g.

(A⊗B)|C⟩⟩ = |ACB⊤⟩⟩, (2.33)

for A ∈ L(X ,Y), B ∈ L(W ,Z) and C ∈ L(W ,X ). This property is sometimes
called telegraphic notation.

Types of linear operators

The following classes of operators have particular importance in the theory of
quantum information.

The commutator AB−BA of operators A,B ∈ L(X ) will be denoted by [A,B].
We call that an operator A ∈ L(X ) is normal if it commutes with its Hermitian
conjugate, that means [A,A†] = 0. A normal operator A ∈ L(X ) is said to be
Hermitian if satisfies the equation A = A†, while a Hermitian operator A ∈ L(X )
is called positive semidefinite if it additionally satisfies ⟨ψ|A|ψ⟩ ≥ 0 for every
|ψ⟩ ∈ X . The subset of L(X ) consisting of Hermitian operators we will be denoted
by Herm(X ) whereas the set of all positive semidefinite by Pos(X ). A positive
semidefinite operator Π ∈ Pos(X ) satisfying Π2 = Π is said to be a projection
operator. We will denote the set of all projection operators by Proj(X ). For each
subspace V ⊆ X , there is a uniquely defined projection operator Π ∈ Proj(X )
satisfying im(Π) = V . The notation ΠV is used to refer to this projection operator.
A positive semidefinite operator ρ ∈ Pos(X ) is a density operator if tr(ρ) = 1. The
set of all density operators will be denoted as Ω(X ).

An operator V ∈ L(X ,Y), is an isometry if it preserves the Euclidean norm
of vectors that is ||V |x⟩|| = |||x⟩|| for all |x⟩ ∈ X . We will consider also a
unitary operator U ∈ L(X ) that is an invertible operator satisfying the equation
UU † = U †U = 1lX . Naturally, each unitary operator also preserves the Euclidean
norm of vectors. We will denote the set of all isometries as U(X ,Y) whereas the
set of all unitary operators by U(X ).

An operator X = (xij)
dim(X )−1
i,j=0 ∈ L(X ) is diagonal if xij = 0 for all i ̸= j. The

set of all diagonal operator will be denoted as Diag(X ). We will also consider
unitary operators which are diagonal. Such a set of all diagonal unitary operators
will be denoted by DU(X ). We will also introduce the operator diag(·) : X → L(X )
given by

diag(|x⟩) :=


x0 0 . . . 0
0 x1 . . . 0
...

... . . . ...
0 0 . . . xdim(X )−1

 , (2.34)

where |x⟩ = (x0, . . . , xdim(X )−1)
⊤. and consider the adjoint operator diag† : L(X ) →
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X , that is diag†(X) = (X0,0, . . . , Xdim(X )−1,dim(X )−1)
⊤.

Eigenvectors and eigenvalues

Let A ∈ L(X ) be an operator and |x⟩ ∈ X be a nonzero vector for which it holds
that

A|x⟩ = λ|x⟩, (2.35)

for some λ ∈ C. Then, |x⟩ is called an eigenvector of A and λ is its corresponding
eigenvalue. Let us define the characteristic polynomial of A as

p(α) = det(α1lX − A). (2.36)

The spectrum of A, denoted λ(A), is the multiset containing all roots of the
polynomial p(α), that is all eigenvalues of A. Moreover, the trace may be expressed
by using the term of spectrum in the following way

tr(A) =
∑

λ∈λ(A)

λ, (2.37)

for every A ∈ L(X ).
For a given operator we have the following characterizations.

1. Each Hermitian operator H ∈ Herm(X ) has real eigenvalues.

2. Each positive semidefine operator P ∈ Pos(X ) has non-negative eigenvalues.

3. Each projective operator Π ∈ Pos(X ) of rank(Π) = k has k eigenvalues equal
to one and (dim(X )− k) eigenvalues equal to zero.

4. Each density operator ρ ∈ Ω(X ) has non-negative eigenvalues which sum up
to one.

2.2.2 Operator decompositions

Below we recall the theorems regarding decompositions of linear operators, which
we use later in the dissertation.

Theorem 1 (Spectral decomposition) Let X ∈ L(X ) be a normal operator.
There exists a positive integer m, distinct complex numbers λ0, . . . , λm−1 ∈ C and
nonzero projector operators Π0, . . . ,Πm−1 ∈ Pos(X ) satisfying Π0+. . .+Πm−1 = 1lX ,
such that

X =
m−1∑
i=0

λiΠi. (2.38)
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The scalars λ0, . . . , λm−1 and projection operators Π0, . . . ,Πm−1 are uniquely de-
termined, that means each scalar λi is an eigenvalue of X with multiplicity equal
to the rank of Πi, and Πi is the projection operator onto the space spanned by the
eigenvectors of X corresponding to the eigenvalue λi.

Corollary 1 Let dim(X ) = d. Let X ∈ L(X ) be a normal operator and let
λ(X) = {λ0, . . . , λd−1} be the spectrum of X. There exists an orthonormal basis
{|x0⟩, . . . , |xd−1⟩} ∈ X such that

X =
d−1∑
i=0

λi|xi⟩⟨xi|. (2.39)

Theorem 2 (Jordan–Hahn decompositions) Let us consider H ∈ Herm(X )
of the form

H =

dim(X )−1∑
i=0

λiΠi, (2.40)

where Πi ∈ Proj(X ) are nonzero projection operators such that
∑

iΠi = 1lX and
λi ∈ R, i ∈ {0, . . . , dim(X )− 1}. Let us define the operators P,Q ∈ Pos(X ) by

P =

dim(X )−1∑
i=0

max{λi, 0}Πi, (2.41)

and

Q =

dim(X )−1∑
i=0

max{−λi, 0}Πi. (2.42)

satisfying PQ = 0. Then, the operator H can be expressed as

H = P −Q. (2.43)

The operators P and Q are uniquely defined for a given operator H. The expression
given by Eq. (2.43) is called the Jordan–Hahn decomposition of H.

Now, we recall the singular value theorem. The singular value theorem has a
close relationship to the spectral theorem. Unlike the spectral theorem, however,
the singular value theorem holds for arbitrary (nonzero) operators, as opposed to
just normal operators.

Theorem 3 (Singular value decomposition) Let X ,Y be complex Euclidean
spaces. Let A ∈ L(X ,Y) be a nonzero operator having rank equal to r ∈ N. There
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exist sets of orthonormal vectors {|x0⟩, . . . , |xr−1⟩} ⊂ X and {|y0⟩, . . . , |yr−1⟩} ⊂ Y
along with positive real numbers s0, . . . , sr−1 > 0 such that

A =
r−1∑
i=0

si|yi⟩⟨xi|. (2.44)

The expression of a given operator A in the form of Eq. (2.44) is said to be a
singular value decomposition of A. The numbers s0, . . . , sr−1 are called singular
values of A, whereas the collection of vectors |x0⟩, . . . , |xr−1⟩ and |y0⟩, . . . , |yr−1⟩
are called right and left singular vectors of A, respectively. The set of all singular
values of A will denoted by σ(A).

Corollary 2 Let A ∈ L(X ,Y) be a nonzero operator with rank r, and let W be
a complex Euclidean space such that dim(W) = r. Then, there exists a diagonal,
positive definite operator D ∈ Pos(W) of the form D = diag(σ(A)) and isometries
U ∈ U(W ,Y), V ∈ U(W ,X ) such that

A = UDV †. (2.45)

Power of an operator

Now, we will recall the notion of power of an operator. Let A ∈ L(X ) be a square
operator. Naturally, we can define k-th power of the operator A, where k ∈ N is a
natural number, as the following multiplication

Ak = A · . . . · A︸ ︷︷ ︸
k

. (2.46)

To extend this definition for any positive number k > 0, let us consider a positive
semidefinite operator P ∈ Pos(X ) of the form

P =
m∑
i=0

λiΠi, (2.47)

where λi ≥ 0 for all i ∈ {0, . . . ,m}. The k-th power of the operator P is given by

P k =
m∑
i=0

λki Πi, (2.48)

where k ∈ R, k > 0.
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Moore-Penrose pseudo inverse

Definition 1 Let A ∈ L(X ,Y) be a nonzero operator written in the SVD form
(see Theorem 3)

A =
m−1∑
i=0

si|yi⟩⟨xi|. (2.49)

We define an operator A−1 ∈ L(Y ,X ), known as the Moore–Penrose pseudo-inverse
of A, as the unique operator given by

A−1 =
m−1∑
i=0

1

si
|xi⟩⟨yi|. (2.50)

One may observe that AA−1 and A−1A are projection operators, projecting onto
the spaces spanned by the left singular vectors {|yi⟩}m−1

i=0 and right singular vectors
{|xi⟩}m−1

i=0 of A, respectively.

2.2.3 Operator norms

Many useful norms can be defined on spaces of operators, but in quantum informa-
tion theory we mostly use a single family of norms called Schatten p-norms.

Definition 2 For any operator A ∈ L(X ,Y) and real number p ≥ 1, we define the
Schatten p-norm of A as

||A||p =
(
tr
((
A†A

) p
2

)) 1
p
. (2.51)

The Schatten ∞−norm is defined as

||A||∞ = max{||A|ψ⟩|| : |ψ⟩ ∈ X , ⟨ψ|ψ⟩ = 1}, (2.52)

This family of norms includes the three most commonly used norms in quantum
information theory – the spectral norm (p = ∞), the trace norm (p = 1) and the
Frobenius norm (p = 2).

2.2.4 Numerical range and q-numerical range

This dissertation will often make use of the terms of numerical range and q-numerical
range.
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Definition 3 The numerical range [51] is a subset of the complex plane defined
for a matrix X ∈ L(X ) as

W (X) := {⟨ψ|X|ψ⟩ : |ψ⟩ ∈ X , ⟨ψ|ψ⟩ = 1}. (2.53)

Observe that W (X) contains eigenvalues of X. It is, however, always the case
that W (X) is convex and compact, which is the content of Toeplitz–Hausdorff
theorem [52,53]. Moreover, if we additionally assume that X is a normal operator
that W (X) is a convex hull of its eigenvalues.

Definition 4 For a given operator X ∈ L(X ), the q-numerical range [54–57] is
defined as

Wq(X) := {⟨ψ|X|φ⟩ : |ψ⟩, |ϕ⟩ ∈ X , ⟨ψ|ψ⟩ = ⟨φ|φ⟩ = 1, ⟨ψ|φ⟩ = q, q ∈ C}.
(2.54)

Observe the standard numerical range makes up the special case of q-numerical
range for q = 1. The q-numerical range, as a natural extension of standard numerical
range preserves the properties of convexity and compactness (Tsing’s theorem [56]).
Another key observation is the fact that Wq(X) contains each eigenvalues of X
multiplied by q ∈ C [57]. Other useful properties of q-numerical range [58] that
will be used throughout this dissertation are

Wq(X ⊗ 1lY) = Wq(X), q ∈ C, (2.55)

for any dimension of Y and

Wq′ ⊆
q′

q
Wq for q ≤ q′, q, q′ ∈ R. (2.56)

The detailed properties of the numerical range and its generalizations we can also
see on the website [59].

We will also use the notation

νq(X) := min{|x| : x ∈ Wq(X)}. (2.57)

to denote the distance on a complex plane from q-numerical range to zero. In the
case when q = 1, we will simply write ν(X). From the above properties of Wq(X)
it is easy to see that

νq(X ⊗ 1lY) = νq(X) for q ∈ R. (2.58)
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2.3 Linear superoperators

Now we will consider a mapping, called superoperator, acting on linear operator
from L(X ) and mapping them into operators on complex Euclidean space L(Y).
More precisely,

M : L(X ) → L(Y). (2.59)

The set of all such maps is denoted M(X ,Y). According to the introduced con-
vention, let M(X ) := M(X ,X ). The identity mapping on the space M(X ) will be
denoted by IX .

Definition 5 For M ∈ M(X ,Y) the adjoint of M is defined to be the unique map
M† ∈ M(Y ,X ) such that

⟨M†(Y ), X⟩ = ⟨Y,M(X)⟩, (2.60)

for all X ∈ L(X ) and Y ∈ L(Y).

Direct sum and tensor product of superoperators

The direct sum between the superoperators of the set M(X ,Y) are defined in a
similar way to direct sum of operators. For the given superoperators M ∈ M(X0,Y0)
and N ∈ M(X1,Y1) we define the direct sum of superoperators as

(M⊕N ) ∈ M(X0 ⊕X1,Y0 ⊕ Y1), (2.61)

to be the unique linear mapping that satisfies the following equation

(M⊕N ) (X ⊕ Y ) = M(X)⊕N (Y ), (2.62)

for all X ∈ L(X0) and Y ∈ L(X1).
Similarly, let us define the tensor product between the superoperators M ∈

M(X0,Y0) and N ∈ M(X1,Y1) as the unique linear mapping

(M⊗N ) ∈ M(X0 ⊗X1,Y0 ⊗ Y1), (2.63)

which satisfies the following equation

(M⊗N ) (X ⊗ Y ) = M(X)⊗N (Y ), (2.64)

for all X ∈ L(X0) and Y ∈ L(X1). As for vectors and operators, the notation M⊕n

and M⊗n denotes the n-fold direct sum and tensor product of a map M with itself,
respectively.
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Partial trace

Let us consider the map

tr⊗ IY ∈ M(X ⊗ Y ,Y), (2.65)

defined as the unique map

(tr⊗ IY) (X ⊗ Y ) = tr(X)Y. (2.66)

This map is called the partial trace, and is more commonly denoted trX . Along
similar ways, the map trY ∈ M(X ⊗ Y ,X ) is defined as trY = IX ⊗ tr.

Now let us consider an operator A ∈ L(X ⊗ Y) not being a tensor product of
two operators. Then we express the partial trace of A over space X as

trX (A) =

dim(X )−1∑
i=0

(⟨i| ⊗ 1lY)A (|i⟩ ⊗ 1lY) . (2.67)

Along similar lines, the partial trace over space Y is expressed as

trY(A) =

dim(Y)−1∑
i=0

(1lX ⊗ ⟨i|)A (1lX ⊗ |i⟩) . (2.68)

We can generalize the concept of partial trace mappings for more then two linear
operators and define them in an analogous way.

Partial transposition

For a given operator X ⊗ Y , where X ∈ L(X ) and Y ∈ L(Y), we define the map

TX⊗IY ∈ M(X ⊗ Y), (2.69)

as the unique map satisfying(
TX ⊗ IY

)
(X ⊗ Y ) = X⊤ ⊗ Y. (2.70)

Considering an operator which is not a tensor product of two operators A ∈ L(X⊗Y)
of the form

A =

dim(X )−1∑
i,j=0

dim(Y)−1∑
k,l=0

αijkl|i⟩⟨j| ⊗ |k⟩⟨l|, (2.71)
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then ATX has the following form

ATX =

dim(X )−1∑
i,j=0

dim(Y)−1∑
k,l=0

αijkl(|i⟩⟨j|)⊤ ⊗ |k⟩⟨l| =
dim(X )−1∑
i,j=0

dim(Y)−1∑
k,l=0

αijkl|j⟩⟨i| ⊗ |k⟩⟨l|.

(2.72)
Analogously, we can define ATY .

Classes of superoperators

The following classes of linear maps M(X ,Y) will be used later in this dissertation.
A linear map M ∈ M(X ,Y) is said to be Hermiticity-preserving if it holds M(A) ∈
Herm(Y) for all A ∈ Herm(X ). We call that a Hermiticity-preserving map M ∈
M(X ,Y) is trace non-increasing map if satisfies the condition tr(M(A)) ≤ tr(A)
for all A ∈ L(X ). The condition tr(M(A)) = tr(A) defines trace-preserving
maps. A linear mapping M ∈ M(X ,Y) is positive if it holds M(A) ∈ Pos(Y) for
every A ∈ Pos(X ). A linear map M ∈ M(X ,Y) is called completely positive if
(M⊗IZ) (A) ∈ Pos(Y ⊗ Z) for every A ∈ Pos(X ⊗ Z) and complex Euclidean
space Z.

2.3.1 Representations of linear superoperators

A few specific representations of channels are known such the Choi, Stinespring or
Kraus representation. These different representations reveal interesting properties
of channels. Here, we will briefly describe each of them below.

Choi-Jamiołkowski representation

Let us consider a linear mapping M ∈ M(X ,Y). Let us define a mapping

J : M(X ,Y) → L(Y ⊗ X ) (2.73)

as
J(M) = (M⊗IX ) (|1lX ⟩⟩⟨⟨1lX |) , (2.74)

From the definition of vectorization, one may alternatively write

J(M) =

dim(X )−1∑
i,j=0

M(|i⟩⟨j|)⊗ |i⟩⟨j|, (2.75)
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where |i⟩, |j⟩ ∈ X . The operator J(M) is called the Choi operator of M. The
action of a mapping M is given by

M(X) = trX
(
J(M)(1lY ⊗X⊤)

)
, (2.76)

for all X ∈ L(X ). It is worth noting that J is a linear bijection between M(X ,Y)
and operators L(Y ⊗ X ).

Most often, for clarity of notation, we will denote linear mappings with calli-
graphic font K,L,M etc., whereas the corresponding Choi-Jamiołkowski matrices
as plain symbols: K,L,M etc.

Kraus representation

Let us define two sets of operators {Ai}i and {Bi}i ⊂ L(X ,Y). We define a linear
map M ∈ M(X ,Y) by

M(X) =
∑
i

AiXB
†
i . (2.77)

Such an expression Eq. (2.77) is called a Kraus representation of M. It can be
shown that a Kraus representation exists for every map in M(X ,Y). However, in
contrast with Choi-Jamiołkowski representation, it is not unique.

Stinespring representation

Let A,B ∈ L(X ,Y ⊗ Z) and X ∈ L(X ). Let us define a map M ∈ M(X ,Y) as

M(X) = trZ(AXB
†). (2.78)

The expression Eq. (2.78) is called a Stinespring representation of M ∈ M(X ,Y).
Similar to Kraus representation, Stinespring representation is not unique.

The following fact shows the equivalence of these representations.

Fact 1 Let M ∈ M(X ,Y) be a linear map. Assume that the sets {Ai}i, {Bi}i ⊂
L(X ,Y) are Kraus representation of M. Then, the Choi operator of M has the
form M =

∑
i |Ai⟩⟩⟨⟨Bi|. Moreover, for every Z and operators A,B ∈ L(X ,Y ⊗Z)

defined as A =
∑

iAi⊗|i⟩ and B =
∑

iBi⊗|i⟩, it holds that M(X) = trZ(AXB
†).

2.3.2 Diamond norm of superoperators

In this section, we will introduce the norm defined on the linear space M(X ,Y),
called diamond norm (or the completely bounded trace norm).
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Definition 6 Let X , Y be complex Euclidean spaces. The diamond norm || · ||⋄ :
M(X ,Y) → R of a linear mapping M ∈ M(X ,Y) is defined as

||M||⋄ = max {||(M⊗IX ) (X)||1 : X ∈ L(X ⊗ X ), ||X||1 ≤ 1} . (2.79)

For Hermiticity-preserving maps M ∈ M(X ,Y) with the Choi operator M , the
following expressions of the diamond norm can be used equivalently

||M||⋄ = max {||(M⊗IX )(|x⟩⟨x|)||1 : |x⟩ ∈ X ⊗ X : |||x⟩|| = 1} , (2.80)

or
||M||⋄ = max

{
||(1lY ⊗√

ρ)M (1lY ⊗√
ρ)||1 : ρ ∈ Ω(X )

}
. (2.81)

2.4 Semidefinite programming

This section describes the formulation of semidefinite programming (SDP). Let
X and Y be complex Euclidean spaces, and let M ∈ M(X ,Y) be a Hermiticity-
preserving map. Let A ∈ Herm(X ) and B ∈ Herm(Y) be Hermitian operators. A
semidefinite program is defined as a triple (M, A,B) with which the following pair
of optimization problems is associated.

Primal problem

maximize: ⟨A,X⟩
subject to: M(X) = B,

X ∈ Pos(X ).

Dual problem

minimize: ⟨B, Y ⟩

subject to: M†(Y ) ≥ A,

Y ∈ Herm(Y).

Table 2.1: Formulation of primal and dual problem.

Let us define the primal feasible set A and the dual feasible set B of (M, A,B)
as follows

A = {X ∈ Pos(X ) : M(X) = B},
B = {Y ∈ Herm(Y) : M†(X) ≥ A}.

(2.82)

Operators X ∈ A and Y ∈ B are also said to be primal feasible and dual feasible,
respectively. The optimum values associated with the primal and dual problems
are defined as

α = sup{⟨A,X⟩ : A ∈ A}, (2.83)
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and
β = inf{⟨B, Y ⟩ : B ∈ B}, (2.84)

respectively.
Semidefinite programs have associated with them a notion of duality, which

refers to the special relationship between the primal and dual problems. For
many semidefinite programs, it happens that primary and dual problem values are
equal. This situation is called strong duality. Slater’s theorem provides one set of
conditions under which strong duality is guaranteed.

Theorem 4 (Slater’s theorem for semidefinite programs) Let X and Y be complex
Euclidean spaces, let M ∈ M(X ,Y) be a Hermiticity-preserving map, and let
A ∈ Herm(X ) and B ∈ Herm(Y) be Hermitian operators. Let A,B, α, β be as
defined above for the semidefinite program (M, A,B). One has the following two
implications:

1. If α is finite and there exists a Hermitian operator Y ∈ Herm(Y) such that
M†(Y ) > A, then α = β, and moreover there exists a primal-feasible operator
X ∈ A such that ⟨A,X⟩ = α.

2. If β is finite and there exists a positive definite operator X > 0 such that
M(X) = B, then α = β, and moreover there exists a dual-feasible operator
Y ∈ B such that ⟨B, Y ⟩ = β.

Here, we present the semidefinite program for calculating the diamond norm of
the Hermiticity-preserving map M with Choi operator M [60].

Primal problem

maximize: tr (XM)

subject to:
(

1lY ⊗ ρ X
X† 1lY ⊗ ρ

)
≥ 0,

ρ ∈ Ω(X ),

X ∈ L(X ⊗ Y).

Dual problem

minimize: ∥trX (Y ) ∥∞

subject to:
(

Y −M
−M Y

)
≥ 0,

Y ∈ Pos(X ⊗ Y).

Table 2.2: Formulation of primal and dual problem for calculating the diamond
norm of the Hermiticity-preserving map M.
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Chapter 3

Introduction to quantum information
theory

Although the first chapter has been mathematical, at the moment we will introduce
the elementary notions of quantum information theory, including definitions of
quantum states, channels or measurements. Moreover, we will also remind the
term of quantum networks. This chapter is mainly written based on [37,61].

3.1 Quantum state

According to the convention adopted in books [37, 50], the quantum states are
represented by density operators. The following definition makes this precise.

Definition 7 A quantum state, describing a quantum system X, is a density
operator of the form ρ ∈ Ω(X ).

When we refer to a quantum state of a system X, it is to be understood that the
state in question takes the form ρ ∈ Ω(X ) for X being the complex Euclidean space
associated with X. Note that if X given by a tensor product X = Y0 ⊗ . . .⊗ Yk is
associated with a compound system X=(Y0,. . ., Yk).

We will distinguish few classes of quantum states describing below.

• Pure state: A quantum state ρ ∈ Ω(X ) is said to be a pure state, if it has
rank equal to 1. Equivalently, ρ is a pure state if there exists a unit vector
|ψ⟩ ∈ X such that ρ = |ψ⟩⟨ψ|.

• Mixed state: Let us assume an ensemble of pure states {pi, |ψi⟩}ki=0, where
pi > 0 and

∑k
i=0 pi = 1, k ∈ N. Therefore, it will be considered a convex
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combination of pure states, called a mixed state, given by

ρ =
k∑
i=0

pi|ψi⟩⟨ψi|. (3.1)

• Product state: Suppose X=(Y0, Y1) is a compound system. We say that a
state ρ ∈ Ω(X ) is a product state of X if it has the form ρ = σ0 ⊗ σ1, for
σ0 ∈ Ω(Y0), σ1 ∈ Ω(Y1) being quantum states describing Y0, Y1, respectively.

• Separable and entangled state: A quantum state ρ ∈ D(X ⊗ Y) is said to be
separable if there exist a positive number k ∈ N, sets {σ0, . . . , σk−1} ⊂ D(X ),
{ρ0, . . . , ρk−1} ⊂ D(Y) and a probability vector p = (p0, . . . , pk−1), such that

ρ =
k−1∑
i=0

piρi ⊗ σi. (3.2)

Otherwise, if a state can not be written as a convex combination of product
states, such a state is called an entangled state.

3.2 State transformations
Let us consider a quantum system described by a quantum state ρ ∈ Ω(X ). The
simplest states transformation may be given by a unitary operator U ∈ U(X ). As
was mentioned before, each unitary operator preserve the norm of vectors that is
for every |ψ⟩ we have ||U |ψ⟩|| = |||ψ⟩||. From this, we can observe that a unitary
state transformation maps pure state to pure state, mixed state to another mixed
state, and this transformation is also reversible.

However, the unitary transformations are operations that map quantum systems
of the same dimensions. A general linear transformation that maps a density
operator to other one is known as a quantum channel and described by the
following definition.

Definition 8 A superoperator M ∈ M(X ,Y) is a quantum channel if satisfies the
following restrictions:

1. M is trace-preserving;

2. M is completely positive.

The set of all quantum channels we will denote by C(X ,Y) . According to
convention, we take C(X ) := C(X ,X ). Hovewer, it is worth noting that the most
general quantum operations are represented by quantum instruments [62,63].
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Definition 9 A quantum instrument is a collection of completely positive trace
non-increasing maps {Mi}i characterized by the property that

∑
iMi is a quantum

channel.

3.3 Quantum channel representation

Due to Choi-Jamiołkowski isomorphism we obtain two criterions saying whether a
linear map is a quantum channel.

Proposition 1 A linear mapping M ∈ M(X ,Y) is completely positive if and only
if M ∈ Pos(Y ⊗ X ).

Proposition 2 A linear mapping M ∈ M(X ,Y) is trace preserving if and only if
trY (M) = 1lX .

In this dissertation we will pay special attention to unitary channels

ΦU(X) = UXU †, (3.3)

where X ∈ L(X ) and U ∈ U(X ). Therefore, to emphasize their importance, we
will denote them ΦU instead of U or V .

In this dissertation we will also consider a special class of quantum channels
called non-signaling channels (or causal channels) [64, 65]. We say that N :
L(X0 ⊗ X1) → L(Y0 ⊗ Y1) is non-signaling channel if it satisfies the following
conditions

trY0(N) =
1lX0

dim(X0)
⊗ trX0Y0(N),

trY1(N) =
1lX1

dim(X1)
⊗ trX1Y1(N).

(3.4)

It can be shown [66] that each non-signaling channel is an affine combination of
product channels. More precisely, a non-signaling channel N : L(X0 ⊗ X1) →
L(Y0 ⊗ Y1) can be written as

N =
∑
i

λiSi ⊗ Ti, (3.5)

where Si ∈ M(X0,Y0) and Ti ∈ M(X1,Y1) are quantum channels, λi ∈ R such that∑
i λi = 1. For the rest of the dissertation, by NS(X0 ⊗ X1 ⊗ Y0 ⊗ Y1) we will

denote the set of Choi operators of non-signaling channels.
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3.4 Quantum measurement
Quantum measurements provide the mechanism through which classical information
may be extracted from quantum systems.

3.4.1 Quantum measurement and the Born role

Let m ∈ N be a finite positive number. A general quantum measurement E , that is
a positive operator valued measure (POVM) is a collection of positive semidefinite
operators {E0, . . . , Em−1} ⊂ Pos(X ), called effects, which sum up to identity, that
is
∑m−1

i=0 Ei = 1lX .
The Born rule is a key postulate of quantum mechanics which gives the proba-

bility that a measurement of a quantum system will yield a given result. While
performing a measurement on some quantum state ρ ∈ Ω(X ), the probabilities of
obtaining each of the outcomes i are given by

pi = tr (ρEi) . (3.6)

3.4.2 Quantum measurement as a quantum channel

Quantum measurement can be defined by two equivalent definitions. The first one
was defined in the previous subsection, as a set of effects associated with the outcome
labels. Here, we will introduce the second definition of quantum measurement.
The concept of quantum measurement will be described as a quantum-to-classical
channel.

Definition 10 A mapping ∆ ∈ C(X ) of the form

∆(X) =

dim(X )−1∑
i=0

⟨i|X|i⟩|i⟩⟨i| = diag† (diag(X)) , (3.7)

for all X ∈ L(X ) is said to be a completely dephasing channel.

Definition 11 Let C ∈ C(X ,Y) be a quantum channel. The channel C ∈ C(X ,Y)
is said to be a quantum-to-classical channels if the following holds

C = ∆ ◦ C. (3.8)

The above theorem reveals the equivalence between quantum-to-classical channels
and measurements.

Theorem 5 Let X ,Y be two complex Euclidean spaces. The following complemen-
tary facts hold:

38



1. For every quantum-to-classical channel C ∈ C(X ,Y), there exists a unique
measurement E = {E0, . . . , Em−1} for which the equation

C(X) =
m−1∑
i=0

tr(XEi)|i⟩⟨i|, (3.9)

holds for all X ∈ L(X ).

2. For every measurement E = {E0, . . . , Em−1}, the mapping C ∈ M(X ,Y)
defined in (3.9) is a quantum-to-classical channel.

Due to this theorem, each measurement can be considered as a measure-and-prepare
channel. The action of the channel E is given by

E(ρ) =
m−1∑
i=0

tr(ρEi)|i⟩⟨i|. (3.10)

Note that in case of a quantum measurement E , its Choi operator E has a block
diagonal form with transposed effects on the diagonal, that means

E =
m−1∑
i=0

|i⟩⟨i| ⊗ E⊤
i . (3.11)

3.4.3 Von Neumann measurements

In this dissertation we will be mostly interested in a special class of quantum
measurements, that is von Neumann measurements.

Definition 12 A quantum measurement E = {E0, . . . , Em−1} is said to be a pro-
jective measurement if Ei ∈ Proj(X ) for all i ∈ {0, . . . ,m− 1}.

If all the effects are rank-one projection operators, then such a measurement is
called a von Neumann measurement. In this case we have m = dim(X )− 1. Every
von Neumann measurement can be parameterized by a unitary operator U ∈ U(X )

in the sense that effects are of the form {|ui⟩⟨ui|}dim(X )−1
i=0 , where |ui⟩ = U |i⟩ is the

i-th column of the unitary operator U ∈ U(X ). Due to this fact we will use the
notation PU . The action of a von Neumann measurement PU is expressed as

PU(ρ) =
dim(X )−1∑

i=0

⟨ui|ρ|ui⟩|i⟩⟨i| (3.12)

for any choice of quantum state ρ ∈ Ω(X ).
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3.5 Fidelity measure

In this section we will define a distance between different quantum operations by
using the notion of the fidelity functions.

Fidelity function for quantum states

Let P,Q ∈ Pos(X ) be positive semidefinite operators. The fidelity function
F+(P,Q) between P and Q is defined as

F+(P,Q) = ∥
√
P
√
Q∥1. (3.13)

According to the definition of the trace norm, an alternative expression for the
fidelity function is given by

F+(P,Q) = tr

(√√
QP
√
Q

)
. (3.14)

Channel fidelity

The channel fidelity [67,68], known also as the entanglement fidelity, poses a direct
analogue to the fidelity measure for quantum states. The formal definition is as
follows. Let M and N be two quantum channels in C(X ,Y) with Choi matrices
M,N ∈ L(Y ⊗X ), respectively. The channel fidelity function F∗(M,N ) is defined
as

F∗(M,N ) =

∥∥∥∥∥
√

M

dim(X )

√
N

dim(X )

∥∥∥∥∥
2

1

. (3.15)

Fidelity measure for quantum measurements

Let X be d-dimensional complex Euclidean space. Let us consider two quan-
tum measurements P and Q with the effects PU = {Pi}d−1

i=0 ⊂ Pos(X ) and
QU = {Qi}d−1

i=0 ⊂ Pos(X ). The fidelity function for quantum measurements [69] is
expressed as

Fd(P ,Q) =
1

d

d−1∑
i=0

tr(PiQi). (3.16)

Note that in the case when P or Q is a von Neumann measurement we obtain the
value of fidelity function Fd belongs to the interval [0, 1] and equals one if and only
if Pi = Qi for all i ∈ {0, . . . , d− 1}.
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3.5.1 Haar measure and the average fidelity function

The probability measure having fundamental importance in quantum information
theory is the Haar measure, defined on the set of unitary operators U(X ). This
measure is closely analogues to the term of the standard Gaussian measure on the
real line. Due to Haar measure, we define the average fidelity function used in the
dissertation.

Haar measure

Definition 13 A set B ⊆ A is said to be a Borel subset of A if one or more of
the following inductively defined properties holds

1. B is an open set relative to A.

2. B is the complement of a Borel subset of A.

3. For {B0,B1, . . .} being a countable collection of Borel subsets of A, it holds
that B =

⋃∞
i=0 Bi.

The collection of all Borel subsets of A is denoted Borel(A).

Definition 14 A Borel measure (or simply a measure) defined on Borel(A) is a
function

µ : Borel(U(X )) → [0, 1] (3.17)

that possesses two properties:

1. µ(∅) = 0.

2. For any countable collection {B0,B1, . . .} ⊆ Borel(A) of pairwise disjoint
Borel subsets of A, it holds that

µ

(
∞⋃
i=0

Bi

)
=

∞∑
i=0

µ (Bi) . (3.18)

A measure µ defined on Borel(A) is said to be probabilistic if it holds that µ(A) = 1.

Definition 15 Let n ∈ N and let {Xi,j}ni,j=0 ∪ {Yi,j}ni,j=0 be a collection of inde-
pendent and identically distributed standard normal random variables. Define an
operator-valued random variable Z, taking values in

Z =
n∑

i,j=0

(Xi,j + iYi,j) |i⟩⟨j|. (3.19)
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The Haar measure µ on U(X ) is the Borel probability measure

µ : Borel(U(X )) → [0, 1] (3.20)

defined as
µ(A) = p(PZ ∈ A for some P > 0), (3.21)

for every A ∈ Borel(U(X )).

One of the most used properties which we will use during the dissertation is
that the Haar measure µ is a unitarily invariant, that is

µ(UA) = µ(A) = µ(AU), (3.22)

for every choice of A ∈ Borel(U(X )) and U(X ). Moreover, let us define a quantum
channel C ∈ C(X⊗n) as

C(X) =

∫
U

U⊗nXU⊗ndµ(U), (3.23)

for all X ∈ L(X⊗n), where µ denotes the Haar measure on U(X ). By the unitary
invariance of Haar measure, we can observe that

[C(X), U⊗n] = 0 (3.24)

for every X ∈ L(X⊗n) and U(X ).

3.6 Quantum circuits

In this section, we will introduce basic quantum gates and the methods of composing
quantum circuits for algorithmic applications. First, we will introduce one qubit
gates, next controlled two qubit gates, and finally we will show how to construct
quantum circuit.

3.6.1 One qubit gates

We define four Pauli matrices are very important and useful in quantum computation.
They are given by

I =

(
1 0
0 1

)
, X =

(
0 1
1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0
0 −1

)
. (3.25)
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It is worth mentioning that an arbitrary qubit gate can be written as a linear
combination of Pauli matrices. We would like to distinguish the rotation gates
RX(θ), RY(θ) and RZ(θ) of the forms respectively,

RX(θ) = cos

(
θ

2

)
I−i sin

(
θ

2

)
X,

RY(θ) = cos

(
θ

2

)
I−i sin

(
θ

2

)
Y,

RZ(θ) = cos

(
θ

2

)
I−i sin

(
θ

2

)
Z .

(3.26)

Another important gate is Hadamard gate, which can also be obtained from Pauli
matrices,

H =
X+Z√

2
=

1√
2

(
1 1
1 −1

)
. (3.27)

In general, we will represent a single qubit gate U as in Figure 3.1.

U

Figure 3.1: A schematic representation of the single qubit gate U .

Two qubit gates

Controlled gates act on 2 or more qubits, where one or more qubits act as a control
for some operation. For example, the controlled NOT gate (or CNOT or CX) acts
on 2 qubits, and performs X operation on the second qubit only when the first
qubit is |1⟩, and otherwise leaves it unchanged. This gate is given by

CX = |0⟩⟨0| ⊗ I+|1⟩⟨1| ⊗ X . (3.28)

In similar way we can define an arbitrary controlled operator CU for any U ∈ U(C2)
given by

CU = |0⟩⟨0| ⊗ I+|1⟩⟨1| ⊗ U . (3.29)

In general, we will represent a controlled unitary gate CU as in Figure 3.2. The
only exception is SX gate which we will represent as in Figure 3.3.
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•
U

Figure 3.2: A schematic representation of the controlled unitary gate CX.

•

Figure 3.3: A schematic representation of the controlled unitary gate CU.

Creating quantum circuit

In the standard approach in quantum computing, at the beginning of computation
each qubit is in the initial state |0⟩. The computation is completed by measuring
each qubit in Z-basis, receiving a classical output label i on each qubit. The
measurement in Z-basis with a classical output label i will be represented as in
Figure 3.4.

i

Figure 3.4: A schematic representation of measurement in Z-basis receiving a
classical output label i.

After introducing the basic facts concerning the quantum gates, now we can
create quantum circuits. For example, the following circuit in Fig. 3.5 can be

|0〉 X H •

|0〉 RY (θ)

Figure 3.5: Example of circuit descibed by Eq. (3.30).

44



expressed as a matrix multiplication

CX (X⊗RY(θ)) (H⊗ I) (|0⟩ ⊗ |0⟩) , (3.30)

for any angle θ.

3.7 Link product and quantum networks

The notion of quantum networks is a generalization of the Choi isomorphism for
the composition of any number of quantum operations. This approach allows us to
efficiently represent a quantum circuit in terms of a single positive operator. For
this purpose, we will introduce the definition of the link product. This section is
inspired the work [61].

3.7.1 Link product

We will use the Choi-Jamiołkowski isomorphism for composition of two or more
maps [70]. Let us consider a mapping R = N ◦ M for linear mappings N :
L(Z) → L(Y) and M : L(X ) → L(Z) with Choi operators N ∈ L(Z ⊗ Y) and
M ∈ L(X ⊗ Z), respectively. Therefore, the Choi operator of R is given by

R = trZ
[(
1lY ⊗MTZ

)
(N ⊗ 1lX )

]
, (3.31)

where MTZ denotes the partial transposition of M on the space Z. Above result
can be expressed by introducing the notation

N ∗M := trZ
[(
1lY ⊗MTZ

)
(N ⊗ 1lX )

]
, (3.32)

called the link product of the operators N and M .
If we consider maps such that their input and output spaces are tensor product of

Hilbert spaces, it is possible to define the composition of maps only through some of
these spaces. Let us consider the following example. Let M ∈ M(X0 ⊗X2,X1 ⊗X3)
and N ∈ M(X3 ⊗X5,X4 ⊗X6) be two linear maps. We define the composition of
N and M as

N ⋆M := (N ⊗ IX1) ◦ (M⊗IX5) . (3.33)

Following in the same way as before we define the link product N ∗M by

N ∗M = trX3

[(
1lX456 ⊗MTX3

)
(1lX012 ⊗N)

]
, (3.34)

where M ∈ L (X0 ⊗X2 ⊗X1 ⊗X3) and N ∈ L (X3 ⊗X5 ⊗X4 ⊗X6) . The general-
ization of the above definition for more then two maps is as follows.
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Definition 16 Let M be an operator in L
(⊗

i∈I Xi

)
and N be an operator in

L
(⊗

j∈J Xj

)
, where I and J are two finite set of indexes. Then, the link product

N ∗M is an operator in L
(⊗

i∈I\J Xi ⊗
⊗

j∈J\I Xj

)
defined as

N ∗M := trXI∩J

[(
1lXJ\I ⊗MTXI∩J

)(
1lXI\J ⊗N

)]
. (3.35)

Remark 1 It is worth noting that if I ∩ J = ∅ we have N ∗M = N ⊗M and if
I = J we have N ∗M = tr

(
M⊤N

)
.

3.7.2 Graphical representation of linear maps and quantum
networks

We will also consider the concept of quantum combs [71]. It is useful to provide a
pictorial representation of linear maps and their composition. We will present this
concept based on the following examples.

Let us consider a map M : L(X ) → L(Y). For such a linear map, we will
use convention presented in Fig. 3.6. We do not draw wires corresponding to one
dimensional Hilbert spaces. We will present a map M : C → L(X ) in Figure
3.7. Whereas a lineal map M : L(X ) → C we will represent in Figure 3.8. The
composition of linear maps N ⋆ M defined in Eq. (3.33), will be presented in
Fig. 3.9.

X M
Y

(3.36)

Figure 3.6: Schematic representation of a map M : L(X ) → L(Y).

M
X

(3.37)

Figure 3.7: A schematic representation of the map M : C → L(X ).

X
M (3.38)

Figure 3.8: A schematic representation of the map M : L(X ) → C.
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X0

M

X1 X5

N

X4

X2 X3 X6
(3.39)

0

M

1 5

N

4

2 3 6
. (3.40)

Figure 3.9: Two equivalent representation of the map N ⋆M defined in Eq. (3.33).

3.7.3 Quantum network and tester

Definition 17 We say that S(N) is a probabilistic quantum network with N com-
ponents if it is a concatenation of N completely positive trace non increasing maps
S(N) = M1 ⋆M2 ⋆ . . . ⋆MN

We will represent a probabilistic quantum network S(N) as in Fig. 3.10.

0

M1

1 2

M2

3

a0 a1 a2 · · ·
2N − 2

MN

2N − 1

aN−1 aN

Figure 3.10: Schematic representation of the probabilistic quantum network S(N).
The mappings Mi : L(X2i−2 ⊗ Xai−1

) → L(X2i−1 ⊗ Xai) are completely positive
trace non increasing linear maps, i ∈ {1, . . . , N}.

Definition 18 We say that R(N) is a deterministic quantum network (or quantum
comb) if it is a concatenation of N quantum channels and R(N) ∈ L

(⊗2N−1
i=0 Xi

)
fulfills the following conditions

R(N) ≥ 0,

trX2k−1

(
R(k)

)
= 1lX2k−2

⊗R(k−1),
(3.41)

where R(0) = 1 and R(k−1) ∈ L
(⊗2k−3

i=0 Xi

)
is the Choi matrix of the reduced

quantum comb with concatenation of k − 1 quantum channels, k = 1, . . . , N .

Remark 2 It can be shown that the Choi operator S(N) satisfies 0 ≤ S(N) ≤ R(N),
where R(N) is Choi matrix of a deterministic quantum network R(N).
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Definition 19 We say that a quantum network is a quantum tester if it is a
collection of probabilistic quantum networks

{
S
(N)
i

}
i
whose sum is a quantum comb,

that is
∑

i S
(N)
i = R(N), and additionally dim(X0) = dim(Xa0) = dim(X2N−1) =

dim(XaN ) = 1.

M1

1 2

M2

3

a1 a2 · · ·
2N − 2

MNaN−1

Figure 3.11: Schematic representation of a quantum tester defined in Definition 19.
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Chapter 4

Storage and retrieval of von
Neumann measurements

For the past researchers have discovered unusual properties of quantum systems,
such that there is a lack of possibility of cloning quantum information [72,73], or
quantum processors cannot be universally programmed [74]. It states that no perfect
universal quantum processor can exist. Hence, their approximate realizations are
of common interest [75–78]. Therefore, a separate validation method was proposed
based on the fidelity estimation.

One efficient fidelity estimation method is the storage and retrieval (SAR) known
as a quantum learning. In the general approach of SAR, we want to approximate a
given, unknown operation, we could perform N times experimentally. This scheme
is called a N → 1 learning scheme. This strategy usually consists of preparing
some initial quantum state, applying the unknown operation N times, which allows
us to store the unknown operation for later use, and finally, a retrieval operation
that gives us an approximation of a given operation. We assume that the scheme is
optimal when it achieves the highest possible fidelity of the approximation [67, 79].
The task of SAR is two-fold. First, we would like to calculate the maximum value
of the fidelity function, and next, we want to find an optimal strategy to realize it.

The seminal work in this field was the paper by Bisio and Chiribella [34]. It
was devoted to learning an unknown unitary transformation. Therein, the authors
focused on storing the unitary operation in a quantum memory while having limited
resources. They proved that unitary operations could be learned optimally in the
parallel scheme, meaning there is no additional processing after using the unknown
unitary transformation. Hence, all the required uses of the black box can be
performed in parallel. They also provide an upper bound on the fidelity of N → 1
learning scheme that is equal 1−Θ

(
1
N2

)
. A probabilistic version of SAR (PSAR)

problem was also considered in [80, 81]. There, they showed the optimal success
probability of N → 1 PSAR of unitary channels on d-dimensional quantum systems
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is equal to N/(N − 1 + d2).
Subsequent works build upon these results but focus on different classes of

operations, for example, the von Neumann measurements [69]. In contrast to
previous works, they showed that, in general, the optimal algorithm for quantum
measurement learning cannot be parallel and found the optimal learning algorithm
for arbitrary von Neumann measurements for the case 1 → 1 and 2 → 1. Never-
theless, a general optimal N → 1 scheme of measurement learning still remains an
open problem, even for low-dimensional quantum systems. Hence, despite some
partial results, the investigation of SAR for von Neumann measurements is still an
open question.

In this chapter, we address the unsolved problem of N → 1 learning of unknown
von Neumann measurement defined in [69]. We investigate the value of the
average fidelity in the asymptotic regime. By using the deterministic port-based
teleportation (PBT) protocol we state a lower bound which behaves as 1−Θ

(
1
N2

)
.

Moreover, we provide an upper bound for the average fidelity function, which
matches the lower bound and hence provides a solution to the problem. Additionally,
we compare different learning schemes for the qubit case. Although, the learning
scheme based on PBT is asymptotically optimal, it can be outperformed for low
values of N . To show this, we introduce a new scheme, which we call pretty good
learning scheme (PGLS). This scheme is a particular case of a parallel learning
scheme which uses only two-qubit entangled memory states. The fidelity function
calculated for the pretty good learning scheme is uniform over all qubit von
Neumann measurements and behaves as 1−Θ

(
1
N

)
.

This chapter is organized as follows. In Section 4.1 we formulate the problem
of von Neumann measurement learning. In Section 3.5 we introduce necessary
mathematical concepts. Our main result is then presented in Section 4.2. To
prove this theorem, we first address the case of lower bound (Section 4.2.1),
and subsequently, upper bound (Section 4.2.2). In Section 4.3 we compare the
performance of different learning schemes for a qubit case. In particular, we
introduce the pretty good learning scheme and present numerical results about the
most efficient parallel and adaptive learning schemes. Finally, Section 4.4 concludes
the article with a summary of the main results. In the Appendix A, we provide
technical details of proofs. This chapter is written based on the paper [1].

4.1 Learning setup

Imagine we are given a black box with the promise that it contains some von
Neumann measurement, PU , parameterized by a unitary matrix U . The exact value
of U is unknown to us. We are allowed to use the black box N times. Our goal
is to prepare some initial memory state σ, some intermediate processing channels
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C1, . . . , CN−1 and a measurement R such that we are able to approximate PU on
an arbitrary state ρ. This approximation will be denoted throughout this work as
QU . We would like to point out that, generally, QU will not be a von Neumann
measurement. The schematic representation of this setup is presented in Fig. 4.1.

The initial memory state σ and the entire sequence of processing channels
{Ci}N−1

i=1 can be viewed as storing the unknown operation and will be denoted as S
whereas the measurement R we will call a retrieval. During the storing stage, we
apply S on N copies of PU . As a result, the initial memory state σ is transferred
to the memory state σPU ,S . After that, we measure an arbitrary quantum state
ρ and the memory state σPU ,S by using R. Equivalently, we can say that during
retrieval stage, we apply the measurement QU on the state ρ. The entire learning
scheme will be denoted by L and considered as a triple L =

(
σ, {Ci}N−1

i=1 ,R
)
.

Considering a von Neumann measurement PU and its approximation QU we
introduce the average fidelity function [61] with respect to Haar measure as

Favg
d (L) =

∫
U

Fd(PU ,QU)dµ(U). (4.1)

Our main goal is to maximize Favg
d over all possible learning schemes L =(

σ, {Ci}N−1
i=1 ,R

)
which we will denote by Fd. More precisely,

Fd := max
L

Favg
d (L). (4.2)

σPU ,S ρ

σ
PU PU · · · PU

C1
· · ·

CN−1

R

Figure 4.1: Schematic representation of the setup for N → 1 learning scheme of
von Neumann measurements.

4.2 Main results

The main result can be summarized as the following theorem. This section
provides just a sketch of the proof of Theorem 6, along with a general intuition
behind our result. The full proofs are postponed to the Appendix A due to their
technical nature.
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Theorem 6 Let Fd be the maximum value of the average fidelity function, defined
in Eq. (4.2) for N → 1 learning scheme of von Neumann measurements. Then, for
arbitrary but fixed dimension d we obtain

Fd = 1−Θ

(
1

N2

)
. (4.3)

First, we will show the lower bound for Fd by constructing a learning scheme
based on deterministic port-based teleportation protocol (DPBT). We will show
that it achieves the scaling Favg

d (L) = 1−Θ
(

1
N2

)
. Next, we will provide a sketch

of the upper bound. To prove it we use a learning scheme of unitary channels.

4.2.1 Lower bound

In the next section, we will see that the problem of SAR is closely related to the
deterministic port-based teleportation (DPBT) [68,82–85]. Before that happens,
we recall the DPBT protocol.

Deterministic port-based teleportation (DPBT)

The DPBT protocol is described below and can be viewed in Fig. 4.2.

1. Consider two individuals – Alice and Bob. Alice and Bob share compound
systems X⊗N

A and X⊗N
B , respectively. Alice system X⊗N

A has the form X⊗N
A =

X (0)
A ⊗ · · · ⊗ X (N−1)

A , where dim
(
X (i)
A

)
= d for each i ∈ {0, . . . N − 1}.

Analogously, we define Bob’s space X⊗N
B .

2. They share an entangled state |ψ⟩⟨ψ|A,B ∈ Ω
(
X⊗N
A ⊗X⊗N

B

)
.

3. Their goal is to construct a scheme to teleport an unknown state ρ ∈ Ω
(
X (in)

)
,

where dim
(
X (in)

)
= d, from Alice to Bob in a way that this state appears

in one of Bob’s systems. To achieve it, Alice performs a measurement
Q = {Qi}N−1

i=0 on the state ρ⊗ |ψ⟩⟨ψ|A.

4. As a result, she receives one of the labels {0, . . . , N − 1}.

5. Next, she communicates the outcome to Bob.

6. By using the outcome label i, Bob chooses i-th system of his state |ψ⟩⟨ψ|B
as the one which contains the state ρ.
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By T (ρ) we will denote the output of the DPBT procedure, depending on the
choice of |ψ⟩⟨ψ|A,B and Q, given by

T (ρ) =
N−1∑
i=0

trX (in)X⊗N
A X⊗N−1

B̄i

((
Qi ⊗ I⊗N

XB

)
(ρ⊗ |ψ⟩⟨ψ|A,B)

)
, (4.4)

where Qi(σ) =
√
Qiσ

√
Qi for every i ∈ {0, . . . , N − 1} and X⊗N−1

B̄i
:= X (0)

B ⊗ · · · ⊗
X (i−1)
B ⊗X (i+1)

B ⊗ · · · ⊗ X (N−1)
B .

It is known [68], that for best teleportation procedure T0 approximates the
identity map ICd of dimension d, the entanglement fidelity is equal to

F ∗(T0, ICd) = 1−Θ

(
1

N2

)
. (4.5)

ρ

|ψ〉A,B

iQ

0
1l

1
T (ρ)

Figure 4.2: Schematic representation of DPBT for N = 2. In this case, the outcome
label i = 1 of the measurement Q determines the partial trace of the system X (0)

B

of the remaining quantum state.

Learning scheme N → 1 of von Neumann measurements based on DPBT
protocol

Here, we use the DPBT protocol to construct N → 1 learning scheme of von
Neumann measurements PU .

Assume |ψ0⟩⟨ψ0|A,B and Q0 are the realization of optimal DPBT strategy T0.
We take σ = |ψ0⟩⟨ψ0|A,B as an initial memory state and next, we implement N
copies of von Neumann measurement PU on each system X (i)

B for i ∈ {0, . . . , N−1}.
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Therefore, the result of the storage is a memory state σPU ,S =
(
I⊗N
XA

⊗ P⊗N
U

)
(σ),

which consists of the remaining quantum state |ψ0⟩A, and a tuple of measurement’
results (j1, . . . , jN) ∈ {0, . . . , d − 1}N . The retrieval part R is a composition of
a measurement Q0 and classical postprocessing. In detail, first we apply Q0 on
ρ⊗ |ψ0⟩A to obtain the label i ∈ {0, . . . , N − 1}. Second, we return the result ji
as the output of R. The schematic representation of this setup is presented in
Fig. 4.3.

ρ

|ψ0〉A,B

iQ0

0
PU j1 1l

1
PU j2 ji

σPU ,S

Figure 4.3: Schematic representation of the learning scheme for N = 2 based on
DPBT. In this case, the label i = 1 of the measurement Q0 indicates that the
output of the learning procedure equals ji = j2.

Lemma 1 Let us fix d ∈ N and let L be N → 1 learning scheme of von Neumann
measurements based on the DPBT protocol introduced in Section 4.2.1. It holds
that

Favg
d (L) = 1−Θ

(
1

N2

)
. (4.6)

Proof. Let |ψ0⟩⟨ψ0| and Q0 = {Qi}N−1
i=0 be a realization of the optimal teleportation

protocol T0, which satisfies [68]

F∗(T0, IX ) = 1−Θ

(
1

N2

)
. (4.7)

Let us introduce the mappings Q0,i(σ) =
√
Qiσ

√
Qi for every i ∈ {0, . . . , N − 1}.
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Then, the approximation QU acting on an arbitrary state ρ can be expressed as

QU(ρ) =
N−1∑
i=0

trX (in)X⊗N
A X⊗N−1

B̄i

((
Q0,i ⊗ P⊗N

U

)
(ρ⊗ |ψ0⟩⟨ψ0|)

)
= PU

(
N−1∑
i=0

trX (in)X⊗N
A X⊗N−1

B̄i

((
Q0,i ⊗ IX⊗N

B

)
(ρ⊗ |ψ0⟩⟨ψ0|)

))
= PU(T0(ρ)),

(4.8)

where X⊗N−1
B̄i

:= X (0)
B ⊗ · · · ⊗ X (i−1)

B ⊗X (i+1)
B ⊗ · · · ⊗ X (N−1)

B .

Let J(∆) =
∑d−1

i=0 |i⟩⟨i| ⊗ |i⟩⟨i| be the Choi matrix of the completely dephasing
channel ∆. By using the definition of Fd(PU ,QU) given by

Fd(PU ,QU) =
1

d
tr(PUQU), (4.9)

we obtain

Favg
d (L) = 1

d

∫
U

dµ(U)tr(PUQU) =
1

d

∫
U

dµ(U)tr
(
(U ⊗ U)J(∆)(U ⊗ U)†T0

)
=

1

d
tr

(
1

d+ 1
(1lCd2 + |1lCd⟩⟩⟨⟨1lCd |)T0

)
=

1

d+ 1
+

d

d+ 1
F∗(T0, ICd)

= 1−Θ

(
1

N2

)
,

(4.10)

which completes the proof.

Corollary 3 Due to the fact Favg
d (L) ≤ Fd, we immediately achieve the lower

bound of Fd.

4.2.2 Upper bound

To show the upper bound for Fd, we will construct a different learning scheme L̃
based on the learning of unitary channels. First, we will calculate the maximum
value of the average fidelity function F̃d for L̃. We will show the inequality
F̃d ≤ 1−Θ

(
1
N2

)
. Next we will prove the inequality Fd ≤ F̃d, which will complete

the proof.

Lemma 2 For any dimension d, the maximum value of the average fidelity function
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Fd defined in Eq. (4.2) is upper bounded by

Fd ≤ 1−Θ

(
1

N2

)
. (4.11)

To prove this lemma, first we will show that for d = 2 this inequality holds.
Next, we will present the sketch of key steps for any dimension d. The complete
proof of this lemma for the qubit case we can see in Appendix A.1, whereas for
any dimension d in Appendix A.2.
Proof. For the qubit case, let us consider a new learning scheme L̃ presented
in Fig. 4.4. In this scheme, we are given N copies of a qubit unitary channel
ΦŪ , which we can use in parallel. We still want to approximate the measurement
PU , but by using the unitary channel ΦŪ instead. For this purpose, we will
choose the appropriate initial memory state |ψ⟩ and a binary retrieval measurement
R = {R0, R1}.

ρ

R
|ψ〉

Φ
U

⊗N

Figure 4.4: Schematic representation of the setup N → 1 qubit unitary channel
ΦŪ learning scheme in parallel way. The objective of this scheme is to approximate
the von Neumann measurement PU .

Again, the goal is to maximize the value of the average fidelity function for L̃,
which is denoted as F̃2. In Appendix A.1.1 we derived the value of F̃2 given by

F̃2 =

max
R,|ψ⟩⟨ψ|

∫
U

dµ(U)
1∑
i=0

tr
[
Ri

(
PU,i ⊗

(
Φ
U

⊗N ⊗ IC2N

)
(|ψ⟩⟨ψ|)

)]
2

.
(4.12)

Calculating the value of F̃2 is the crux of the proof, because next we showed that
F2 ≤ F̃2 (see Lemma 6 in Appendix A.1), which completes the upper bound for
d = 2.

The proof of the upper bound for arbitrary d relies on the qubit case. Let us
take the optimal learning scheme L such that it achieves Favg

d (L) = Fd. We use
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L to construct a new learning scheme L′ of qubit von Neumann measurements
that is we need to construct three parts of learning scheme L′ – measurement P ′

U ,
the initial state σ′ and retrieval part R′. The details about construction of L′ are
described if Appendix A.2. Next, we calculate that for the learning scheme L′ of
qubit von Neumann measurements, the following holds

dFd − (d− 1) ≤ Favg
2 (L′) ≤ F2 ≤ 1−Θ

(
1

N2

)
. (4.13)

It directly implies that Fd ≤ 1−Θ
(

1
N2

)
, which completes the proof of upper bound

for any dimension d.
We immediately obtain the following corollary.

Corollary 4 There is no perfect learning scheme of von Neumann measurements,
that means Fd < 1 for any N ∈ N.

4.3 Qubit cases (d = 2)
In this subsection we investigate more deeply the behavior of Favg

2 for different
examples of learning schemes L. Although, the learning scheme based on determin-
istic port-based teleportation is asymptotically optimal, it can be outperformed for
low values of N . To show this, we introduce a scheme, which we call pretty good
learning scheme (PGLS).

4.3.1 Pretty good learning scheme

The first scheme which we will analyze is the pretty good learning scheme. Despite
its lack of optimality, it provides a relatively high value for the average fidelity
function asymptotically behaving as Favg

2 (LPGLS) = 1 − Θ
(

1
N

)
. However, this

scheme employs a simple storage strategy, which uses only two-qubit entangled
memory states and the learning process is done in parallel. Moreover, the achieved
value of the fidelity function is uniform over all qubit von Neumann measurements.

Let us consider a parallel learning scheme with N copies of the von Neumann
measurement PU . The pretty good learning scheme is presented in Fig. 4.5 and
below we describe steps of the procedure:

1. Let |ω⟩ be the maximally entangled state given by |ω⟩ := 1√
2
|1lC2⟩⟩ . We

prepare the initial memory σ state as a tensor product of N states |ω⟩, that
is σ := |ω⟩⊗N .

2. We partially measure each state |ω⟩ using PU , obtaining the state (PU ⊗
IC2)(|ω⟩⟨ω|).
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ρ

R

|ω〉
PU 0

|ω〉
PU 1

// 1

|ω〉
PU 0

Figure 4.5: Schematic representation of the pretty good learning scheme for N = 3.
In the learning process we obtained three labels: 0, 1, 0. As labels “0” are in
majority, we reject the label “1” and the associated quantum part.

3. For each measurement PU , we obtain one of two possible measurement
results: “0” or “1”. In consequence, we get N0 outcomes “0” and N1 outcomes
“1”, N0 + N1 = N . The state of the remaining quantum part is equal to
PU,0

⊗N0 ⊗ PU,1
⊗N1 (up to permutation of subsystems). Without loss of a

generality, we may assume that N0 ≥ N1.

4. By majority vote we reject minority report, i.e. we reject all outcomes “1”
and quantum states associated with them. As a result the memory state is
given by σPU ,S = PU,0

⊗N0 .

5. We prepare an arbitrary state ρ ∈ Ω(C2).

6. We perform a binary retrieval measurement R =
{
R, 1lC2n+1 −R

}
on ρ⊗σPU ,S .

To construct the effect R, let us fix N0 and let n = N0 − 1. We introduce the
family of Dicke states [86]. The Dicke state |Dn

k ⟩ is the n-qubit state, which is
equal to the superposition state of all

(
n
k

)
basis states of weight k. For example,

|D3
1⟩ = 1√

3
(|100⟩+ |010⟩+ |001⟩). Let us also define

sn(k,m) :=
k∑
i=0

n−k∑
j=0

δi+j−m

(
k

i

)(
n− k

j

)
(−1)n−k−j, (4.14)
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being the convolution of binomial coefficients. Consider the effect R of the form

R =
n∑
k=0

|Rk⟩⟨Rk|, (4.15)

where |Rk⟩ := |Mk⟩⟩
||Mk||2

and matrices Mk ∈ L
(
C2,C2n+1

)
are given by

Mk =
n+1∑
m=0

sn(k, n−m)|0⟩+ sn(k, n+ 1−m)|1⟩√(
n+1
m

) ⟨Dn+1
m |, (4.16)

for k = 0, . . . , n. The proof that R is a valid effect is relegated to Lemma 14 in
Appendix A.3.

In PGLS scheme the approximation QU = {QU,0, 1lC2 −QU,0} is determined by
relation tr (ρQU,0) = tr

((
ρ⊗ PU,0

⊗N0
)
R
)
. Based on Lemma 15 in Appendix A.3,

the effect QU,0 has the form

QU,0 =
N0

N0 + 1
PU,0. (4.17)

Provided we observed N0 outcomes “0”, we have that F2(PU ,QU) = 2N0+1
2N0+2

,
where N0 satisfies N0 ≥ ⌈N

2
⌉. Note, that the value of F2(PU ,QU ) does not depend

on the choice of U . The average fidelity function Favg
2 (LPGLS) defined for the pretty

good learning scheme of qubit von Neumann measurements satisfies

Favg
2 (LPGLS) =

1
2N

N∑
l=k

2
(
N
l

)
2l+1
2l+2

, N = 2k − 1,

1
2N

((
N
k

)
2k+1
2k+2

+
N∑

l=k+1

2
(
N
l

)
2l+1
2l+2

)
, N = 2k.

(4.18)

In the asymptotic regime, we may simplify the calculations to obtain

Favg
2 (LPGLS) ≥

2⌈N
2
⌉+ 1

2⌈N
2
⌉+ 2

= 1−Θ

(
1

N

)
. (4.19)

Corollary 5 In the pretty good learning scheme LPGLS =
(
σ, {Ci}N−1

i=1 ,R
)

the
initial state σ is defined as a product of N copies of maximally entangled state |ω⟩,
processing channels {Ci}N−1

i=1 are responsible for majority voting and the retrieving
measurement R with effect defined in Eq.(4.15).
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Finally, averaging the construction of QU over all possible combinations of mea-
surements’ results {0, 1}N leads to the following approximation of PU .

Corollary 6 The approximation QU is a convex combination of the original mea-
surement PU and the maximally depolarizing channel Φ∗. More precisely,

QU = p0PU + (1− p0)Φ∗, (4.20)

where p0 = 2 · Favg
2 (LPGLS)− 1.

4.3.2 Learning scheme based on port-based teleportation

Deterministic port-based teleportation

We have shown in Section 4.2.1 that N → 1 learning scheme of von Neumann
measurements based on DPBT protocol achieves the average fidelity Favg

d (LDPBT) =
1−Θ

(
1
N2

)
. Additionally, from the proof of lower bound in Lemma 1, we calculated

that
Favg

2 (LDPBT) =
1

3
+

2

3
F∗, (4.21)

where F∗ is the entanglement fidelity of DPBT protocol. For qubit case, it is
known [83] that F∗ = cos2

(
π

N+2

)
. Hence, we obtain

Favg
2 (LDPBT) =

1

3
+

2

3
cos2

(
π

N + 2

)
. (4.22)

Probabilistic port-based teleportation

We can also construct a learning scheme N → 1 of von Neumann measurements PU
using probabilistic version of port-based teleportation (PPBT) [68]. This protocol
works similarly to DPBT presented in Fig. 4.3. The difference lies in the final
measurement Q0, which returns a label i ∈ {0, . . . , N − 1}, where the label i = 0
indicates the protocol’s failure. Otherwise, if the label i > 0, it indicates the
success of the teleportation procedure. It means that the quantum state ρ, which
we wanted to teleport, is in i-th system.

The result from [84] says that the corresponding optimal probability of success
teleportation equals p0 = N

N+3
. It implies that the approximation QU of PU achieved

by using the learning scheme LPPBT is given by

QU = p0PU + (1− p0)Φ∗, (4.23)
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and thus the average fidelity function equals

Favg
2 (LPPBT) =

2N + 3

2N + 6
. (4.24)

4.3.3 Numerical investigation

In is generally difficult to find an optimal procedure for quantum operations learning.
It is worth mentioning that the fidelity function for parallel learning scheme of
von Neumann measurements matches adaptive ones for N = 1, 2 but for N ≥ 3
adaptive strategy achieves slight advantage [69].

In the numerical analysis, we compare the average fidelity for the optimal
parallel learning strategy LParallel with the optimal adaptive strategy LAdaptive

and other presented learning schemes. It is worth noting that LAdaptive is also
the best possible learning scheme available by using quantum networks, that is
Favg

2 (LAdaptive) = F2.

N 1 2 3 4 5
Favg

2 (LAdaptive) 0.74999 0.81141 0.86845 0.89684 0.91915
Favg

2 (LParallel) 0.74999 0.81141 0.86764 0.89564 0.91880
Favg

2 (LDPBT) 0.5000 0.66667 0.76967 0.83333 0.87449
Favg

2 (LPGLS) 0.7500 0.79167 0.84375 0.86250 0.88541
Favg

2 (LPPBT) 0.6250 0.7000 0.7500 0.78571 0.81250

To optimize this problem we used the Julia programming language along with
quantum package QuantumInformation.jl [87] and SDP optimization via SCS
solver [88,89] with a precision ϵabs = 10−5 and ϵrel = 10−5. The code is available on
GitHub [90]. We also compare the results obtained in this section in the Fig. 4.6.

4.4 Conclusion and discussion

In this chapter, we studied the problem of learning of unknown von Neumann
measurement of dimension d from a finite number of copies N . The main goal
was to find the asymptotic behavior of the maximum value for the average fidelity
function Fd. This value was maximized over all possible learning schemes, and the
average was taken over all von Neumann measurements. By using the deterministic
port-based teleportation (DPBT) protocol, we were able to state the lower bound
1−Θ

(
1
N2

)
, which matched the obtained upper bound and hence, solved the given

problem.
In the qubit case, we also introduced a new scheme called the pretty good

learning scheme. This scheme was a particular case of a parallel learning protocol,
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Figure 4.6: The average fidelity function Favg
2 calculated for N → 1 learning scheme:

optimal adaptive strategy, LAdaptive (numerical value, blue squares); optimal parallel
scheme, LParallel (numerical value, red crosses); learning scheme based on DPBT,
LDPBT (green pentagons); pretty good learning scheme, LPGLS (orange diamonds);
learning scheme based on PPBT, LPPBT (gray circles).

and it used only two-qubit entangled memory states. The average fidelity function
calculated for the pretty good learning scheme behaved as 1−Θ

(
1
N

)
. Moreover, we

compared the performance of different learning schemes: adaptive, parallel, based
on DPBT, based on PPBT and the pretty good learning scheme for the qubit case.
Although, the learning scheme based on PBT were asymptotically optimal, we
showed that the pretty good learning scheme outperforms it for low values of N .

This work paves the way toward a complete description of the capabilities of
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von Neumann measurement learning schemes. One potential way forward is the
probabilistic storage and retrieval approach, widely studied for unitary operations
and phase rotations in [80,81]. According to our numerical results, the probability
of retrieval of a quantum measurement in a parallel scheme is exactly N/(N + 3),
which corresponds to the value obtained in [80] for unitary channels, while adaptive
strategies for quantum measurements learning to provide slightly higher probability,
starting from N ≥ 3.

Another approach to improve the capability of von Neumann measurement
learning maybe to use an emerging field of study in quantum information, that
is, the indefinite causal structure theory [91]. Traditionally, the quantum theory
assumes the existence of a fixed background causal structure. But what if we
assume that such a background does not exist? In the next chapter, we will look
closely at the concept of undefined causal structure and its potentially used in the
problem of von Neumann measurement learning.
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Chapter 5

Indefinite causal structure theory in
SAR of von Neumann measurements

The topic of causality has remained a staple in quantum physics and quantum
information theory for recent years. The idea of a causal influence in quantum
physics is best illustrated by considering two characters, Alice and Bob, preparing
experiments in two separate laboratories. Each of them receives a physical system
and performs an operation on it. After that, they send their respective system out
of the laboratory. In a causally ordered framework, there are three possibilities: Bob
cannot signal to Alice, which means the choice of Bob’s action cannot influence the
statistics Alice records (denoted by A ≺ B), Alice cannot signal to Bob (B ≺ A),
or neither party can influence the other (A||B).

One may wonder if Alice’s and Bob’s action can influence each other. It
might seem impossible, except in a world with closed time-like curves (CTCs) [92].
However, the existence of CTCs implies some logical paradoxes, such as the
grandfather paradox. Possible solutions have been proposed in which quantum
mechanics and CTCs can exist and such paradoxes are avoided, but modifying
quantum theory into a nonlinear one [93]. A natural question arises: is it possible
to keep the framework of linear quantum theory and still go beyond definite causal
structures?

One such framework was proposed by Oreshkov, Costa and Brukner [94]. They
introduced a new a notion of a process matrix – a generalization of the notion of
quantum state. This new approach has provided a consistent representation of
correlations in casually and non-causally related experiments. Most interestingly,
they have described a situation that two actions are neither causally ordered and
one cannot say which action influences the second one. Thanks to that, the term
of causally non-separable (CNS) structures started to correspond to superpositions
of situations in which, roughly speaking, Alice can signal to Bob, and Bob can
signal to Alice, jointly. While a causally neutral formulation of quantum theory is
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described in terms of the quantum combs [69], the overview of indefinite causal
connection theory we can see in [91].

The indefinite causal structures could make a new aspect of quantum informa-
tion processing. This more general model of computation can outperform causal
quantum computers in specific tasks, such as learning or discriminating between
two quantum channels [95–97]. As the readers see later, it can be shown the
advantage of using causal structure in the problem of the storage and retrieval of
von Neumann measurements.

In this chapter we introduce a new concept of von Neumann measurement
learning by using indefinite causal structure theory. To do so, we will introduce a
notion of N -partite process matrices. We will call this scheme a causal learning
scheme. As in the previous chapter, the main goal is to find the asymptotic behavior
of the maximum value for the average fidelity function Fd. First, we consider a
causal learning scheme for two copies of von Neumann measurements. For this
case, we proved that using an indefinite causal structure does not improve the
average fidelity function Fd for any dimension d. Next, however, we show numerical
advantages of using causal structure theory in the N → 1 learning scheme of qubit
von Neumann measurements for N ≥ 3.

This chapter is organized as follows. In Section 5.1 we introduce the concept
of N -partite process matrices. In Section 5.2, we present the advantage of the
storage and retrieval of von Neumann measurement by using process matrices and,
in general, the indefinite causal structure theory. To show this conjuncture, we first
address the case 2 → 1 causal learning scheme (Section 5.2.2), and subsequently,
N → 1 causal learning scheme (Section 5.2.3). Finally, Section 5.3 concludes the
chapter with a summary of the main results. This chapter is my contribution to
the dissertation.

5.1 Process matrices – definition

This section introduces the formal definition of a process matrix with its character-
ization and intuition.

5.1.1 Bipartite process matrices

Let us define the operator XY as

XY =
1lX

dim(X )
⊗ trXY (5.1)
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for every Y ∈ L(X ⊗ Z), where Z is an arbitrary complex Euclidean space. We
will also need the following projection operator

LV (W ) = AOW +BOW −AOBOW −BIBOW +AOBIBOW −AIAOW +AOAIBOW. (5.2)

where W ∈ Herm(AI ⊗AO ⊗ BI ⊗ BO).

Definition 20 We say that W ∈ Herm(AI ⊗AO ⊗ BI ⊗ BO) is a process matrix
if it fulfills the following conditions

W ≥ 0, W = LV (W ), tr(W ) = dim(AO) · dim(BO), (5.3)

where the projection operator LV is defined by Eq. (5.2).

The set of all process matrices will be denoted by WPROC. In the upcoming con-
siderations, it will be more convenient to work with the equivalent characterization
of process matrices which can be found in [98].

Definition 21 We say that W ∈ WPROC is a process matrix if it fulfills the
following conditions

W ≥ 0,

AIAOW =AOAIBOW,

BIBOW =AOBIBOW,

W + AOBOW = BOW + AOW,

tr(W ) =dim(AO) · dim(BO).

(5.4)

The concept of a bipartite process matrix can be best illustrated by considering
two characters, Alice and Bob, performing experiments in two separate laboratories.
Each party acts in a local laboratory, which can be identified by an input space AI

and an output space AO for Alice, and analogously BI and BO for Bob. In general,
a label i, denoting Alice’s measurement outcome, is associated with the CP map
ΦMA

i
obtained from the instrument

{
ΦMA

i

}
i
. Analogously, the Bob’s measurement

outcome j is associated with the map ΦMB
j

from the instrument
{
ΦMB

j

}
j
. Finally,

the joint probability for a pair of outcomes i and j can be expressed as

pij = tr
[
W
(
MA

i ⊗MB
j

)]
, (5.5)

where W ∈ WPROC is a process matrix that describes the causal structure outside
of the laboratories. The valid process matrix is defined by the requirement that
probabilities are well defined, that is, they must be non-negative and sum up
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to one. These requirements give us the conditions present in Definition 20 and
Definition 21.

In the general case, Alice’s and Bob’s strategies can be more complex than the
strategy described by tensor product MA

i ⊗MB
j (which defines the probability pij

given by Eq. (5.5)). If their action is somehow correlated, the strategy is written
by an associated instrument of the form

{
NAB
ij

}
ij
. It was observed in [98] that the

instrument
{
NAB
ij

}
ij

satisfies the following equation

tr

(
W
∑
ij

NAB
ij

)
= 1 (5.6)

for all process matrix W ∈ WPROC if and only if∑
ij

NAB
ij ∈ NS(AI ⊗AO ⊗ BI ⊗ BO). (5.7)

5.1.2 N-partite process matrices

The generalization to the N -partite case is rather straightforward. Let us define
a Hermitian operator W ∈ Herm

(
A1
I ⊗A1

O ⊗ . . .⊗AN
I ⊗AN

O

)
and the projection

operator
LV (W ) = [1−

∏
i(1−AiO+AiIA

i
O)+

∏
iAiIA

i
O]
W. (5.8)

Definition 22 We say that W ∈ Herm(A1
I ⊗A1

O ⊗ . . .⊗AN
I ⊗AN

O ) is N-partite
process matrix if it fulfills the following conditions

W ≥ 0, W = LV (W ), tr(W ) = dim(A1
O) · . . . · dim(AN

O ), (5.9)

where the projection operator LV is defined by Eq. (5.8).

A schematic representation of N–partite process matrix is described in Fig. 5.1.

5.2 Advantage of SAR of von Neumann measure-
ments by using indefinite causal structure the-
ory

In Chapter 4, we considered the storage and retrieval of a von Neumann mea-
surement with fixed causal structure realized by quantum combs L [70, 71]. In
this section, we introduce a completely new approach of SAR using the theory
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A1
I A1

O

Ai
I Ai

O

AN
I AN

O

W

Figure 5.1: Schematic representation of N–partite process matrix W ∈ Herm(A1
I ⊗

A1
O ⊗ . . .⊗AN

I ⊗AN
O ).

of causal connection. For this purpose we will consider a learning scheme such
that its storage part is described by a process matrix. Although the usage of
an indefinite causal structure does not improve the fidelity function in problem
N → 1 unitary channels learning scheme [61] or 2 → 1 von Neumann measurements
learning scheme (see subsection 5.2.2), in subsection 5.2.3 we will show that the
usage of indefinite causal structure theory can improve the capacity of N → 1
learning scheme of von Neumann measurements for N ≥ 3.

5.2.1 General approach of causal learning scheme

Here, we characterize a quantum network describing N → 1 causal learning scheme.
Let us consider a quantum network L with Choi matrix L. As previous, we consider
that L is a composition of storing and retrieving operations, that is L = R∗S. Now,
however, we assume that the storage S has an indefinite causal order. More precisely,
the storage S is given by N−partite process matrix W , such that W = traS. A
schematic representation of the setup we can see in Fig. 5.2.
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A1
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Figure 5.2: Schematic representation of a causal learning scheme N → 1 of von
Neumann measurements.

5.2.2 2 → 1 causal learning scheme of von Neumann mea-
surements

Let us consider 2 → 1 causal learning scheme L in which we learn a von Neumann
measurement PU by using two copies of it. A schematic representation of this setup
is presented on Fig. 5.3. Here, the Choi operator L ∈ L(AI ⊗ AO ⊗ BI ⊗ BO ⊗
Xin ⊗Xout) satisfies the condition

trXoutL = 1lXin ⊗ trXaW, (5.10)
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where W is a bipartite process matrix defined in Eq. (21).
The following proposition says that no matter which approach we use, the

maximum value of the average fidelity for 2 → 1 learning scheme of von Neumann
measurements is the same.

AI AO

BI BO

S
a

R out

in

Figure 5.3: Causal learning scheme 2 → 1 of von Neumann measurements.

Theorem 7 The usage of indefinite causal structure does not improve the fidelity
function in 2 → 1 learning scheme of von Neumann measurements.

Proof. Due to the fact that the quantum network L has classical labels on spaces
AO,BO and Xout then its Choi matrix L ∈ Herm(AI ⊗AO ⊗BI ⊗BO ⊗Xin⊗Xout)
has the following form

L =
∑
i

|i⟩⟨i|Xout ⊗ Li, (5.11)

where
Li =

∑
j,k

|j⟩⟨j|BO ⊗ |k⟩⟨k|AO ⊗ Lijk. (5.12)

Simultaneously, we know that∑
i

Li =
∑
i,j,k

|j⟩⟨j|BO ⊗ |k⟩⟨k|AO ⊗ Lijk = 1lXin ⊗W. (5.13)
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Without loss of generality we can assume that Lijk satisfies the commutative
relation (see Lemma 9.3 in [61])[

Lijk, UA ⊗ UB ⊗ U †] = 0, (5.14)

where UA ∈ L(AI ⊗AO), UB ∈ L(BI ⊗ BO) and U † ∈ L (Xin ⊗Xout). So, we have

∀j, k
∑
i

Lijk = 1lXin ⊗ ⟨j|BO⟨k|AOW |j⟩BO |k⟩AO . (5.15)

From relabeling symmetry property (see Lemma 9.4 in [61]) given by Lijk =
Lσ(i)σ(j)σ(k) we have∑

i

Lijk =
∑
i

Lσ(i)σ(j)σ(k) = 1lXin ⊗ ⟨σ(j)|⟨σ(k)|W |σ(j)⟩|σ(k)⟩, (5.16)

for any permutation σ. Therefore, we have

W =
∑
j,k

|j⟩⟨j|BO ⊗ |k⟩⟨k|AO ⊗ 1

d

∑
i

trXinLijk =
∑
j,k

|j⟩⟨j|BO ⊗ |k⟩⟨k|AO ⊗Wjk.

(5.17)
Hence,

∀j, k, σ Wjk = Wσ(j)σ(k). (5.18)

It implies that W11 = . . . = Wdd and W12 = Wab for all a ̸= b. These properties
together with Eq. (5.17) imply that

W = 1lBO ⊗ 1lAO ⊗ P + J(∆)⊗ (Q− P ) , (5.19)

where P = W12 and Q = W11. From the definition of then process matrix (more
precisely from the condition W + AOBOW = AOW + BOW ) we obtain that P = Q,
which completes the proof.

5.2.3 N → 1 causal learning scheme of qubit von Neumann
measurements for N ≥ 3

Conjecture 1 The usage of indefinite causal structure improves the maximum
value of the average fidelity function F2 defined in Eq. (4.2) in N → 1 learning
scheme of qubit von Neumann measurements.

To confirm Conjecture 1, we have computed the maximum value of the aver-
age fidelity F2 by using the semidefinite programming (SDP). To optimize this
problem we used the Julia programming language along with quantum package
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QuantumInformation.jl [87] and SDP optimization via SCS solver [88,89] with a
precision ϵabs = 10−5 andϵrel = 10−5. The code is available on GitHub [99].

Numerical investigation

We have researched numerical advantage of SAR for qubit von Neumann mea-
surements (d = 2) by using indefinite causal structure approach. We wrote SDP
program for N → 1 qubit von Neumann measurements learning schemes. For
the first case, the numerical results confirm Proposition 7 and the average fidelity
function Fc for indefinite causal structure approach is the same as for parallel and
adaptive cases. However, for N ≥ 3 the causal learning scheme achieves slight
advantage over the standard approach of SAR presented in Chapter 4. Below we
summarize the results obtained in this section.

N 1 2 3 4 5
Favg

2 (LCausal) 0.75000 0.81142 0.86980 0.89816 0.92041
Favg

2 (LAdaptive) 0.74999 0.81141 0.86845 0.89684 0.91915
Favg

2 (LParallel) 0.74999 0.81141 0.86764 0.89564 0.91880
Favg

2 (LDPBT) 0.5000 0.66667 0.76967 0.83333 0.87449
Favg

2 (LPGLS) 0.7500 0.79167 0.84375 0.86250 0.88541
Favg

2 (LPPBT) 0.6250 0.7000 0.7500 0.78571 0.81250

We also present the advantage of causal learning scheme in Figure 5.4.

5.3 Conclusion and discussion
In this chapter, we studied the problem of learning an unknown von Neumann
measurement from a finite number of copies N using indefinite causal connection
theory. As in the previous chapter, the main goal was to find the asymptotic
behavior of the maximum value for the average fidelity function Fd. First, we
considered a causal learning scheme for two copies of d-dimensional von Neumann
measurements. For this case, we proved that using an indefinite causal structure
does not improve the average fidelity function Fd. Next, however, we show the
numerical advantage of using causal structure theory for N → 1 learning scheme
of qubit von Neumann measurements. For this purpose we wrote a semidefinite
program calculating the average fidelity function F2. This result paves the way
toward a complete description of the capabilities of causal connection, not only in
the problem of quantum operations learning but in others validation methods of
quantum devices.
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N
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Figure 5.4: The average fidelity function Favg
2 calculated for N → 1 learning scheme,

where N = 3, 4, 5 – optimal causal strategy, LCausal (numerical value, orange circles);
optimal adaptive strategy, LAdaptive (numerical value, purple squares); optimal
parallel scheme, LParallel (numerical value, green triangles).
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Chapter 6

Discrimination of von Neumann
measurements

No possibility to perfect learning of von Neumann measurements has caused the
rapid development of validation techniques for quantum devices. One of them is
the discrimination of quantum operations. The task of discrimination can be best
illustrated as follows. Suppose that Alice has access to a device performing one of
two quantum operations. While such operations are known to Bob, he needs to
find out which was performed by Alice. He would like to guess, with the highest
possible probability, which of the operations was used by Alice. For this purpose,
they need to construct an optimal strategy to maximize the probability of correct
discrimination. What is the highest probability of making a correct guess? And
what do you have to do to achieve it? We will answer these questions in this
chapter.

The problem of discrimination of quantum states and channels was solved
analytically by Helstrom a few decades ago in [35, 37]. For the case of a single-
shot discrimination scenario, researchers have used different approaches, with the
possibility of using entanglement. Although the use of entanglement improves
the probability of correct discrimination, in [100]. Authors have shown that in
the task of discrimination of unitary channels, the entanglement is not necessary.
The following papers [2, 101–103] paved the way for studying the discrimination of
quantum measurements.

Considering multiple-shot discrimination scenarios, researchers have utilized
parallel or adaptive approaches. In the first case, they establish that the discrim-
ination between operations does not require pre-processing and post-processing.
One example of such an approach is distinguishing unitary channels [100], or von
Neumann measurements [104]. The case when a quantum operation can be used
multiple times in an adaptive way was investigated by the authors of [40, 105].
They proved that the use of adaptive strategy and a general notion of quantum
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combs can improve discrimination. Examples of quantum channels which cannot
be discriminated perfectly in the parallel scheme, but nonetheless can be possible
using the adaptive approach, were discussed in [40,106].

In the dissertation, we will mainly be interested in the discrimination task of
quantum measurements. We restrict ourselves to discriminating von Neumann
measurements. This is because, unlike other measurement types, they can be
implemented on actual hardware. We will use the obtained results to create a
benchmarking scheme presented in the further part of the dissertation.

This chapter is divided into two parts. First part, described in Section 6.1,
presents a general overview about discrimination of quantum measurements. This
section is written based on [2]. The second one, presented in Section 6.2, is dedicated
to the discrimination task of single-qubit parameterized Fourier measurements,
which is my contribution to the dissertation.

6.1 Optimal discrimination scheme
Without loss of generality1, we consider discrimination task between measurements
P1l, performed in the computational Z-basis, and a measurement PU performed in
the basis U ∈ U(X ). In general, the discrimination scheme presented in Fig. 6.1,
requires an auxiliary system. First, the joint system is prepared in some state |ψ0⟩.
Then, one of the measurements, either PU or P1l, is performed on the first part
of the system. Based on its outcome i, we choose another binary POVM Qi and
perform it on the second system, obtaining the output in j. Finally, if j = 0, we
say that the performed measurement is PU , otherwise we say that it was P1l.

Unsurprisingly, both the |ψ0⟩ and the final measurements Qi have to be chosen
specifically for given U to maximize the probability of a correct guess. The detailed
description how these choices are made in [37], and below we will recall the most
important facts and theorems.

PU/P1l i

Qi j
|ψ0〉

Figure 6.1: Theoretical scheme of discrimination between von Neumann measure-
ments PU and P1l.

1Explaining why we can consider only discrimination scheme between P1l and PU is beyond
the scope of this work. See [2] for a in depth explanation.
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6.1.1 Optimal probability

The celebrated result by Helstrom [35] gives the optimal probability of correct
discrimination between two quantum measurements, P and Q, in terms of the
diamond norm

psucc(P ,Q) =
1

2
+

1

4
∥P −Q∥⋄, (6.1)

where
∥P −Q∥⋄ = max

∥|ψ⟩∥1=1
∥ ((P −Q)⊗ IX ) (|ψ⟩⟨ψ|)∥1. (6.2)

The quantum state |ψ0⟩ which maximizes the diamond norm is called the discrimi-
nator.

Although the diamond norm can be efficiently computed via semidefinite pro-
gramming, it is in general difficult to obtain analytical expressions and those are
known only for a few particular cases. From [2, Theorem 1], we can rewrite the
diamond norm between two von Neumann measurements in term of the distance
between unitary channels.

Theorem 8 Let PU and P1l, U ∈ U(X ), be two von Neumann measurements. The
following equation holds

∥PU − P1l∥⋄ = min
E∈DU(X )

∥ΦUE − Φ1l∥⋄, (6.3)

where ΦU is a unitary channel.

Furthermore, it can be shown [37] that the distance between two unitary channels
ΦU and Φ1l is given by

∥ΦU − Φ1l∥⋄ = 2
√

1− ν2(U †), (6.4)

where ν(U †) = minx∈W (U†) |x|. Due to above results we immediately obtain the
following corollary.

Corollary 7 Let U ∈ U(X ). Let P1l and PU be two von Neumann measurements.
The optimal success probability of correct discrimination between P1l and PU is
given by

psucc(PU ,P1l) =
1

2
+

1

4
min

E∈DU(X )
∥ΦUE − Φ1l∥⋄. (6.5)

6.1.2 Discriminator

Here, we present the facts about the discriminator and its properties. First, we
recall the form of the discriminator when two von Neumann measurements can not
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be perfectly distinguishable. Next, we recall the necessary and sufficient condition
when two measurements are perfectly distinguishable.

Lemma 3 (Lemma 5 from [2], direct implication) Assume that E0 ∈ DU(X )
satisfies the condition

||ΦUE0 − Φ1l||⋄ = ||PU − P1l||⋄ < 2. (6.6)

Let λ0, λd−1 be a pair of the most distant eigenvalues of UE0 and Π0,Πd−1 be
the projectors onto the subspaces spanned by the eigenvectors corresponding to λ0
and λd−1, respectively. Then, there exist states ρ0, ρd−1, satisfying the following
conditions

ρ0 = Π0ρ0Π0,

ρd−1 = Πd−1ρd−1Πd−1,

diag(ρ0) = diag(ρd−1).

(6.7)

Furthermore, the quantum state
∣∣∣√ρ⊤

〉〉
, where ρ is defined as

ρ =
1

2
ρ0 +

1

2
ρd−1 (6.8)

is a discriminator in the problem of discrimination between von Neumann measure-
ments.

From the above lemma, we can observe the following properties of the discrimi-
nator ρ presented in Proposition 3.

Proposition 3 Let ρ be a quantum state defined in Lemma 3. Then, for each
i ∈ {0, . . . , d− 1} we have

tr (
√
ρ|i⟩⟨i|√ρ) = tr

(√
ρU |i⟩⟨i|U †√ρ

)
. (6.9)

Moreover, for each i ∈ {0, . . . , d− 1} such that ⟨i|ρ|i⟩ ≠ 0, we get∣∣∣∣⟨i|ρU |i⟩⟨i|ρ|i⟩

∣∣∣∣ = ∣∣∣∣λ0 + λd−1

2

∣∣∣∣ . (6.10)
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Proof. Let U =
∑d−1

i=0 λiΠi, where {Πi}d−1
i=0 is a set of orthogonal projectors. Then

tr
(√

ρU |i⟩⟨i|U †√ρ
)
= ⟨i|U †ρU |i⟩ = ⟨i|U †

(
1

2
ρ0 +

1

2
ρd−1

)
U |i⟩

= ⟨i|U †
(
1

2
Π0ρ0Π0 +

1

2
Πd−1ρd−1Πd−1

)
U |i⟩

= ⟨i|
(
d−1∑
i=0

λiΠ
†
i

)(
1

2
Π0ρ0Π0 +

1

2
Πd−1ρd−1Πd−1

)(d−1∑
i=0

λiΠi

)
|i⟩

= ⟨i|
(
1

2
ρ0 +

1

2
ρd−1

)
|i⟩ = tr (

√
ρ|i⟩⟨i|√ρ) .

(6.11)

To prove the second part of the corollary we calculate

∣∣∣∣⟨i|ρU |i⟩⟨i|ρ|i⟩

∣∣∣∣ =
∣∣∣∣∣∣
⟨i|
(
1
2
ρ0 +

1
2
ρd−1

) (∑d−1
i=0 λiΠi

)
|i⟩

⟨i|ρ|i⟩

∣∣∣∣∣∣
=

∣∣∣∣∣⟨i|
∑d−1

i=0 λi
(
1
2
Π0ρ0Π0 +

1
2
Πd−1ρd−1Πd−1

)
Πi|i⟩

⟨i|ρ|i⟩

∣∣∣∣∣
=

∣∣∣∣∣⟨i|
(
1
2
λ0Π0ρ0Π0 +

1
2
λd−1Πd−1ρd−1Πd−1

)
|i⟩

⟨i|ρ|i⟩

∣∣∣∣∣
=

∣∣∣∣∣⟨i|
(
1
2
λ0ρ0 +

1
2
λd−1ρd−1

)
|i⟩

⟨i|ρ|i⟩

∣∣∣∣∣ =
∣∣∣∣λ0 + λd−1

2

∣∣∣∣ .

(6.12)

Here, we recall the necessary and sufficient condition when two measurements
are perfectly distinguishable.

Proposition 4 (Proposition 3 from [2]) Let U ∈ U(X ). Then PU and P1l are
perfectly distinguishable if and only if there exists ρ ∈ Ω(X ) such that

diag(U †ρ) = 0. (6.13)

Moreover, the quantum state
∣∣∣√ρ⊤

〉〉
is a discriminator in the problem of discrim-

ination between von Neumann measurements PU and P1l.

6.1.3 Final optimal measurement

Furthermore, due to the proof of the Holevo-Helstrom theorem [37], it is possible
to construct corresponding the optimal discrimination final measurements Qi,
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i ∈ {0, . . . , d− 1}. This procedure is described below.

1. Let us consider

X = (PU ⊗ IX ) (|ψ0⟩⟨ψ0|)− (P1l ⊗ IX ) (|ψ0⟩⟨ψ0|), (6.14)

where |ψ0⟩ is the discriminator maximizing Eq. (6.2).

2. Notice that X ∈ Herm(X ⊗X ). Then, from Hahn-Jordan decomposition, we
express X as

X = P −Q, (6.15)

where P,Q ∈ Pos(X ⊗ X ) are defined in 2.

3. We create projectors Πim(P ) and Πim(Q) onto the images of P and Q, respec-
tively.

4. Due to that X is block-diagonal, P and Q are block-diagonal as well, so we
may write Πim(P ) and Πim(Q) as

Πim(P ) =
d−1∑
i=0

|i⟩⟨i| ⊗ Πim(P ),i, (6.16)

and

Πim(Q) =
d−1∑
i=0

|i⟩⟨i| ⊗ Πim(Q),i, (6.17)

where Πim(P ),i,Πim(Q),i ∈ Proj(X ) are orthogonal projectors.

5. For i ∈ {0, . . . , d− 1}, we define Qi by

Qi =
{
Πim(P ),i,Πim(Q),i

}
, (6.18)

6.2 Discrimination scheme for parameterized fam-
ily of Fourier measurements

So far, we only discussed how the discrimination scheme is performed, assuming
that all needed components |ψ0⟩, Qi are known. This section provides a specific
example of a discrimination scheme using a parametrized family of Fourier qubit
von Neumann measurements.
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The parametrized family of Fourier measurements is defined as a set of the
measurements {PUϕ : ϕ ∈ [0, 2π]}, where

Uϕ = H

(
1 0
0 eiϕ

)
H†, (6.19)

and H is the Hadamard matrix od dimension two. For each element of this set,
the discriminator is a Bell state

|ψ0⟩ =
1√
2
(|00⟩+ |11⟩) . (6.20)

The optimal final measurements Q0 and Q1 are von Neumann measurements defined
as follow, Qi = PVi and the unitaries V0, V1, which depend on ϕ, have the following
form:

V0 =

(
i sin

(
π−ϕ
4

)
−i cos

(
π−ϕ
4

)
cos
(
π−ϕ
4

)
sin
(
π−ϕ
4

) )
, (6.21)

V1 =

(
−i cos

(
π−ϕ
4

)
i sin

(
π−ϕ
4

)
sin
(
π−ϕ
4

)
cos
(
π−ϕ
4

) ) . (6.22)

Finally, the theoretical probability of correct discrimination between von Neumann
measurements PUϕ and P1l is given by

psucc(PUϕ ,P1l) =
1

2
+

|1− eiϕ|
4

. (6.23)

We prove the construction of |ψ0⟩, V0 and V1 for parameterized Fourier family of
measurements in Section 6.2.2 whereas the calculation of the optimal probability
we can see in Section 6.2.1.

6.2.1 Optimal probability for parameterized family of Fourier
measurements

In this section we present theoretical probability of correct discrimination scheme
for parameterized Fourier family. To do that, we will present an auxiliary lemma.

Lemma 4 Let U = H diag(1, eiϕ)H†, ϕ ∈ [0, 2π), and let ΦU and Φ1l be two unitary
channels. Then, the following equation holds

min
E∈DU(C2)

∥ΦUE − Φ1l∥⋄ = ∥ΦU − Φ1l∥⋄. (6.24)
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Proof. Recall that the distance between two unitary channels is given by

∥ΦU − Φ1l∥⋄ = 2
√

1− ν2(U †), (6.25)

where ν(U †) = minx∈W (U†) |x|. For U = H

(
1 0
0 eiϕ

)
H† we have

ν2(U †) = 1− |1− e−iϕ|2
4

= 1− |1− eiϕ|2
4

. (6.26)

So, we obtain
∥ΦU − Φ1l∥⋄ = |1− eiϕ|. (6.27)

It implies that it is enough to prove

min
E∈DU(C2)

∥ΦUE − Φ1l∥⋄ = |1− eiϕ|. (6.28)

This condition is equivalent to show that for every E ∈ DU(C2)

ν(U †E) ≤ |1 + eiϕ|
2

, (6.29)

where ν(U †E) = minx∈W (U†E) |x|. The celebrated Hausdorf-Töplitz theorem [52,53]
states that W (A) of any matrix A ∈ L(X ) is a convex set, and therefore we have

W (A) = {tr(Aρ) : ρ ∈ Ω(X )}. (6.30)

So, we can assume that

min
|x⟩∈C2:|x⟩⟨x|=1

|⟨x|U †|x⟩| = min
ρ∈Ω(C2)

|tr(U †ρ)|. (6.31)

Then, we have
ν(U †E) = min

ρ∈Ω(C2)
|tr (ρUE)| . (6.32)

For that, our task is reduced to show that for every E ∈ DU(C2) there exists
ρ ∈ Ω(C2) such that

|tr (ρUE) | ≤ |1 + eiϕ|
2

. (6.33)

Now, let us define E =

(
E0 0
0 E1

)
and take ρ =

(
1
2

0
0 1

2

)
. From spectral
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theorem, let us decompose U as

U = λ0|x0⟩⟨x0|+ λ1|x1⟩⟨x1|, (6.34)

where for eigenvalue λ0 = 1, the corresponding eigenvector is of the form |x0⟩ =[
1√
2
1√
2

]
, whereas for λ1 = eiϕ we have |x1⟩ =

[
1√
2

− 1√
2

]
. Then, for every E ∈ DU(C2)

we have

|tr(ρUE)| = 1

2

∣∣tr (H diag(1, eiϕ)H†E
)∣∣ = 1

2

∣∣tr ((|x0⟩⟨x0|+ eiϕ|x1⟩⟨x1|)E
)∣∣

=
1

2

∣∣⟨x0|E|x0⟩+ eiϕ⟨x1|E|x1⟩
∣∣ = 1

2

∣∣∣∣E0 + E1

2
+ eiϕ

E0 + E1

2

∣∣∣∣
=

∣∣1 + eiϕ
∣∣

2

∣∣∣∣E0 + E1

2

∣∣∣∣ ≤ |1 + eiϕ|
2

,

(6.35)

which completes the proof.

Theorem 9 The optimal probability of correct discrimination between von Neu-
mann measurements PU and P1l for U = H diag(1, eiϕ)H†, where ϕ ∈ [0, 2π) is
given by

psucc(PU ,P1l) =
1

2
+

|1− eiϕ|
4

. (6.36)

Proof. From Holevo-Helstrom theorem, we obtain

psucc(PU ,P1l) =
1

2
+

1

4
∥PU − P1l∥⋄. (6.37)

From [2, Theorem 1], we have

∥PU − P1l∥⋄ = min
E∈DU(C2)

∥ΦUE − Φ1l∥⋄. (6.38)

From Lemma 4, we know that for U = H diag(1, eiϕ)H†, it also holds that

min
E∈DU(C2)

∥ΦUE − Φ1l∥⋄ = ∥ΦU − Φ1l∥⋄, (6.39)

which is exactly equal to

∥ΦU − Φ1l∥⋄ = 2
√

1− ν2(U †) = |1− eiϕ|. (6.40)
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It implies that

psucc(PU ,P1l) =
1

2
+

|1− eiϕ|
4

, (6.41)

which completes the proof.

6.2.2 Optimal discrimination strategy for parameterized fam-
ily of Fourier measurements

In this section we create an optimal theoretical strategy of discrimination between
PU and P1l. To indicate the optimal strategy, we will present two propositions. The
first one is concentrated around the discriminator |ψ0⟩ (as the optimal input state),
whereas the proposition describes the optimal final measurement PVi .

Discriminator

Proposition 5 Consider the problem of discrimination between von Neumann
measurements PU and P1l, U = H diag(1, eiϕ)H† and ϕ ∈ [0, 2π). The discriminator
has the form

|ψ0⟩ =
1√
2
|1lC2⟩⟩. (6.42)

Proof. Observe that PU − P1l is a Hermiticity-preserving map. Recall, for
Hermiticity-preserving maps the diamond norm may be expressed as

∥M∥⋄ = max
ρ∈Ω(X )

∥ (1lX ⊗√
ρ) J(M) (1lX ⊗√

ρ) ∥1. (6.43)

Let us calculate the Choi matrix of J(PU − P1l). We have

J(PU − P1l) =
1∑
i=0

|i⟩⟨i| ⊗ (|ui⟩⟨ui| − |i⟩⟨i|)⊤ , (6.44)

where the projector |ui⟩⟨ui| is taken as (i+ 1)-th column of U . Assume that

ρ =
1

2

(
1 0
0 1

)
(6.45)
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Hence, we have

∥(1lC2 ⊗√
ρ) J(PU − P1l) (1lC2 ⊗√

ρ)∥1 =

=
1

2

∥∥∥∥∥
1∑
i=0

|i⟩⟨i| ⊗ (|ui⟩⟨ui| − |i⟩⟨i|)⊤
∥∥∥∥∥
1

=
1

2

1∑
i=0

∥|ui⟩⟨ui| − |i⟩⟨i|∥1 .

(6.46)

One can prove that for all α, β ≥ 0, and unit vectors |x⟩, |y⟩ ∈ X the following
equation holds [37]

∥α|x⟩⟨x| − β|y⟩⟨y|∥1 =
√
(α + β)2 − 4αβ|⟨x|y⟩|2. (6.47)

By taking |x⟩ = |ui⟩ and |y⟩ = |i⟩ we have

1

2

1∑
i=0

∥|ui⟩⟨ui| − |i⟩⟨i|∥1 =
1

2

1∑
i=0

√
4− 4|⟨i|ui⟩|2 =

1∑
i=0

√
1− |⟨i|ui⟩|2. (6.48)

Direct calculation gives us the following equality

∥(1lC2 ⊗√
ρ) J(PU − P1l) (1lC2 ⊗√

ρ)∥1

=
1∑
i=0

√
1− |⟨i|U |i⟩|2

=
1∑
i=0

√
1−

∣∣∣∣1 + eiϕ

2

∣∣∣∣2 = 2

√
1−

∣∣∣∣1 + eiϕ

2

∣∣∣∣2
=|1− eiϕ|.

(6.49)

Due to Theorem 9 and the following equality

∥ (1lX ⊗√
ρ) J(PU − P1l) (1lX ⊗√

ρ) ∥1 =
∥∥∥((PU − P1l)⊗ IX )

(
|√ρ⊤⟩⟩⟨⟨√ρ⊤|

)∥∥∥
1
,

(6.50)

the discriminator |ψ0⟩ has the form

|ψ0⟩ =
∣∣∣√ρ⊤

〉〉
=

1√
2
|1l2⟩⟩, (6.51)

which completes the proof.
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Final optimal measurement

To construct the final optimal measurements Qi, i ∈ {0, 1}, we use the procedure
presented in Section 6.1.3. Here, X = C2, hence, it holds

Πim(P ) =

(
|xp⟩⟨xp| 0

0 |yp⟩⟨yp|

)
, (6.52)

and
Πim(Q) =

(
|xq⟩⟨xq| 0

0 |yq⟩⟨yq|

)
. (6.53)

And finally, we define V0 as {
|xp⟩ = V0|0⟩
|xq⟩ = V0|1⟩

(6.54)

and V1 as {
|yp⟩ = V1|0⟩
|yq⟩ = V1|1⟩.

(6.55)

One can note that the optimal measurements Q0 and Q1 are von Neumann mea-
surements and can be described by the relation Qi = PVi . Next, we determine the
values of Vi. We also include the Mathematica notebook [107] in mathematics file
computing V0 and V1 of PVi , i ∈ {0, 1}. By the direct calculations, we immediately
obtain the following proposition.

Proposition 6 Consider the problem of discrimination between von Neumann
measurements PU and P1l, where U = H diag(1, eiϕ)H†, ϕ ∈ [0, 2π). The unitaries
V0 and V1 have the following forms

V0 =

(
i sin

(
π−ϕ
4

)
−i cos

(
π−ϕ
4

)
cos
(
π−ϕ
4

)
sin
(
π−ϕ
4

) )
, (6.56)

and

V1 =

(
−i cos

(
π−ϕ
4

)
i sin

(
π−ϕ
4

)
sin
(
π−ϕ
4

)
cos
(
π−ϕ
4

) ) . (6.57)

6.3 Conclusion and discussion

In this section, we studied the problem of discrimination of von Neumann measure-
ments. In the beginning, we described the task of discrimination and the needed
components to create the optimal strategy which maximizes the probability of
correct discrimination. We also recalled the Holevo-Helstrom theorem, which gives
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us the formula for the maximized value of correct discrimination. Due to the proof
of the Holevo-Helstrom theorem, we obtain the necessary components to create the
optimal discrimination strategy.

Although the theoretical problems of discrimination of quantum measurements
are well-studied, an analytical form of probability and discrimination strategy is
generally hard to determine. For this purpose, we focused on the discrimination
task for single-qubit parameterized Fourier family of measurements. For this case,
we calculated the exact value of the probability of correct discrimination and
pointed out an optimal discrimination strategy for achieving such probability. Due
to that, we will be able to use the discrimination task to create a new aspect of
the benchmarking scheme, which we will describe in the next chapter.
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Chapter 7

PyQBench: a Python library for
benchmarking gate-based quantum
computers

Suppose that we know a strategy that, for an ideal device, would yield a probability
psucc of successfully discriminating between two measurements. Will the probability
be the same on an actual physical device? For current imperfect Noisy Intermediate
Scale Quantum devices (NISQs) the answer is: not. It is well known that NISQ
devices have their limitations [19]. The question is to what extent those devices
can perform meaningful computations? To answer this question, one has to devise
a methodology for benchmarking metric.

PyQBench helps us in organizing such experiments for a single-qubit parameter-
ized Fourier family of measurements, executing them on real hardware or simulators,
and computing probabilities based on the measured bitstrings. Initially, bench-
marks in PyQBench work by experimentally determining the probability of correct
discrimination between two qubit von Neumann measurements by the device under
test and comparing the result with the ideal, theoretical predictions. Naturally,
we need to repeat the same procedure multiple times for both measurements to
obtain a reliable estimate of the underlying probability distribution. PyQBench can
benchmark NISQ devices by verifying their capability of discriminating between
two von Neumann measurements. PyQBench offers a simplified, ready-to-use, com-
mand line interface (CLI) for running benchmarks using a predefined parametrized
Fourier family of measurements. For more advanced scenarios, PyQBench offers
a way of employing user-defined measurements instead of predefined ones. Due
to this possibility of extension, the users are able to test specific aspects of their
architecture of interest. Finally, we provide the documentation [108] and source
code of PyQBench on GitHub [107] under on open source license which will allow
users to utilize and extend our package in their specific applications. Our package
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allows the user to test various architectures, available through qiskit and Amazon
BraKet [17] using problems with simple operational interpretation.

PyQBench is not the only software package for benchmarking gate–based devices.
Probably the simplest benchmarking method one could devise is simply running
known algorithms and comparing outputs with the expected ones. Analyzing the fre-
quency of the correct outputs, or the deviation between actual and expected outputs
distribution provides then a metric of the per- formance of a given device. Libraries
such as Munich Quantum Toolkit (MQT) [109,110] or SupermarQ [111,112] contain
benchmarks leveraging multiple algorithms, such as Shor’s algorithm or Grover’s
algorithm. Despite being intuitive and easily interpretable, such benchmarks may
have some problems. Most importantly, they assess the usefulness of a quantum
device only for a very particular algorithm, and it might be hard to extrapolate
their results to other algorithms and applications. For instance, the inability of a
device to consistently find factorizations using Shor’s algorithms does not tell any-
thing about its usefulness in Variational Quantum Algorithm’s. Another possible
approach to benchmarking quantum computers is randomized benchmarking. In
this approach, one samples circuits to be run from some predefined set of gates
(e.g. from the Clifford group) and tests how much the output distribution obtained
from the device running these circuits differs from the ideal one. It is also common
to concatenate randomly chosen circuits with their inverses (which should yield
the identity circuit) and run those concatenated circuits on the device. Libraries
implementing this approach include Qiskit [113] or PyQuil [114]. Another quantity
used for benchmarking NISQ devices is quantum volume. The quantum volume
characterizes capacity of a device for solving computational problems. It takes
into account multiple factors like number of qubits, connectivity and measurement
errors. The Qiskit library allows one to measure quantum volume of a device by
using its qiskit.ignis.verification.quantum_volume. Other implementations
of Quantum Volume can be found as well, see e.g. [115]. However, we believe
that our library has significant benefits over other benchmarking techniques such
that simple operational interpretation, ability to control benchmarking process or
easy-to-use CLI tool.

This chapter is organized as follows. In Section 7.1 we formulate limitations
of NISQ devices and possible practical solutions to implement a discrimination
scheme. In Section 7.2 we describe PyQBench software functionalities, whereas
in Section 7.3 software architecture. In particular, we expose the CLI tool for
parameterized Fourier family of measurements, as one of the possible functionalities
of PyQBench. Next, we present the usage PyQBench as a Python library. We also
include Appendix B with detailed description of usage PyQBench. Finally, Section
7.4 concludes this chapter with a summary of the main results. This chapter is
based on [3].
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7.1 Limitations of NISQ devices and solutions
Let us recall the scheme of discrimination of von Neumann measurements presented
in Fig. 7.1

PU/P1l i

PVi j
|ψ0⟩

Figure 7.1: Theoretical scheme of discrimination between von Neumann measure-
ments PU and P1l.

It is a fact that current NISQ devices are unable to perform conditional mea-
surements PVi , which is the biggest obstacle to implementing our scheme on real
hardware. However, we circumvent this problem by slightly adjusting our scheme
so that it only uses components available on current devices. It can be achieved by
the observation that each von Neumann measurement PU can be decomposed as in
Figure 7.2. Due to that, we create two possible options: using a postselection or a
direct sum.

PU

U†

Figure 7.2: Implementation of a von Neumann measurement using measurement
in computational basis. The upper circuit shows a symbolic representation of
a von Neumann measurement PU . The bottom, equivalent circuit depicts its
decomposition into a change of basis followed by measurement in the Z-basis.

Postselection

The first idea uses a postselection scheme. In the original scheme, we measure the
first qubit and only then determine which measurement should be performed on
the second one. Instead of doing this choice, we can run two circuits, one with PV0
and one with PV1 and measure both qubits. We then discard the results of the
circuit for which label i does not match measurement label k. Hence, the circuit
for postselection looks as depicted in Fig. 7.3.
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U†/1l i

V †
k

j

|ψ0〉

Figure 7.3: A schematic representation of the setup for distinguishing measurements
PU and P1l using postselection approach. In postselection scheme, one runs such
circuits for both k = 0, 1 and discards results for cases when there is a mismatch
between k and i.

To perform the benchmark, one needs to run multiple copies of the postselection
circuit, with both PU and P1l. In PyQBench, we assume that the experiment is
repeated the same number of times for both PU and P1l. Each circuit has to be run
in both variants, one with final measurement PV0 and the second with the final
measurement PV1 . The experiments can thus be grouped into classes identified by
tuples of the form (Q, k, i, j), where Q ∈ {PU ,P1l} denotes the chosen measurement,
k ∈ {0, 1} designates the final measurement used, and i ∈ {0, 1} and j ∈ {0, 1}
being the labels of outcomes as presented in Fig. 7.3. We then discard all the
experiments for which i ̸= k. The total number of valid experiments is thus:

Ntotal = #{(Q, k, i, j) : k = i}. (7.1)

Finally, we count the valid experiments resulting in successful discrimination.
If we have chosen PU , then we guess correctly iff j = 0. Similarly, for P1l, we guess
correctly iff j = 1. If we define

NPU = #{(Q, k, i, j) : Q = PU , k = i, j = 0}, (7.2)
NP1l

= #{(Q, k, i, j) : Q = P1l, k = i, j = 1}, (7.3)

then the empirical success probability can be computed as

psucc(PU ,P1l) =
NPU +NP1l

Ntotal
. (7.4)

The psucc is the quantity reported to the user as the result of the benchmark.

Direct sum

The second idea uses the direct sum V †
0 ⊕ V †

1 implementation. Here, instead of
performing a conditional measurement PVk , where k ∈ {0, 1}, we run circuits
presented in Fig. 7.4.
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V †
0 ⊕ V †

1

U†/1l
V †
0

V †
1

i

j
|ψ0〉

Figure 7.4: A schematic representation of the setup for distinguishing measurements
PU and P1l using the V †

0 ⊕ V †
1 direct sum.

One can directly calculate that such a circuit is equivalent to the original
discrimination scheme. Observe that, for any state ρ ∈ Ω (C2), it holds that

(P1l ⊗ P1l)
(
ΦV †

0 ⊕V †
1

)
(ρ) = (P1l ⊗ P1l)

(
1∑
i=0

|i⟩⟨i| ⊗
(
⟨i| ⊗ V †

i

)
ρ
(
|i⟩ ⊗ V †

i

))

=
1∑
i=0

|i⟩⟨i| ⊗ PVi (⟨i| ⊗ 1l) ρ (|i⟩ ⊗ 1l) ,

(7.5)

where we use the block-diagonal form of V †
0 ⊕ V †

1 , that is

V †
0 ⊕ V †

1 = |0⟩⟨0| ⊗ V †
0 + |1⟩⟨1| ⊗ V †

1 . (7.6)

In direct sum scheme, the experiment can be characterized by a pair (Q, i, j),
where Q = {PU ,P1l} and i, j ∈ {0, 1} are the output labels. The number of
successful trials for U and 1l, respectively, can be written as

NPU = #{(Q, i, j) : Q = PU , j = 0}, (7.7)
NP1l

= #{(Q, i, j) : Q = P1l, j = 1}. (7.8)

Then, the probability of correct discrimination between PU and P1l is given by

psucc =
NPU +NP1l

Ntotal
, (7.9)

where Ntotal is the number of trials.

93



7.2 Software Functionalities
The PyQBench can be used in two modes: as a Python library and as a CLI script.
When used as a library, PyQBench allows the customization of discrimination
scheme. The user provides a unitary matrix U defining the measurement to be
discriminated, the discriminator |ψ0⟩, and unitaries V0 and V1 describing the final
measurement. The PyQBench library provides then the following functionalities.

1. Assembling circuits for both postselection and direct sum–based discrimina-
tion schemes.

2. Executing the whole benchmarking scenario on specified backend (either real
hardware or software simulator).

3. Interpreting the obtained outputs in terms of discrimination probabilities.

The PyQBench library also contains a readily available implementation of all
necessary components needed to run discrimination experiments for parameterized
Fourier family of measurements, defined previously in Chapter 6. If one only
wishes to use this particular family of measurements in benchmarking process,
then PyQBench offers a command line tool which might be more straightforward.
PyQBench’s command line interface (CLI) allows running the benchmarking process
without writing Python code. The configuration of CLI is done by YAML [116]
files describing the benchmark to be performed and the description of the backend
on which the benchmark should be run. Notably, the YAML configuration files are
reusable. The same benchmark can be used with different backends and vice versa.

7.3 Software Architecture
This section describes the most important architectural decisions taken when
creating PyQBench, and how they affect the end-user experience.

Overview of the software structure

As already described, PyQBench can be used both as a library and a CLI. Both
functionalities are implemented as a part of qbench Python package. The exposed
CLI tool is also named qbench. For brevity, we do not discuss the exact structure of
the package here, and instead refer an interested reader to the source code available
at GitHub [107] or at the reference manual [108].

PyQBench can be installed from official Python Package Index (PyPI) by
running pip install pyqbench. In a properly configured Python environment
the installation process should also make the qbench command available to the
user without a need for further configuration.
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Integration with hardware providers and software simulators

PyQBench is built around the Qiskit [15] ecosystem. Hence, both the CLI tool
and the qbench library can use any Qiskit–compatible backend. This includes,
IBM Q backends (available by default in Qiskit) and Amazon Braket devices and
simulators (available through qiskit-braket-provider package [117,118]).

When using PyQBench as library, instances of Qiskit backends can be passed to
functions that expect them as parameters. However, in CLI mode, the user has to
provide a YAML file describing the backend. An example of using both approaches
can be found in Section 7.3.2 and Section 7.3.1, and the detailed description is
presented in PyQBench’s documentation.

7.3.1 PyQBench as a CLI tool

To introduce PyQBench as a CLI tool we use the parametrized family of Fourier
measurements defined in Section 6.2.

Workflow

For the parametrized Fourier family of measurements, PyQBench offers a simplified
way of conducting benchmarks using a command line interface (CLI). The workflow
with PyQBench’s CLI can be summarized as the following list of steps:

1. Preparing configuration files describing the backend and the experiment
scenario.

2. Submitting/running experiments. Depending on the experiment scenario,
execution can be synchronous, or asynchronous.

3. (optional) Checking the status of the submitted jobs if the execution is
asynchronous.

4. Resolving asynchronous jobs into the actual measurement outcomes.

5. Converting obtained measurement outcomes into tabulated form.

The general form of the CLI invocation is shown in the following Listing 7.1.

Listing 7.1: Invocation of qbench script
qbench <benchmark-type> <command> <parameters>

As we can see later, PyQBench’s CLI supports not only one type of benchmark –
based on the discrimination between parametrized Fourier family of measurements.
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For this purpose we decided on structuring the CLI in a hierarchical fashion to
allow for future extensions. Here, the accepted value of <benchmark-type> is
disc-fourier. The qbench disc-fourier command has four subcommands:

• benchmark: running benchmarks. This command creates either a result
YAML file containing the measurements or an intermediate YAML file for
asynchronous experiments.

• status: querying status of experiments submitted for given benchmark. This
command is only valid for asynchronous experiments.

• resolve: querying the results of asynchronously submitted experiments and
saving a result YAML file. The output of this command is almost identical
to the result obtained from synchronous experiments.

• tabulate: interpreting the results of a benchmark and summarizing them as
a table in the CSV file.

Asynchronous vs. synchronous execution

PyQBench’s CLI can be used in synchronous and asynchronous modes. The mode
of execution is defined in the YAML file describing the backend. When running
qbench disc-fourier benchmark in asynchronous mode, the PyQBench submits
all the circuits needed to perform a benchmark and then writes an intermediate
YAML file containing metadata of submitted experiments. The intermediate file
can be used to query the status of the submitted jobs or to resolve them, i.e. to
wait for their completion and get the measurement outcomes. In synchronous
mode, PyQBench first submits all jobs required to run the benchmark and then
immediately waits for their completion. The advantage of this approach is that
no separate invocation of qbench command is needed to actually download the
measurement outcomes. The downside, however, is that if the script is interrupted
while the command is running, the intermediate results will be lost. Therefore, we
recommend using asynchronous mode whenever possible.

Preparing configuration files – experiment file

The configuration of PyQBench CLI is driven by YAML files. The first configuration
file describes the experiment scenario to be executed. The second file describes the
backend. Let us first describe the experiment configuration file, which might look
as follow.
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Listing 7.2: Defining the experiment file
type: discrimination-fourier
qubits:

- target: 0
ancilla: 1

- target: 1
ancilla: 2

- target: 14
ancilla: 16

angles:
start: 0
stop: 2 * pi
num_steps: 32

gateset: ibmq
method: direct_sum
num_shots: 8192

The experiment file contains the following fields:

• type: a string describing the type of the experiment. Here, the option type
is discrimination-fourier.

• qubits: a list enumerating pairs of qubits on which the experiment should
be run. For experiment file defined in Listing 7.2, the benchmark will run
on three pairs of qubits. The first pair consists of target 0 and ancilla 1,
the second one is target 1 and ancilla 2, whereas the last pair is target
14 and ancilla 16. We describe a pair by using target and ancilla keys
rather than using a plain list to emphasize that the role of qubits in the
experiment is distinguishable.

• angles: an object describing the range of angles for Fourier parameterized
family. The described range is always uniform, starts at the start, ends
at stop and contains num_steps points, including both start and stop.
The start and stop can be arithmetic expressions using pi literal. For
instance, the experiment defined in Listing 7.2 contains 33 points: k · π

16
,

where k = 0, . . . , 32.

• gateset: a string describing the set of gates used in the decomposition of
circuits in the experiment. The PyQBench contains explicit implementations
of circuits The possible options are [ibmq, lucy, rigetti], corresponding
to decompositions compatible with IBM Q devices, OQC Lucy device, and
Rigetti devices. Alternatively, one might wish to turn off the decomposition
by using a special value generic.
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• method: a string, either postselection or direct_sum determining which
implementation of the conditional measurement is used.

• num_shots: an integer defines how many shots are performed in the experi-
ment for a particular angle, qubit pair and circuit. For direct sum we run
2· num_steps · num_shots circuits to achieved the empirical probability of
correct discrimination. Note that the postselection method uses twice as
many circuits as the direct sum method.

Preparing configuration files – backend file

The second configuration file describes the backend. Different Qiskit backends
typically require different data for their initialization. Hence, there are multiple
possible formats of the backend configuration files understood by PyQBench. We
refer the interested reader to the PyQBench’s documentation [108].

Below we describe an example YAML file describing IBM Q backend named
Kolkata using synchronous execution. Note, IBMQ backends typically require an
access token to IBM Quantum Experience. Since it would be unsafe to store it in
plain text, the token has to be configured separately in IBMQ_TOKEN environmental
variable.

Listing 7.3: Defining IBMQ backend
name: ibmq_kolkata
asynchronous: false
provider:

hub: ibm-q-psnc
group: open
project: main

Note that if we would like to run an experiment asynchronously, it is enough to fix
the type asynchronous as true.

Running the experiment and collecting measurements data

After preparing YAML files defining experiment and backend, running the bench-
mark can be launched by using the following command line invocation:

qbench disc-fourier benchmark experiment_file.yml backend_file.yml

The output file will be printed to stdout. Optionally, the –output OUTPUT param-
eter might be provided to write the output to the OUTPUT file instead.
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qbench disc-fourier benchmark experiment_file.yml backend_file.yml
--output sync_results.yml

(Optional) Getting status of asynchronous jobs

PyQBench provides also a helper command that will fetch the statuses of asyn-
chronous jobs. The command is:

qbench disc-fourier status async_results.yml

and it will display dictionary with histogram of statuses.

Resolving asynchronous jobs

If the status of jobs is DONE for asynchronous experiments, the stored intermediate
data has to be resolved in actual measurements’ outcomes. The following command
will wait until all jobs are completed and then write a result file:

qbench disc-fourier resolve async-results.yml resolved.yml

The resolved results resolved.yml using asynchronous mode would look just like
if the experiment was run synchronously.

Tabulating results

As a last step in the processing workflow, no matter which method we choose
(synchronous or asynchronous), the results file has to be passed to tabulate
command:

qbench disc-fourier tabulate results.yml results.csv

A part of sample CSV file is provided in Table 7.1.
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target ancilla phi ideal_prob disc_prob mit_disc_prob

0 1 0 0.5 0.503 0.503
0 1 0.202 0.550 0.542 0.544
0 1 0.405 0.602 0.598 0.602
0 1 0.608 0.647 0.636 0.639
0 1 0.811 0.697 0.679 0.684
0 1 1.013 0.743 0.726 0.731
0 1 1.216 0.786 0.769 0.775
0 1 1.419 0.826 0.803 0.810
0 1 1.621 0.862 0.843 0.851
0 1 1.824 0.895 0.873 0.882

Table 7.1: The resulting CSV file contains table with columns target, ancilla, phi,
ideal_prob, disc_prob and, optionally, mit_disc_prob. Each row in the table
describes results for a tuple of (target, ancilla, phi). The reference optimal
value of discrimination probability is present in ideal_prob column, whereas the
obtained, empirical discrimination probability can be found in the disc_prob
column. The mit_disc_prob column contains empirical discrimination probability
after applying the Mthree error mitigation [119,120], if it was applied.

Plotting results

For the experiment defined in Listing 7.2 and the backend defined in Listing 7.3,
we also present graphical representations of the results in Fig. 7.5 and Fig. 7.6.

Remark 3 It is worth stressing why the benchmark using qubits (1, 2) returns
poor results in comparison to other experiments. One may suppose a bug in code
or implementation method. The benchmark, however, is compatible with error
description provided by IBM Q vendor who indicates faulty implementation of
CNOT gate. More precisely, the value CNOT error for pair (1, 2) which is equal
to one in contrast to the CNOT error between qubits (0, 1) and (14, 16) fluctuates
around 10−3.
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Figure 7.5: Discrimination experiment defined for the parameterized family of
von Neumann measurement PU and P1l using direct sum. We run experiment
defined in Listing 7.2 on IBM Q device named Kolkata with 27 qubits using three
pairs of qubits (0, 1), (1, 2) and (14, 16). The theoretical probability of correct
discrimination is given by black line whereas the empirical probability is shown by
the red line. The blue line represents the results after applying the Mthree error
mitigation package.
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Figure 7.6: Discrimination experiment defined for the parameterized family of von
Neumann measurement PU and P1l using postselection. We run experiment defined
in Listing 7.2 (with fixed method by postselection) on IBM Q device named
Kolkata with 27 qubits using three pairs of qubits (0, 1), (1, 2) and (14, 16). The
theoretical probability of correct discrimination is given by black line whereas the
empirical probability is shown by the red line. The blue line represents the results
after applying the Mthree error mitigation package.
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7.3.2 PyQBench as a library

In the previous section we introduced benchmarks for spacific family of mea-
surements, but what if we want more control over some parts of this bench-
mark? Or what a user wants to prepare a benchmark for different von Neumann
measurement? One possibility would be to add some additional parameters to
benchmark_using_xyz functions, but this approach is not scalable. Moreover,
anticipating all possible uses cases is impossible. Therefore, we decided on another
approach. PyQBench provides functions performing:

1. Assembly of circuits needed for experiment, provided the components dis-
cussed above.

2. Interpretation of the obtained measurements.

The difference between the two approaches is illustrated on the diagrams in Fig.
7.7. The example of usage PyQBench as a Python library we can see in Appendix
B.2.

7.4 Conclusion and discussion
In this section, we develop a Python library PyQBench [108], an innovative open-
source framework for benchmarking gate-based quantum computers. Our package
allows the user to test various architectures, available through qiskit and Amazon
BraKet using problems with simple operational interpretation. PyQBench can
benchmark NISQ devices by verifying their capability of discriminating between
two qubit von Neumann measurements. PyQBench offers a simplified, ready-to-
use, command line interface (CLI) for running benchmarks using a predefined
parametrized Fourier family of measurements. Furthermore, we provide a powerful
tool for the users to extend the range of available problems in a way that suits
their needs. For more advanced scenarios, PyQBench offers a way of employing
user-defined measurements instead of predefined ones. Due to this possibility of
extension, the users are able to test specific aspects of their architecture of interest.

Finally, we provide the source code of PyQBench on GitHub [107] under on
open source license which will allow users to utilize and extend our package in their
specific applications.
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Simplified benchmarking
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PyQBench

PyQBench

Backend

Backend

passes circuit components,
backend and number of shots
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submits circuits to be executed
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compute probability
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Execution of circuits controlled by user
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passes circuit components and qubit indices

returns assembled circuits

submits circuits to be executed

returns raw measurements

passess measurements

returns computed probability

Figure 7.7: Differences between simplified (top) and user–controlled (bottom)
execution of benchmarks in PyQBench. Compared to simplified benchmarking, in
user-controlled benchmarks the user has direct access to the circuits being run, and
hence can alter them (e.g. by adding noise) and/or choose the parameters used for
executing them on the backend.
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Chapter 8

Certification of von Neumann
measurements

In this chapter we discuss another method of validation of quantum architectures,
that is, certification of von Neumann measurements. To introduce the task of
certification, let us imagine that Alice and Bob get a gift from Eve – a black-box
with one of two known measurement device inside. The owner of the box, Eve,
tells them which of the two possibilities is contained within the box. Yet, for
some reason, they do not completely trust her and decide to perform some kind of
hypothesis testing scheme on the black box. They decide to take Eve’s promise
as the null hypothesis, H0, for this scheme and the second of the possibilities
as the alternative hypothesis, H1. Since now they own the box and are free to
proceed as you want, they need to prepare some input into the box and perform a
measurement on the output. A particular input state and final measurement will
be called a certification strategy. Of course, just like in classical hypothesis testing,
in the certification scheme there are two possible types of errors. The type I error
happens if we reject the null hypothesis when it was in reality true. The type II
error happens if we accept the null hypothesis when we should have rejected it.
The main aim of certification task is finding the optimal strategy which minimizes
type I error when the type II error is fixed.

Certification of quantum objects is closely related with the other well-know
method of the validation, that is the problem of discrimination of those objects.
Intuitively, in the discrimination problem we are given one of two quantum objects
sampled according to a given a priori probability distribution (as we described
in the previous section). Hence, the probability of making an error in the dis-
crimination task is equal to the average of the type I and type II errors over the
assumed probability distribution. In other words, the main difference between
both approaches is that the main task of discrimination is the minimization over
the average of both types of possible errors while the certification concerns the
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minimization over one type of error when the bound of the other one is assumed.
Therefore, this approach can be seen as a natural extension of the single-shot
discrimination of von Neumann measurements [2].

The certification of quantum objects was first studied by Helstrom in [35],
where the problem of pure state certification was considered. Further, certification
schemes were established to the case of mixed states in [121]. A natural extension of
quantum state certification is the certification of unitary operations. This problem
was solved in [36]. For a more general overview of quantum certification we refer
the reader to [38,122].

This work will begin with recalling one-shot certification scenarios for quantum
states and channels which will be used to constrain the certification setup for von
Neumann measurements. For this purpose, we will often make use of the terms of
numerical range and q-numerical range as essential tools in the proofs [54,56,57,59].
More specifically, one of our results presented in this chapter is a geometric
interpretation of the formula for minimized probability of the type II error in the
problem of certification of unitary channels, which is strictly connected with the
notion of q-numerical range. Later, basing on the results on the certification of
unitary channels we will extend these considerations to the problem of certification
of von Neumann measurements. It will show that the minimized probability of the
type II error can also be connected with the notion of q-numerical range. On top
of that, we will show that entanglement can significantly improve the certification
of von Neumann measurements.

Based on the obtained results, we will create the algorithm realizing a protocol
of optimal certification strategy. Due to the algorithm, we created an optimal
certification strategy for the qubit parameterized family of Fourier measurements.
For this case, we will also calculate the exact value of the probability of the type
II error. Due to the obtained results, we will extend the platform PyQBench to
another benchmark of NISQ devices based on the certification scheme. We will offer
using PyQBench as a command line interface (CLI) for this family of measurements.
However, PyQBench is constantly being developed and ultimately we would like to
extend PyQBench based on the certification scheme as a Python library. The code
is available in [123]. This part of chapter is my contribution to the dissertation.

This chapter is organized as follows. We begin with presentation a general
aspect of certification in Section 8.2. Section 8.1 recalls about certification of
quantum states, whereas Section 8.3 presents result for certification of unitary
channels. In this section we also introduce geometrical interpretation of the problem
of certification of unitary channels, expressed in terms of q-numerical range. Then,
the certification of von Neumann measurements is studied in Section 8.4 and our
main result is stated therein as Theorem 12. Based on the proof of this theorem,
we create an protocol describing the optimal certification scheme. This protocol is
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presented in Section 8.5. Next, in Section 8.6 we will discuss about certification
scheme for parameterized Fourier family of qubit von Neumann measurements. In
Section 5, we create a benchmark based on certification scheme using the previous
defined parametrized Fourier family of qubit measurements whereas Section 8.8
presents the implementation of the certification scheme. Finally, concluding remarks
are presented in the Section 8.9. In the Appendix C, we provide the technical
calculations to determine a distance of q-numerical range to zero.

8.1 Certification of pure quantum states

The starting point towards the certification of quantum objects is the hypothesis
testing of quantum states. Let H0 be a null hypothesis which states that the
obtained state was |ψ⟩ ∈ X , while the alternative hypothesis, H1, states that the
obtained state was |φ⟩ ∈ X . The certification is performed by the use of a binary
measurement {Ω, 1lX − Ω}, where the effect Ω corresponds to accepting the null
hypothesis and 1lX − Ω accepts the alternative hypothesis. In this dissertation
we will be considering only POVMs with two effects of this form. Therefore the
effect Ω uniquely determines the POVM and hence we will be using the words
measurement and effect interchangeably.

Assume we have a fixed measurement Ω. We introduce the probability of the
type I error, pI(Ω), that is the probability of rejecting the null hypothesis when in
fact it was true, as

pI(Ω) = ⟨ψ|(1lX − Ω)|ψ⟩ = 1− ⟨ψ|Ω|ψ⟩. (8.1)

The type II error, pII(Ω), that is the probability of accepting the null hypothesis
H0 when in reality H1 occurred, is defined as

pII(Ω) = ⟨φ|Ω|φ⟩. (8.2)

In the remainder of this work we will assume the statistical significance δ ∈ [0, 1],
that is the probability of the type I error will be upper-bounded by δ. Our goal
will be to find a most powerful test, that is to minimize the probability of the type
II error by finding the optimal measurement, which we will denote as Ω0. Such
Ω0, which minimizes pII(Ω) while assuming the statistical significance δ, will be
called an optimal measurement. The minimized probability of type II error will be
denoted by

pII = min
Ω:pI(Ω)≤δ

⟨φ|Ω|φ⟩ =: ⟨φ|Ω0|φ⟩, (8.3)

The results of minimization of the probability of the type II error over measure-
ments Ω are summarized as the following theorem. A related study of this problem
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can be found in [35].

Theorem 10 Consider the problem of two-point certification of unitary channels
with hypotheses

H0 : |ψ⟩
H1 : |ϕ⟩. (8.4)

and statistical significance δ ∈ [0, 1]. Then, for the most powerful test, the minimized
probability of the type II error yields

pII =

0 if |⟨ψ|ϕ⟩| ≤
√
δ,(

|⟨ψ|ϕ⟩|
√
1− δ −

√
1− |⟨ψ|ϕ⟩|2

√
δ
)2

if |⟨ψ|ϕ⟩| >
√
δ.

(8.5)

The proof of the above theorem is presented below. This proof gives us the
method how to construct the optimal final measurement which minimizes the
probability of the type II error. The exact form of the optimal measurement is
stated as Corollary 8.
Proof. Without loss of generality we can assume that |φ⟩ = α|ψ⟩ + β|ψ⊥⟩, for
some α, β ≥ 0 satisfying α2 + β2 = 1. For any effect Ω̃ satisfying ⟨ψ|Ω̃|ψ⟩ ≥ 1− δ,
the effect Ω defined as Ω = ΠΩ̃Π, where Π = |ψ⟩⟨ψ|+ |ψ⊥⟩⟨ψ⊥|, also satisfies the
condition ⟨ψ|Ω|ψ⟩ ≥ 1− δ and simultaneously returns the same value of probability
of type II error. Hence, we can assume that rank-2 operator Ω satisfies Ω = ΠΩΠ.
From the above, let Ω = aΠ + b|ω⟩⟨ω|, where |ω⟩ = c|ψ⟩ − d|ψ⊥⟩, c ≥ 0, d ∈ C,
such that c2 + |d|2 = 1 and a, b ∈ [0, 1], such that a+ b ≤ 1. By the assumption on
the value pI, we have

1− pI(Ω) = ⟨ψ|Ω|ψ⟩ = a+ bc2 ≥ 1− δ. (8.6)

Let us calculate the probability pII:

pII = min
Ω:pI(Ω)≤δ

⟨φ|Ω|φ⟩ = min
a,b,c,d∈A

(
α2(a+ bc2) + β2(a+ b|d|2)− 2αβbcℜ(d)

)
(8.7)

where

A := {a, b, c, d : a+b ≤ 1, a+bc2 ≥ 1−δ, c2+|d|2 = 1, a, b, c ∈ [0, 1], d ∈ C}. (8.8)

Note that the above formula is minimized when d ∈ R is nonnegative. Hence, we
have

⟨φ|Ω|φ⟩ = a+ b (αc− βd)2 . (8.9)
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Thus, our task reduces to minimizing the formula

pII = min
a,b,c∈B

a+ b
(
αc− β

√
1− c2

)2
(8.10)

where B := {a, b, c ∈ [0, 1], a+ b ≤ 1, a+ bc2 ≥ 1− δ}. We consider two cases.

1. If α ≤
√
δ, then we take a = 0, b = 1, c = β, d =

√
1− β2. In this case

a, b, c ∈ B and we obtain pII = 0. The optimal strategy is represented by
effect Ω0 = |ω⟩⟨ω|, where |ω⟩ = β|ψ⟩ − α|ψ⊥⟩.

2. Let α >
√
δ and take a = 0, b = 1, c =

√
1− δ, d =

√
δ. Again a, b, c ∈ B

and pII =
(
α
√
1− δ − β

√
δ
)2

. The optimal strategy is represented by effect

Ω0 = |ω⟩⟨ω| where |ω⟩ =
√
1− δ|ψ⟩ −

√
δ|ψ⊥⟩. The optimality of this value

can be checked by using standard constrained optimization techniques.

Corollary 8 The optimal strategy for two-point certification of pure quantum
states |ψ⟩ and |φ⟩, with statistical significance δ yields

1. if |⟨ψ|φ⟩| ≤
√
δ, then the optimal measurement is given by Ω0 = |ω⟩⟨ω|, where

|ω⟩ = |ω̃⟩
|||ω̃⟩|| , |ω̃⟩ = |ψ⟩ − ⟨φ|ψ⟩|φ⟩;

2. if |⟨ψ|φ⟩| >
√
δ, then the optimal measurement is given by Ω0 = |ω⟩⟨ω| for

|ω⟩ =
√
1− δ|ψ⟩ −

√
δ|ψ⊥⟩, |ψ⊥⟩ = |ψ̃⊥⟩

|||ψ̃⊥⟩||
, where |ψ̃⊥⟩ = |φ⟩ − ⟨ψ|φ⟩|ψ⟩.

8.2 General concept of certification for quantum
channels and measurements

While certifying quantum channels or von Neumann measurements, we will also
need to minimize over input states not only over the measurement Ω. In the most
general case, we will allowed to use entanglement by adding an additional system.
Hence, a quantum channel Φ0 ⊗ IX will be corresponded to hypothesis H0 and
Φ1 ⊗ IX will be corresponded to hypothesis H1. For a fixed state |ψ⟩ and Ω, we
define the conditional probability of type I error p|ψ⟩I (Ω) and type II error p|ψ⟩II (Ω)
by

p
|ψ⟩
I (Ω) = tr ((1lX − Ω)(Φ0 ⊗ IX )(|ψ⟩⟨ψ|))
p
|ψ⟩
II (Ω) = tr (Ω(Φ1 ⊗ IX )(|ψ⟩⟨ψ|)) .

(8.11)
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Naturally, for each input state we can consider minimized probability of type II
error, that is

p
|ψ⟩
II = min

Ω:p
|ψ⟩
I (Ω)≤δ

p
|ψ⟩
II (Ω). (8.12)

Finally, we will be interested in calculating optimized probability of type II error
over all input states. This will be denoted as

pII := min
|ψ⟩

p
|ψ⟩
II . (8.13)

Note that the symbol pII is used in two contexts. In the problem of certification
of states the minimization is performed only over measurements Ω, while in the
problem of certification of unitary channels and von Neumann measurements the
minimization is over both measurements Ω and input states |ψ⟩. In other words,
pII is equal to the optimized probability of the type II error in certain certification
problem. The input state which minimizes pII will be called an optimal state. We
will use the term optimal strategy to denote both the optimal state and the optimal
measurement.

8.3 Certification of unitary channels

In this section we will be interested in certification of two unitary channels ΦU and
Φ1l. We will allow to use entanglement by adding an additional system. Hence, the
null hypothesis H0 yields that the unknown channel is Φ1l ⊗ IX and the alternative
hypothesis H1 yields that the unknown channel is ΦU ⊗ IX .

The idea behind the scheme of certification of unitary channels is to reduce
this problem to certification of quantum states discussed in the previous section by
preparing some (possibly entangled) input state |ψ⟩ and performing the unknown
channel on it. The resulting state is either |ψ⟩ or (U ⊗ 1lX ) |ψ⟩. Then, we perform
the measurement {Ω, 1lX − Ω} and make a decision whether the given channel was
Φ1l ⊗ IX or ΦU ⊗ IX . The effect Ω corresponds to accepting H0 hypothesis while
1lX − Ω corresponds to the alternative hypothesis H1.

The results of minimization of the probability of the type II error over input
states |ψ⟩ and measurements Ω are summarized as the following theorem. This
reasoning is based on the results from Theorem 10, while a related study of this
problem can be found in [36], we connected the obtained results with q-numerical
range.

Theorem 11 Consider the problem of two-point certification of unitary channels
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with hypotheses

H0 : Φ1l ⊗ IX ,

H1 : ΦU ⊗ IX ,
(8.14)

and statistical significance δ ∈ [0, 1]. Then, for the most powerful test, the probability
of the type II error yields

pII = ν2√
1−δ (U) . (8.15)

Proof. Let us assume the optimal state |ψ⟩ and optimal measurement Ω = |ω⟩⟨ω|.
We bound the probability of the type I error by δ, that is p|ψ⟩I (Ω) = tr((1l −
Ω)|ψ⟩⟨ψ|) ≤ δ. Hence, we have

tr (Ω|ψ⟩⟨ψ|) = |⟨ω|ψ⟩|2 ≥ 1− δ. (8.16)

The probability of the type II error takes the form

pII = min
|ψ⟩

min
Ω:p

|ψ⟩
I (Ω)≤δ

tr
(
Ω(U ⊗ 1l)|ψ⟩⟨ψ|(U † ⊗ 1l)

)
= min

|ψ⟩
min

|ω⟩:p|ψ⟩
I (|ω⟩⟨ω|)≤δ

⟨ψ|(U † ⊗ 1l)|ω⟩⟨ω|(U ⊗ 1l)|ψ⟩

= min
|ψ⟩

min
|ω⟩:p|ψ⟩

I (|ω⟩⟨ω|)≤δ
|⟨ψ|(U ⊗ 1l)|ω⟩|2.

(8.17)

Let us recall that the q-numerical range is defined as

Wq(A) = {⟨ξ0|A|ξ1⟩ : ⟨ξ0|ξ1⟩ = q}, (8.18)

and we use the notation

νq(X) = min{|x| : x ∈ Wq(X)}. (8.19)

Now from the definition of the q-numerical range for q =
√
1− δ and its properties

(see Subsection 2.2.4) we have

pII = ν2√
1−δ (U ⊗ 1l) = ν2√

1−δ (U) . (8.20)

Geometrical interpretation

Let Θ be the angle between two most distant eigenvalues of a unitary matrix U .
Then, from the above discussion we can draw a conclusion that for any statistical
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significance δ ∈ (0, 1], if 2 arccos
(√

δ
)
≤ Θ < π, then although ΦU and Φ1l cannot

be distinguished perfectly, they can be certified with pII = 0. In other words,
the numerical range W (U) does not contain zero but

√
1− δ-numerical range,

W√
1−δ(U), does contain zero. The situation changes when 2 arccos

(√
δ
)
> Θ.

Then, both numerical range W (U) and
√
1− δ-numerical range W√

1−δ(U) do not
contain zero. This situation is presented in Fig. 8.1 whereas the detailed calculation
we can see in Appendix C.

2pe

√
pII

Θ
2

psucc

Figure 8.1: Numerical range W (U) (red triangle) and
√
1− δ-numerical range

W√
1−δ(U) (blue oval) of U ∈ U(C3) with eigenvalues 1, e

πi
3 and e

2πi
3 with statistical

significance δ = 0.05. The value psucc denotes the probability of correct discrimina-
tion between unitary channels ΦU and Φ1l (see Subsection 6.1.1), whereas pe is the
probability of incorrect discrimination, that is pe = 1− psucc. By pII we denote the
probability of the type II error for the task described in Theorem 11.

8.4 Certification of von Neumann measurements

Similar to the task of certification of unitary channels, we are also allowed to use
entanglement hence, the null hypothesis H0 yields P1l ⊗ IX and the alternative
hypothesis H1 is PU ⊗ IX , where U ∈ U(X ). Similarly, like for unitary channels,
the certification scheme is performed by finding the optimal input state |ψ⟩ and
a binary measurement {Ω, 1lX − Ω}, where the effect Ω corresponds to accepting
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the null hypothesis and 1lX − Ω accepts the alternative hypothesis. If we assume a
fixed input state |ψ⟩ and measurement Ω, we introduce the probability of the type
I error, pI(|ψ⟩,Ω), that is the probability of rejecting the null hypothesis when in
fact it was true, as

pI(|ψ⟩,Ω) = tr ((1lX − Ω)(P1l ⊗ IX )(|ψ⟩⟨ψ|)) . (8.21)

The type II error, pII(|ψ⟩,Ω), is the probability of accepting the null hypothesis H0

when in reality H1 occurred, defined as

pII(|ψ⟩,Ω) = tr (Ω(PU ⊗ IX )(|ψ⟩⟨ψ|)) . (8.22)

Finally, the minimized probability of type II error will be denoted by

pII := min
|ψ⟩,Ω:pI(|ψ⟩,Ω)≤δ

pII(|ψ⟩,Ω). (8.23)

Again, our goal is to find an optimal input state |ψ⟩ and a final binary measurement
for which the probability of the type II error is saturated, while the statistical
significance δ ∈ [0, 1] is assumed, that is the probability of the type I error will be
upper-bounded by δ.

Theorem 12 Consider the problem of two-point certification of von Neumann
measurements with hypotheses

H0 : P1l ⊗ IX

H1 : PU ⊗ IX .
(8.24)

and statistical significance δ ∈ [0, 1]. Then, for the most powerful test, the probability
of the type II error yields

pII = max
E∈DU(X )

ν2√
1−δ (UE) , (8.25)

where νq(X) denotes the distance of q-numerical range of X to zero.

Remark 4 It is worth mentioning that we do not make any assumptions on the
dimension of the auxiliary system, however its dimension is obviously upper-bounded
by the dimension of the input states. Additionally, the dimension of the auxiliary
system can be reduced to the Schmidt rank of the input state |ψ⟩ [ [2] Proposition 4].
It is worth mentioning here that in the certification of von Neumann measurements
entanglement can significantly improve the outcome of the protocol while in the case
of unitary channel certification it provides no benefit.
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The proof is divided into two parts. In the first part we will utilize data
processing inequality presented in Lemma 5. Thanks to that, we will show the
lower bound for pII. In the second part we will utilize the results from the previous
chapter about discrimination of von Neumann measurements to show the upper
bound for pII. Before we start, let us recall the data processing inequality.

Lemma 5 (Data processing inequality) Let δ > 0 and Ω ∈ Pos(X ) be a positive
semidefinite operator such that Ω ≤ 1lX . For any quantum channel C ∈ C(X ) and
quantum states ρ, σ ∈ D(X ) the following holds

min
Ω:tr(Ωρ)≥1−δ

tr(Ωσ) ≤ min
Ω:tr(ΩC(ρ))≥1−δ

tr(Ω C(σ)). (8.26)

Proof. This inequality, along with its proof, can be found eg. in [124]. However, to
keep this dissertation self-consistent we present our modified version of them. Let
us consider two-point certification of two quantum states ρ and σ with statistical
significance δ ∈ [0, 1]. To calculate the probability of the type II error, pII, we
formulate the problem as

min
Ω:tr(Ωρ)≥1−δ

tr(Ωσ). (8.27)

Now, consider the scenario in which we use as processing the quantum channel
C on states ρ and σ. We want to calculate

min
Ω:tr(ΩC(ρ))≥1−δ

tr(ΩC(σ)) (8.28)

which is equivalent to
min

Ω:tr(C†(Ω)ρ)≥1−δ
tr(C†(Ω)σ). (8.29)

Observe that C†(Ω) is also a measurement and

{C†(Ω) : tr(C†(Ω)ρ) ≥ 1− δ} ⊆ {Ω : tr(Ωρ) ≥ 1− δ}. (8.30)

Finally, we obtain the data processing inequality given by

min
Ω:tr(Ωρ)≥1−δ

tr(Ωσ) ≤ min
Ω:tr(ΩC(ρ))≥1−δ

tr(ΩC(σ)). (8.31)

Proof of Theorem 12. Recall, in the scheme of certification of von Neumann
measurements the optimized probability of type II error can be expressed as

pII := min
|ψ⟩

min
Ω:p

|ψ⟩
I (Ω)≤δ

tr (Ω (PU ⊗ IX ) (|ψ⟩⟨ψ|)) . (8.32)
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Our goal is to prove that

pII = max
E∈DU(X )

ν2√
1−δ (UE) . (8.33)

The lower bound

This part of the proof mostly will be based on data processing inequality.
To show that

pII ≥ max
E∈DU(X )

ν2√
1−δ (UE) , (8.34)

let us recall that every quantum von Neumann measurement PU can be rewritten
as ∆ ◦Φ(UE)† , where ∆ denotes the completely dephasing channel and E ∈ DU(X ).
Therefore, utilizing data processing inequality in Lemma 5, along with the certifi-
cation scheme of unitary channels in Theorem 11, the minimized probability of the
type II error is lower-bounded by

pII ≥ min
|ψ⟩,Ω:pI(|ψ⟩,Ω)≤δ

tr(Ω(Φ(UE)† ⊗ IX )(|ψ⟩⟨ψ|)) = ν2√
1−δ

(
(UE)†

)
= ν2√

1−δ (UE)

(8.35)
which holds for each E ∈ DU(X ). Hence, maximizing the value of ν2√

1−δ (UE) over
E ∈ DU(X ) leads to the lower bound of the form

pII ≥ max
E∈DU(X )

ν2√
1−δ (UE) . (8.36)

The upper bound

Now we proceed to proving the upper bound. The proof of the inequality

pII ≤ max
E∈DU(X )

ν2√
1−δ (UE) , (8.37)

will be divided into two cases depending on diamond norm distance between
considered measurements PU and P1l. In either case we will construct a strategy,
that is choose a state |ψ0⟩ and a measurement Ω0. As for every choice of |ψ⟩ and
Ω it holds that

pII ≤ tr (Ω(PU ⊗ IX )(|ψ⟩⟨ψ|)) , (8.38)

we will show that for some fixed |ψ0⟩ and Ω0 it holds that

tr (Ω0(PU ⊗ IX )(|ψ0⟩⟨ψ0|)) = max
E∈DU(X )

ν2√
1−δ (UE) . (8.39)

First we focus on the case when ∥PU − P1l∥⋄ = 2. We take the discriminator
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|ψ0⟩ for which it holds that

∥PU − P1l∥⋄ = ∥ ((PU − P1l)⊗ IX ) (|ψ0⟩⟨ψ0|)∥1. (8.40)

Then, the output states (PU⊗IX )(|ψ0⟩⟨ψ0|) and (P1l⊗IX )(|ψ0⟩⟨ψ0|) are orthogonal
and by taking the measurement Ω0 as the projection onto the support of (P1l ⊗
IX )(|ψ0⟩⟨ψ0|) we obtain

tr (Ω0(PU ⊗ IX )(|ψ0⟩⟨ψ0|)) = 0. (8.41)

Let us recall that
||ΦU − Φ1l||⋄ = 2

√
1− ν2 (U), (8.42)

where ν(U) = min{|x| : x ∈ W (U)} and it holds that [2]

||PU − P1l||⋄ = min
E∈DU(X )

||ΦUE − Φ1||⋄. (8.43)

Then, utilizing Eq. (8.42) and (8.43) we obtain that

max
E∈DU(X )

ν2 (UE) = 0. (8.44)

Therefore, by the property that 0 ∈ W√
1−δ(UE) whenever 0 ∈ W (UE) (see

property Eq. (2.56)), we have that

max
E∈DU(X )

ν2√
1−δ (UE) = 0. (8.45)

Secondly, we consider the situation when ∥PU − P1l∥⋄ < 2. Let

E0 ∈ argmax
E∈DU(X )

ν (UE) . (8.46)

Again, by referring to Eq. (8.43) and (8.42) we obtain that ν (UE0) > 0. Without
loss of generality assume that dim(X ) = d. Let λ0, λd−1 be a pair of the most
distant eigenvalues of UE0. Note that the following relation holds

ν (UE0) =
|λ0 + λd−1|

2
. (8.47)

As the assumptions of Lemma 3 (see Chapter 6) are saturated for the defined E0,
we can consider the input state

|ψ0⟩ =
d−1∑
i=0

√
ρ0|i⟩ ⊗ |i⟩, (8.48)
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where the existence of ρ0 together with its properties are described in Lemma 3
and Proposition 3. Let us define sets

Ci :=

{
Ω : 0 ≤ Ω ≤ 1l, tr

(
(1l− Ω)

√
ρ0|i⟩⟨i|√ρ0
⟨i|ρ0|i⟩

)
≤ δ

}
, (8.49)

for each i such that ⟨i|ρ|i⟩ ≠ 0. Now we take the measurement Ω0 as

Ω0 =
d−1∑
i=0

|i⟩⟨i| ⊗ Ω⊤
i , (8.50)

where Ωi ∈ Ci is defined as

Ωi ∈ arg min
Ω̃∈Ci

tr

(
Ω̃

√
ρ0U |i⟩⟨i|U †√ρ0

⟨i|ρ0|i⟩

)
, (8.51)

for each i ∈ {0, . . . , d− 1} such that ⟨i|ρ0|i⟩ ≠ 0 and Ωi = 0 otherwise.
Now we check that the statistical significance is satisfied, that is for the described

strategy we have

pI(|ψ0⟩,Ω0) = 1− tr (Ω0(P1l ⊗ IX )(|ψ0⟩⟨ψ0|)) = 1−
d−1∑
i=0

tr (Ωi
√
ρ0|i⟩⟨i|

√
ρ0) ≤ δ.

(8.52)
Hence, it remains to show that for this setting

tr (Ω0(PU ⊗ IX )(|ψ0⟩⟨ψ0|)) = max
E∈DU(X )

ν2√
1−δ (UE) . (8.53)

Direct calculations reveal that

tr (Ω0(PU ⊗ IX )(|ψ0⟩⟨ψ0|)) =
d−1∑
i=0

tr
(
Ωi
√
ρ0U |i⟩⟨i|U †√ρ0

)
=

d−1∑
i=0

⟨i|ρ0|i⟩tr
(
Ωi

√
ρ0U |i⟩⟨i|U †√ρ0

⟨i|ρ0|i⟩

)
.

(8.54)

Let us define

p
|i
II = tr

(
Ωi

√
ρ0U |i⟩⟨i|U †√ρ0

⟨i|ρ0|i⟩

)
. (8.55)

Note that due to Proposition 3, the absolute value of the inner product between
pure states

√
ρ0|i⟩

∥√ρ0|i⟩∥ and
√
ρ0U |i⟩

∥√ρ0|i⟩∥ is the same for every i ∈ {0, . . . , d− 1} : ⟨i|ρ|i⟩ ≠ 0.
Therefore we can consider the certification of pure states conditioned on the obtained
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label i with statistical significance δ. From Theorem 10 we know that p|iII depends
only on such an inner product between the certified states, hence p|iII = p

|j
II for each

i, j : ⟨i|ρ|i⟩, ⟨j|ρ|j⟩ ≠ 0. Therefore, we have that the value of p|iII will depend on∣∣λ1+λd
2

∣∣. Thus, without loss of generality, we can assume that p|1II ̸= 0 and hence

d−1∑
i=0

⟨i|ρ0|i⟩p|iII = p
|1
II = tr

(
Ω1

√
ρ0U |1⟩⟨1|U †√ρ0

⟨1|ρ0|1⟩

)
(8.56)

and in the remaining of the proof we will show that

p
|1
II = max

E∈DU(X )
ν2√

1−δ (UE) . (8.57)

It is sufficient to study two cases depending on the relation between
√
δ and the

inner product ∣∣∣∣⟨1|ρ0U |1⟩⟨1|ρ0|1⟩

∣∣∣∣ = ∣∣∣∣λ1 + λd
2

∣∣∣∣ . (8.58)

In the case when
∣∣λ1+λd

2

∣∣ ≤ √
δ, then due to Theorem 10 we get p|1II = 0. On the

other hand, we know that 0 ∈ W√
1−δ(UE0), and hence

max
E∈DU(X )

ν2√
1−δ (UE) = 0. (8.59)

In the case when
∣∣λ1+λd

2

∣∣ > √
δ, then from Theorem 10 we know that

p
|1
II =

∣∣∣∣λ1 + λd
2

∣∣∣∣√1− δ −
√

1−
∣∣∣∣λ1 + λd

2

∣∣∣∣2√δ
2

. (8.60)

On the other hand, for E0 ∈ DU(X ) satisfying Eq. (8.46) we have

ν2√
1−δ (UE0) =

∣∣∣∣λ1 + λd
2

∣∣∣∣√1− δ −
√

1−
∣∣∣∣λ1 + λd

2

∣∣∣∣2√δ
2

. (8.61)

By the particular choice of E0 ∈ DU(X ), this value is equal to

max
E∈DU(X )

ν2√
1−δ (UE) , (8.62)
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hence combining the above equations we finally obtain

p
|1
II = max

E∈DU(X )
ν2√

1−δ (UE) . (8.63)

To sum up, we indicated strategies Ω0 and |ψ0⟩ for which the optimized probability
of type II error was equal to maxE∈DU(X ) ν

2√
1−δ (UE). Combining this with the

previously proven inequality

pII ≥ max
E∈DU(X )

ν2√
1−δ (UE) (8.64)

gives us Eq. (8.33) and proves that the proposed strategy |ψ0⟩,Ω0 is optimal.

8.5 Optimal certification protocol

In the previous section, we have considered measurements certification scheme.
We have certified between two von Neumann measurements, PU and P1l. We have
calculated the probability of type II error for the most powerful test. Due to the
proof of Theorem 12, we introduce the protocol Algorithm 1 which describes the
optimal certification strategy of von Neumann measurements.

8.6 Certification scheme for parameterized family
of Fourier measurements

Based on the certification protocol presented in Algorithm 1, we have created the
optimal certification strategy for parametrized family of Fourier measurements.

Let us consider the task of two-point certification between single-qubit von
Neumann measurements P1l and PU , where

U = H

(
1 0
0 eiϕ

)
H† (8.65)

where H is the Hadamard matrix of dimension two and ϕ ∈ [0, 2π). We formulate
the following hypotheses

H0 : P1l ⊗ IC2 ,

H1 : PU ⊗ IC2 .
(8.66)

with the statistical significance δ ∈ [0, 1].
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Algorithm 1: Optimal strategy for the certification of von Neumann
measurements.
Input: Measurement P , which is either PU or P1l and statistical

significance δ
Output: Decision: “Accept H0” or “Reject H0”

1 Initialize input state |ψ0⟩⟨ψ0| ∈ Ω (X⊗2):
if ||PU − P1l||⋄ == 2 then

|ψ0⟩ := argmax
|ψ⟩∈Cd2 :⟨ψ|ψ⟩=1

∥ ((PU − P1l)⊗ IX ) (|ψ⟩⟨ψ|)∥1;

else
|ψ0⟩ :=

∑d−1
i=0

√
ρ0|i⟩ ⊗ |i⟩ for ρ0 defined in Lemma 3 and Proposition 3;

end
2 Perform P on the first subsystem of |ψ0⟩⟨ψ0|, that is (P ⊗ IX )(|ψ0⟩⟨ψ0|);
3 Read the measurement label i ∈ {0, . . . , d− 1};
4 Take the resulting quantum state |ψi⟩⟨ψi| conditioned by label i:
|ψi⟩⟨ψi| ∝ (⟨i| ⊗ 1lX ) (P ⊗ IX ) (|ψ0⟩⟨ψ0|) (|i⟩ ⊗ 1lX );

5 Prepare the measurement {Γi, 1lX − Γi} conditioned on label i:
if ||PU − P1l||⋄ == 2 then

Γi is the projection onto the support of (⟨i| ⊗ 1lX ) |ψ0⟩⟨ψ0| (|i⟩ ⊗ 1lX );
else

Γi = Ω⊤
i where Ωi fullfills Eq. (8.51);

end
6 Perform the measurement {Γi, 1lX − Γi} on |ψi⟩⟨ψi|;
7 Read the measurement outcome j ∈ {0, 1}, where label j = 0 is associated

with effect Γi and the label j = 1 with 1lX − Γi;
8 Result:

if j == 0 then
return “Accept H0”;

else
return “Reject H0”;

end
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Optimal certification protocol

1. We prepare the optimal input state |ψ0⟩.

2. We perform one of the measurement P on the first subsystem of |ψ0⟩⟨ψ0|,
that is (P ⊗ IC2) (|ψ0⟩⟨ψ0|).

3. We read the measurement label either i = 0 or i = 1.

4. We reduce the certification problem of the von Neumann measurements to
the certification between quantum states depending on label i. Then, we
obtain the following hypothesis.

H0 : |i⟩,

H1 : H

(
1 0
0 eiϕ

)
H†|i⟩. (8.67)

5. According to the optimal strategy for two-point certification of pure quan-
tum states (Theorem 10 and Corollary 8), we prepare the optimal final
measurement Ω0 depending on the fixed statistical significance δ.

6. We perform the measurement Ω0 on |ψi⟩⟨ψi|.

7. We read the measurement outcome k ∈ {0, 1}.

8. Finally, based on value of k, we make a decision whether we accept (k = 0)
or reject (k = 1) the null hypothesis H0.

Optimal certification strategy

Proposition 7 For two-point certification of von Neumann measurements P1l and
PU defined in Eq. (8.65) with statistical significance δ, the optimal input state |ψ0⟩
is given by

|ψ0⟩ =
1√
2
|1lC2⟩⟩. (8.68)

Proof. The proof of this proposition is straightforward. Observe that the input
state |ψ0⟩ need to maximize the diamond norm ∥PU −P1l∥⋄, where U is given by
Eq. (8.65). So, the state |ψ0⟩ can be determined in the same way as in Proposition 5

Proposition 8 For two-point certification of von Neumann measurements P1l and
PU defined in Eq. (8.65) with statistical significance δ, the optimal measurement
Ω0 = |ω⟩⟨ω| is given by
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1. if i = 0, then we assume three cases:

(a) if
√
1 + cosϕ ≥

√
2δ and ϕ ∈ [0, π), then the optimal measurement is

given by Ω0 = |ω⟩⟨ω|, where

|ω⟩ =
√
1− δ|0⟩ −

√
δ|1⟩. (8.69)

(b) if
√
1 + cosϕ <

√
2δ and ϕ ∈ [0, 2π), then the optimal measurement is

given by Ω0 = |ω⟩⟨ω|, where

|ω⟩ = sin
ϕ

2
|0⟩ − cos

ϕ

2
|1⟩. (8.70)

(c)
√
1 + cosϕ ≥

√
2δ and ϕ ∈ [π, 2π), then the optimal measurement is

given by Ω0 = |ω⟩⟨ω|, where

|ω⟩ =
√
1− δ|0⟩+

√
δ|1⟩. (8.71)

2. if i = 1, then there are three cases:

(a) if
√
1 + cosϕ ≥

√
2δ and ϕ ∈ [0, ϕ), then the optimal measurement is

given by Ω0 = |ω⟩⟨ω|, where

|ω⟩ =
√
δ|0⟩+

√
1− δ|1⟩. (8.72)

(b) if
√
1 + cosϕ <

√
2δ and ϕ ∈ [0, 2π), then the optimal measurement is

given by Ω0 = |ω⟩⟨ω|, where

|ω⟩ =
∣∣∣∣cos ϕ2

∣∣∣∣ |0⟩+ sinϕ

2
∣∣cos ϕ

2

∣∣ |1⟩. (8.73)

(c)
√
1 + cosϕ ≥

√
2δ and ϕ ∈ [π, 2π), then the optimal measurement is

given by Ω0 = |ω⟩⟨ω|, where

|ω⟩ = −
√
δ|0⟩+

√
1− δ|1⟩. (8.74)

Proof. For the case i = 0, the certification scheme of von Neumann measurements
is reduced to the certification scheme of quantum states:

H0 : |0⟩

H1 : H

(
1 0
0 eiϕ

)
H†|0⟩ = 1 + e−iϕ

2
|0⟩+ 1− e−iϕ

2
|1⟩

(8.75)
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Next, we will use the the proof of Theorem 10. According to the assumption
|ψ⟩ = α|ϕ⟩+ β|ϕ⊥⟩, for some α, β ≥ 0 satisfying α2 + β2 = 1, we need to rewrite
the state 1

2

(
1 + e−iϕ

)
|0⟩ + 1

2

(
1− e−iϕ

)
|1⟩ to the form

√
1+cosϕ√

2
|0⟩ + i sinϕ√

2+2 cosϕ
|1⟩.

Hence, we obtain the following certification scheme

H0 : |0⟩

H1 :

√
1 + cosϕ√

2
|0⟩+ i sinϕ√

2 + 2 cosϕ
|1⟩.

(8.76)

To achieve the optimal final measurement for such defined certification scheme, we
use Corollary 8, which complete first part of the proof.

For the case i = 1, the certification scheme of von Neumann measurements is
reduced to the certification scheme of quantum states:

H0 : |1⟩

H1 : H

(
1 0
0 eiϕ

)
H†|1⟩ = 1− e−iϕ

2
|0⟩+ 1 + e−iϕ

2
|1⟩

(8.77)

In the same way, we rewrite the state 1
2

(
1− e−iϕ

)
|0⟩+ 1

2

(
1 + e−iϕ

)
|1⟩ to the form

sinϕ√
2+2 cosϕ

|0⟩+
√
1+cosϕ√

2
|1⟩. Then, we have the following hypothesis:

H0 : |1⟩

H1 :
sinϕ√

2 + 2 cosϕ
|0⟩+

√
1 + cosϕ√

2
|1⟩

(8.78)

Again, to achieve the optimal final measurement for such defined certification
scheme, we use Corollary 8, which complete second part of the proof.

Remark 5 For two-point certification of von Neumann measurements P1l and PU
defined in Eq. (8.65) with statistical significance δ, the optimal inputs state is given
by

|ψ0⟩ =
1√
2
|1lC2⟩⟩, (8.79)

whereas the optimal measurement PVi is given by

1. if
√
1 + cosϕ ≥

√
2δ and ϕ ∈ [0, π), then

V0 =

( √
1− δ

√
δ

−
√
δ

√
1− δ

)
. (8.80)
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and

V1 =

( √
δ

√
1− δ√

1− δ −
√
δ

)
. (8.81)

2. if
√
1 + cosϕ <

√
2δ and ϕ ∈ [0, 2π), then

V0 =

(
sin ϕ

2
| cos ϕ

2
|

− cos ϕ
2

sinϕ

2| cos ϕ
2
|

)
. (8.82)

and

V1 =

(
| cos ϕ

2
| sin ϕ

2
sinϕ

2| cos ϕ
2
|

− cos ϕ
2

)
. (8.83)

3.
√
1 + cosϕ ≥

√
2δ and ϕ ∈ [π, 2π), then

V0 =

( √
1− δ −

√
δ√

δ
√
1− δ

)
(8.84)

and

V1 =

(
−
√
δ

√
1− δ√

1− δ
√
δ

)
. (8.85)

8.7 Realization of the von Neumann measurement
certification scheme

In this section, we focus on the realization of certification scheme for parameterized
family of qubit von Neumann measurements. A schematic representation of this
setup is presented in 8.2. We will also use two methods to implement the controlled
measurement PVi , that is postselection and direct sum.

Note that the task of discrimination and certification the parameterized family of
Fourier measurements are similar not only conceptually, but also implementationally.
These two validation methods differ only in that each circuits in certification scheme
consists of unitary gate U † whereas in discrimination scheme we implement U † or
1l. It implies that number of circuits used in the certification scheme will be two
times smaller than in discrimination one. Not surprisingly, the final conditional
measurement has also different form, however the steps of postselection and direct
sum will be the same. Below we describe the method of calculation the probability
of type II error using postselection and direct sum approach.
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PU i

PVi j
|ψ0〉

Figure 8.2: Schematic representation of the setup for von Neumann certification
scheme with null hypothesis H0 : P1l ⊗IX and alternative hypothesis H1 : PU ⊗IX
with statistical significance δ. We implement the initial input state and the optimal
final measurement PVi based on Remark 5.

Postselection

The postselection method is described in Fig. 8.3 and below we calculate the
empirical probability of type II error.

U† ∆ i

V †
k ∆ j

|ψ0〉

Figure 8.3: A schematic representation of the setup for certificating measurements
using postselection. We prepare the Bell state |ψ0⟩, obtained from Proposition 7.
Next, we apply the unitary U † on the first system. and V †

k , obtained from Propo-
sition 8, on the second system. We measure both systems and reject cases when
i ̸= k. We make a decision based on the received label j on the second system. If
j = 0, then we accept H0. Otherwise, we decide to reject H0.

Here, the experiments can be grouped into classes identified by tuples of the
form (PU , k, i, j). We discard all the experiments for which k ̸= i. Hence, the total
number of valid experiments is

Ntotal = #{(PU , k, i, j) : k = i}. (8.86)

Now we need to count the experiments (among the valid ones) including to calcula-
tion pII. If we define

N0 = #{(PU , k, i, j) : Q = PU , k = i, j = 0}, (8.87)
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then the empirical probability of type II error yields

pII =
N0

Ntotal
. (8.88)

Direct sum

The certification scheme by using the controlled unitary is described in Fig. 8.4
and below we calculate the empirical probability of type II error.

U†

V †
0 ⊕ V †

1

∆ i

∆ j
|ψ0〉

Figure 8.4: A schematic representation of the setup for certificating measurements
using controlled unitary gate. We prepare the Bell state |ψ0⟩, obtained from
Proposition 7.Next, we apply the unitary U † on the first system. We apply direct
sum V †

0 ⊕ V †
1 , obtained from Proposition 8, on the whole systems and measure

them. We make a decision based on the received label j on the second system. If
j = 0, then we accept H0. Otherwise, we decide to reject H0.

In this scheme, the experiment can be characterized by a pair (PU , i, j). If we
define

N0 = #{(PU , i, j) : j = 0}, (8.89)

then the probability of type II error yields

psucc =
N0

Ntotal
, (8.90)

where Ntotal is the number of trials.

8.8 Benchmarking based on certification scheme

Here, we extend the PyQBench package to certification experiments. Ultimately,
we would like to have to approaches: using qbench as a library and as a CLI tool.
Until now, however, PyQBench CLI is completed, whereas qbench as a library is a
future work.
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PyQBench as a CLI tool

Recall, the CLI of PyQBench described in Chapter 7 has nested structure and the
general form of the CLI is as below:

qbench <benchmark-type> <command> <parameters>

Here, for benchmarks using certification scheme, we fix the value of <benchmark-
type> as cert-fourier, and next we obtain the same structure as previous con-
sisting of four subcommands: benchmark, status, resolve and tabulate.

Below, we prepare the example of experiment YML file and backend YML file
and the obtained results we present in Fig. 8.5 and Fig. 8.6. Observe that if we
want to run benchmark on IBM Q device named Kolkata using certification scheme,
it is enough to softly modify the experiment file from benchmarks based on discrim-
ination scheme (see Listing 7.2), by fixing the type as certification-fourier
and adding the component delta.

Listing 8.1: Defining certification experiment file
type: certification-fourier
qubits:
- target: 0
ancilla: 1

- target: 1
ancilla: 2

- target: 14
ancilla: 16

angles:
start: 0
stop: 2 * pi
num_steps: 32

delta: 0.05
gateset: ibmq
method: postselection
num_shots: 8192

Listing 8.2: Defining certification backend file
name: ibmq_kolkata
asynchronous: true
provider:
hub: ibm-q-psnc
group: open
project: main
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Figure 8.5: Certification experiment of the parameterized family of Fourier mea-
surements PU and P1l defined in Listing 8.1 using postselection with statistical
significance δ = 0.05. We run experiment on IBM Q device named Kolkata with
27 qubits using three pairs of qubits (0, 1), (1, 2) and (14, 16). The theoretical
probability of type II error is given by black line whereas the empirical probability
is shown as the red line. The blue line represents the results after applying the
Mthree error mitigation package.

8.9 Conclusion and discussion

This chapter studied the two-point certification of quantum states, unitary channels
and von Neumann measurements. The problem of certification is inextricably
related to quantum hypothesis testing. The aim of this task is to minimizing the
probability of type II error with given the upper bound on the probability of type
I error.

Although the problems of certification of quantum states and unitary channels
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Figure 8.6: Certification experiment of the parameterized family of Fourier measure-
ments PU and P1l defined in Listing 8.1 using direct sum with statistical significance
δ = 0.05. We run experiment on IBM Q device named Kolkata with 27 qubits
using three pairs of qubits (0, 1), (1, 2) and (14, 16). The theoretical probability of
type II error is given by black line whereas the empirical probability is shown by
the red line. The blue line represents the results after applying the Mthree error
mitigation package.
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are well-studied, we pointed out the connection of certification of unitary channels
with the notion of q-numerical range. Afterwards, we extended this approach to the
certification of von Neumann measurements. We found a formula for the minimized
probability of the type II error and the optimal certification strategy. It turned out
that this formula can also be connected with the notion of q-numerical range.

Based on the obtained results, we have created the algorithm realizing a protocol
of optimal certification strategy. Due to the algorithm, we created an optimal
certification strategy for the parameterized family of qubit measurements on the
Fourier basis. For this case, we also calculated the exact value of the probability of
the type II error. Due to the obtained results, we extended PyQBench to another
benchmark of NISQ devices based on the certification scheme. Until now, we offer
using PyQBench as a command line interface (CLI) for this family of measurements.
However, PyQBench is constantly being developed and ultimately we would like to
extend PyQBench based on the certification scheme as a Python library. The code
is available in [123]. This part of chapter is my contribution to the dissertation.
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Chapter 9

Summary

This dissertation studied the problem of validation of modern quantum architectures.
We investigated new validation methods for modern gate model-inspired NISQ
devices. We analyzed both theoretical and engineering aspects. We studied various
validation methods featuring three main approaches: learning, discrimination, and
certification between von Neumann measurements. We showed that the created
theoretical models allow for obtaining new concepts of benchmarking modern
quantum systems. The following step of the dissertation was the implementation
of obtained algorithms on quantum NISQ devices.

Initially, we considered a validation method based on the problem of learning
von Neumann measurements. We estimated the asymptotic behaviour of the
maximum value of the average fidelity function and determined possibly the best
approximation of the optimal scheme. By using the deterministic port-based
teleportation (DPBT) protocol, we were able to state the lower bound 1−Θ

(
1
N2

)
,

which matched the obtained upper bound and hence, solved the given problem. In
the qubit case, we also introduced a new scheme called the pretty good learning
scheme. This scheme was a particular case of a parallel learning protocol using
only two-qubit entangled memory states. Moreover, we compared the performance
of different learning schemes: adaptive, parallel, based on DPBT, based on PPBT
and the pretty good learning scheme for the qubit case.

We also used the quantum causal structures theory for the problem of quantum
measurements learning. Such a scheme we called causal learning scheme. First, we
considered causal learning scheme for two copies of von Neumann measurements.
For this case, we proved that using an indefinite causal structure does not improve
the average fidelity function Fd. Next, however, we showed the advantages of using
causality in the problem of SAR of qubit von Neumann measurements. We wrote a
semidefinite program to calculate F2. As a result, we received a significant advantage
between the standard approach of learning scheme and the causal learning scheme.

Next, we introduced a validation method based on the problem of discrimination
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of von Neumann measurements. We were mainly interested in the discrimination
scheme for the family of qubit measurements in the Fourier basis. For this case,
we calculated the maximum value of the probability of correct discrimination and,
additionally, we constructed the optimal strategy maximizing the probability of
correct discrimination.

As an engineering aspect of the dissertation, we introduced PyQBench – an
innovative open-source framework for benchmarking gate-based quantum computers.
PyQBench benchmarks NISQ devices by verifying their capability based on the
discrimination scheme. PyQBench provides a simplified, ready-to-use, command
line interface (CLI) for running benchmarks using a predefined parametrized Fourier
family of qubit measurements. For more advanced scenarios, PyQBench offers a
way of employing user-defined measurements instead of predefined ones.

Finally, we considered the task of certification of von Neumann measurements.
We analyzed a quantum hypothesis testing in which the null and alternative
hypotheses are single-element sets. We calculated the minimized probability of the
type II error and pointed out the connection of this result with the notion of q-
numerical range. Based on obtained results, we created an algorithm describing the
certification strategy, which minimizes the type II error and again, We determine
such an optimal certification strategy for the qubit parameterized family of Fourier
measurements. Furthermore, we extended PyQBench to benchmarking based on
the certification scheme. Until now, we have offered a command line interface
(CLI) for benchmarking NISQ devices using the pre-defined family of measurements.
However, PyQBench is constantly being developed and ultimately we would like to
extend PyQBench based on certification as a Python library.
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Appendix A

Learning of von Neumann
measurements

In this appendix we will proof the main theorem of Chapter 4 and next, we will
describe in detail the pretty good learning scheme.

A.1 Proof of Lemma 2 for qubit case

ρ

σ
PU PU · · · PU

out

C1
· · ·

CN−1

R

Figure A.1: The schematic representation of a learning scheme L =
(
σ, {Ci}N−1

i=1 ,R
)
.

Let d = 2 and let us fix N ∈ N. By Xi we denote the complex Euclidean
space of dimension i, that is Xi = Ci. Let us consider a general single-qubit von
Neumann measurement learning scheme L, which is depicted in Fig. A.1. The Choi-
Jamiołkowski representation of L is given as L =

∑1
i=0 |i⟩⟨i|⊗Li, where |i⟩ ∈ X (out)

2 .
The result of composition of all copies of PU and the scheme L is a measurement
QU = {QU,0, QU,1}, which is an approximation of PU . To define the effects QU,i we
use the link product [61] in the following way tr(ρQU,i) = tr

(
L⊤
i

(
ρ⊗ P⊗N

U

))
for

ρ ∈ Ω(X2) and i = 0, 1. Thus, we can calculate the fidelity defined in Eq. (3.16)
between PU and QU

F2(PU ,QU) =
1

2

1∑
i=0

tr(PU,iQU,i) =
1

2

1∑
i=0

tr
[
L⊤
i

(
PU,i ⊗ P⊗N

U

)]
. (A.1)
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Finally, we can express the maximum value of the average fidelity function F2

defined in Eq. (4.2) as

F2 = max
L

∫
U

dU
1

2

1∑
i=0

tr
[
L⊤
i

(
PU,i ⊗ P⊗N

U

)]
. (A.2)

In the following subsections we will upper bound F2 by using this simplified
maximization formula.

A.1.1 Measurement learning via parallel storage of unitary
transformations

In this section we consider a new learning scheme, presented in Fig. A.2.

ρ
in

R
|ψ〉

X
Φ

U
⊗N

X out

Y

Figure A.2: Schematic representation of the setup, which we use to upper bound
F2. In this scenario, we are given N copies of unitary channel ΦŪ in parallel. Our
objective is to approximate the von Neumann measurement PU .

In this scheme, we are given N copies of a unitary channel, ΦŪ , which we can
use in parallel. Our goal is to approximate the measurement PU using the black box
with the unitary channel ΦŪ inside. To achieve this, we choose an initial memory
state |ψ⟩ ∈ X ⊗ Y and a retrieval binary measurement R = {R0, R1}, such that
Ri ∈ L(Z ⊗ X ⊗ Y), where Z = X (in)

2 ,X = X2N and Y = X2N . We maximize the
value of the average fidelity function, which will be denoted as F̃2. To calculate F̃2

we may observe that for a given ρ ∈ Ω(Z), the probability that outcome i occurs is
equal to

pi = tr
(
Ri

(
ρ⊗ (Ū⊗N ⊗ 1lY)|ψ⟩⟨ψ|(U⊤⊗N ⊗ 1lY)

))
. (A.3)

Therefore, we obtain

F̃2 = max
R={R0,R1}

|ψ⟩⟨ψ|∈Ω(X⊗Y)

∫
U

dU
1

2

1∑
i=0

tr
[
Ri

((
U ⊗ Ū⊗N ⊗ 1lY

)
(|i⟩⟨i| ⊗ |ψ⟩⟨ψ|)

(
U † ⊗ U⊤⊗N ⊗ 1lY

))]
.

(A.4)
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Lemma 6 Let F2 and F̃2 be the maximum value of the fidelity functions defined
in Eq. (A.2) and Eq. (A.4), respectively. Then, it holds that F2 ≤ F̃2.

Proof. First, we observe that each von Neumann measurement PU can be writ-
ten as a composition of the completely dephasing channel ∆ given by ∆(X) =∑1

i=0⟨i|X|i⟩|i⟩⟨i|, and a unitary channel ΦU† . Equivalently, that means PU =
(∆ ⊗ IC2)

(∣∣U †〉〉〈〈U †
∣∣). Due to the fact that the channel ∆ is self-adjoint, we

obtain

tr
[
L⊤
i

(
PU,i ⊗ P⊗N

U

)]
=

= tr

[((
IC2 ⊗ (∆⊗ IC2)⊗N

)
(Li)

)⊤ (
PU,i ⊗

∣∣U †〉〉〈〈U † ∣∣⊗N)] . (A.5)

Note that
∑1

i=0 |i⟩⟨i| ⊗ (IC2 ⊗ (∆⊗ IC2)⊗N )(Li) represents the composition of the
learning scheme L and N copies of quantum channels ∆. If we omit processing
channels ∆, we get the following upper bound of F2 defined in Eq. (A.2) given by

F2 ≤ max
L

∫
U

dU
1

2

1∑
i=0

tr
[
L⊤
i

(
PU,i ⊗

∣∣U †〉〉〈〈U † ∣∣⊗N)]
=

1

2
max

L

∫
U

dUtr
[
L⊤
(
(1lC2 ⊗ U)J(∆)(1lC2 ⊗ U †)⊗

∣∣U †〉〉〈〈U † ∣∣⊗N)] , (A.6)

where J(∆) is Choi matrix of ∆. Observe that the maximal value of the integral in
above equation is achievable by networks L which satisfy the commutation relation

[L, 1lC2 ⊗ Ū ⊗ (1lC2 ⊗ U)⊗N ] = 0, (A.7)

for any unitary matrix U . To argue this fact, for any L one can define a learning
network L̃ given by

L̃ =

∫
U

dU
(
(1lC2 ⊗ Ū)⊗ (1lC2 ⊗ U)⊗N

)
L
(
(1lC2 ⊗ U⊤)⊗ (1lC2 ⊗ U †)⊗N

)
. (A.8)

It is not difficult to see that L̃ is a correctly defined Choi-Jamiołkowski representa-
tion of a quantum learning network [61, Theorem 2.5], which satisfies the relation
Eq. (A.7). Moreover, for both L and L̃ the value of the integral defined in Eq. (A.6)
remains the same.

Let us divide L into a storage network S and a retrieval measurement R, as
shown in Fig. A.3. We introduce the input space XI :=

⊗N
i=1 X

(2k)
2 (denoted

with numbers 2, 4, . . . , 2N) and the output space XO :=
⊗N

i=1X
(2k−1)
2 (denoted

with numbers 1, 3, . . . , 2N − 1). Additionally, we define spaces X (in)
2 ,X (out)

2 and
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|i〉 ΦU

in

σ 1
ΦU†

2 3
ΦU†

4
· · ·

2N − 1
ΦU†

2N s

out
i

C1
· · ·

CN−1 CN
R

S

Figure A.3: Schematic representations of the right-hand side of Eq. (A.6). With
probability 1/2 we prepare one of two states |0⟩ or |1⟩ and calculate the probability
pi given by Eq. (A.3) such that we obtain the output label i. So, Eq. (A.6) is the
cumulative probability that provided the state |i⟩⟨i| we measure i. The learning
scheme L is given as L =

(
σ, {Ci}Ni=1,R

)
and the storage S (marked with a dashed

line) is defined as a composition of an initial memory state σ and processing
channels {Ci}Ni=1.

Xs (see Fig. A.3). The space Xs has arbitrary dimension s, but not smaller
than the dimension of XI ⊗ XO. The storage S can be realized as a sequence
of isometry channels followed by a partial trace operation [61, Theorem 2.6].
Therefore, by moving the partial trace operation to the retrieval part R, we
may assume that the storage S consists of an initial pure state followed by a
sequence of isometry channels ΦV . In consequence, the Choi-Jamiołkowski matrix
of S has the form S = |X⟩⟩⟨⟨X |. Observe that, there exists an isometry V ∈
U(Xs,XI ⊗XO), such that X =

√
trXsSV

⊤. In this notation, S is the solution
of S = (1lC4N ⊗ V )

∣∣√trXsS
〉〉〈〈√

trXsS
∣∣ (1lC4N ⊗ V

)†
. Hence, the isometry channel

ΦV can be treated as a postprocessing of the storage S and also viewed as a part
of the retrieval R. In summary, after all changes, the storage S is of the form
S =

∣∣√trXsS
〉〉〈〈√

trXsS
∣∣. By using the normalization condition [61, Theorem 2.5]

for the network presented in Fig. A.3, we obtain trX (out)
2

L = 1lC2 ⊗ trXsS. Therefore,
using the property Eq. (A.7) we have

[trXsS, (1lC2 ⊗ U)⊗N ] = 0. (A.9)

Let us define the memory state σΦ
U† ,S as an application of the storage S on N

copies of ΦU† . Then, we have

σΦ
U† ,S = trXI⊗XO

[∣∣∣√trXsS
〉〉〈〈√

trXsS
∣∣∣ (∣∣U⊤〉〉〈〈U⊤ ∣∣⊗N ⊗ 1lC4N

)]
= trXI⊗XO

[∣∣∣(1lC2 ⊗ U †)⊗N
√

trXsS
〉〉〈〈

(1lC2 ⊗ U †)⊗N
√

trXsS
∣∣∣(

|1lC2⟩⟩⟨⟨1lC2 |⊗N ⊗ 1lC4N

)]
=
(
1lC2 ⊗ Ū

)⊗N |ψ⟩⟨ψ|
(
1lC2 ⊗ U⊤)⊗N ,

(A.10)
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where the last equality follows from the property Eq. (A.9) and taking

|ψ⟩ :=
(
⟨⟨1lC2 |⊗N ⊗ 1l4N

) ∣∣∣√trXsS
〉〉
. (A.11)

It means that an arbitrary storage strategy S, which has access to N copies of a
unitary channel ΦU† can be replaced with parallel storage strategy of N copies of a
unitary channel ΦŪ . By exploiting this property to Eq. (A.6) we finally obtain

F2 ≤
1

2
max

L

∫
U

dUtr
[
L⊤
(
(1lC2 ⊗ U)J(∆)(1lC2 ⊗ U †)⊗

∣∣U †〉〉〈〈U † ∣∣⊗N)]
=

1

2
max

R={R0,R1}
S

∫
U

dU

1∑
i=0

tr
[
Ri(U |i⟩⟨i|U † ⊗ σΦ

U† ,S)
]

=
1

2
max

R={R0,R1}
|ψ⟩⟨ψ|∈Ω(XI⊗XO)

∫
U

dU
1∑
i=0

tr
[
Ri

(
U |i⟩⟨i|U † ⊗ (1lC2 ⊗ Ū)⊗N |ψ⟩⟨ψ|

(1lC2 ⊗ U⊤)⊗N
)]

= F̃2,

(A.12)

which completes the proof.

A.1.2 Objective function simplification

The aim of this section is to simplify the maximization of the fidelity function F̃2

defined in Eq. (A.4). Recall,

F̃2 = max
R={R0,R1}

|ψ⟩⟨ψ|∈Ω(X⊗Y)

∫
U

dU
1

2

1∑
i=0

tr
[
Ri

((
U ⊗ Ū⊗N ⊗ 1lY

)
(|i⟩⟨i| ⊗ |ψ⟩⟨ψ|)

(
U † ⊗ U⊤⊗N ⊗ 1lY

))]
.

(A.13)
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Let us consider a binary measurement R = {R0, R1} taken from the maximization
domain in Eq. (A.4). It holds that R0 +R1 = 1lC22N+1 , and hence we may write

F̃2 = max
R={R0,R1}

|ψ⟩⟨ψ|∈Ω(X⊗Y)

∫
U

dU
1

2

1∑
i=0

tr
[
Ri

(
(U ⊗ Ū⊗N ⊗ 1lY)(|i⟩⟨i| ⊗ |ψ⟩⟨ψ|)

(U † ⊗ U⊤⊗N ⊗ 1lY)
)]

=
1

2
+

1

2
max

R={R0,R1}
|ψ⟩⟨ψ|∈Ω(X⊗Y)

∫
U

dUtr
[
R0

(
(U ⊗ Ū⊗N ⊗ 1lY)

(σz ⊗ |ψ⟩⟨ψ|)(U † ⊗ U⊤⊗N ⊗ 1lY)
)]

=

=
1

2
+

1

2
max

R={R0,R1}
|ψ⟩⟨ψ|∈Ω(X⊗Y)

tr

[∫
U

dU(U † ⊗ U⊤⊗N ⊗ 1lY)R0(U ⊗ Ū⊗N ⊗ 1lY)

(σz ⊗ |ψ⟩⟨ψ|)] ,
(A.14)

where σz = |0⟩⟨0| − |1⟩⟨1|. Observe that, the integral of the matrix R0 over the
unitary group {U⊗Ū⊗N⊗1lY}U is equivalent to taking R such that 0 ≤ R ≤ 1lC22N+1

and
[R,U ⊗ Ū⊗N ⊗ 1lY ] = 0, (A.15)

for any qubit unitary matrix U . Equivalently, we may write

[R⊤Z , U⊗N+1 ⊗ 1lY ] = 0, (A.16)

where ·⊤Z represents the partial transposition over subsystem Z. According to [37,
Theorem 7.15] the matrix R⊤Z commutes with U⊗N+1 ⊗ 1lY if and only if it is of
the form

R⊤Z =
∑
π

Wπ ⊗Mπ, (A.17)

where matrices Wπ ∈ L(Z ⊗ X ) represent subsystem permutation matrices acting
on N + 1 qubit systems, according to the equation

Wπ|b0, b1, . . . , bN⟩ = |bπ(0), bπ(1), . . . , bπ(N)⟩, bk ∈ {0, 1}. (A.18)

The matrices Mπ belong to the set L(Y) and the index π goes over all permutations
of the set {0, . . . , N}. Hence, we obtain the simplified formula F̃2

F̃2 =
1

2
+

1

2
max

R: 0≤R≤1l
C22N+1

R=
∑
πW

⊤Z
π ⊗Mπ

|ψ⟩⟨ψ|∈Ω(X⊗Y)

tr [R(σz ⊗ |ψ⟩⟨ψ|)] . (A.19)
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To simplify the form of F̃2 even further, we introduce the following notation of
basis states defined on N + 1 qubit system with fixed weight. We enumerate qubit
subsystems with numbers 0, 1, . . . , N . For any subset Ak ⊂ {1, . . . , N}, such that
|Ak| = k, we define:

X2N ∋ |Ak⟩ :=
N⊗
i=1

(δ(i ∈ Ak)|1⟩+ δ(i ̸∈ Ak)|0⟩). (A.20)

Consider the following subspaces of the N + 1 qubit space:

X (k) := span (|0⟩|Ak⟩, |1⟩|Ak+1⟩ : Ak, Ak+1 ⊂ {1, . . . , N}) (A.21)

for k = −1, . . . , N , where the vectors exist if and only if the expression is well-defined
(for instance, the vectors |A−1⟩, |AN+1⟩ do not exist). In this notation, subspaces
X (k) constitute a decomposition of N + 1 qubit space, X2N+1 =

⊕N
k=−1X (k). One

may observe, that the matrix R appearing in the maximization domain of Eq. (A.19)
is block diagonal in the introduced decomposition (in the partition Z ⊗X/Y). For
such retrieval R, let us consider

HR = trZ
(
R(σz ⊗ 1lC4N )

)
. (A.22)

Observe that the matrix HR is block diagonal in the decomposition

X2N =
N⊕
k=0

span(|Ak⟩ : Ak ⊂ {1, . . . , N}). (A.23)

Hence, we will write HR as

HR =
N⊕
k=0

HR,k. (A.24)

Utilizing the above observations, the maximization problem Eq. (A.19) can be
written as

F̃2 =
1

2
+

1

2
max

R: 0≤R≤1l
C22N+1

R=
∑
πW

⊤Z
π ⊗Mπ

|ψ⟩⟨ψ|∈Ω(X⊗Y)

tr [R(σz ⊗ |ψ⟩⟨ψ|)] = 1

2
+

1

2
max

R: 0≤R≤1l
C22N+1

R=
∑
πW

⊤Z
π ⊗Mπ

|ψ⟩⟨ψ|∈Ω(X⊗Y)

⟨ψ|HR|ψ⟩

=
1

2
+

1

2
max

k=0,...,N
max

R: 0≤R≤1l
C22N+1

R=
∑
πW

⊤Z
π ⊗Mπ

λ1(HR,k)

(A.25)
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where λ1(·) stands for the largest eigenvalue. Finally, we observe that HR =
−(σ⊗N

x ⊗ 1lY)HR(σ
⊗N
x ⊗ 1lY), where σx = |0⟩⟨1| + |1⟩⟨0|. It implies that HR,k is

unitarily equivalent to −HR,N−k for any k. We use this fact to write the final
simplification of F̃2.

The following lemma sums up all the considerations presented in this section.

Lemma 7 For the fidelity function F̃2 defined in Eq. (A.4) it holds that

F̃2 =
1

2
+

1

2
max

k=0,...,⌊N/2⌋
max

R: 0≤R≤1l
C22N+1

R=
∑
πW

⊤Z
π ⊗Mπ

∥HR,k∥∞. (A.26)

A.1.3 Technical lemmas

In the following lemma we will observe that optimization problem in Eq. (A.26)
can be reduced to the case k ∈ N, where N = 2k.

Lemma 8 Let N ∈ N and let us take k ∈ N, such that k ≤ N/2. It holds that

max
R: 0≤R≤1l

C22N+1

R=
∑
πW

⊤Z
π ⊗Mπ

∥HR,k∥∞ ≤ max
R̃: 0≤R̃≤1l

C22Ñ+1

R̃=
∑
π W̃

⊤Z
π ⊗M̃π

∥H̃R̃,N−k∥∞, (A.27)

and hence the number of systems on which the matrix W̃π acts is Ñ + 1.

Proof. Let us fix R such that 0 ≤ R ≤ 1lC22N+1 and R =
∑

πW
⊤Z
π ⊗Mπ. Let us

define
R̃ :=

∑
π

(
W⊤Z
π ⊗ 1lC2N−2k

)
⊗
(
Mπ ⊗ 1lC2N−2k

)
. (A.28)

Observe that the matrix R̃ is in the maximization domain of the right-hand
side of Eq. (A.27). Then, we have H̃R̃ = trZ

(
R̃(σz ⊗ 1l)

)
=
⊕

l H̃R̃,l. The

matrix H̃R̃,N−k is defined on the space spanned by the vectors |AN−k⟩ ∈ X2Ñ

for AN−k ⊂ {1, . . . , Ñ}. These vectors can be expressed in the form |AN−k⟩ =
|Bi⟩|BN−k−i⟩, where |Bi⟩ ∈ X2N for Bi such that |Bi| = i, Bi ⊂ {1, . . . , N}, and
|BN−k−i⟩ ∈ X2N−2k , BN−k−i ⊂ {N + 1, . . . , Ñ}. Then, we have

(
⟨AN−k| ⊗ 1l

C2Ñ

)
H̃R̃,N−k

(
|A′

N−k⟩ ⊗ 1l
C2Ñ

)
=

= ⟨BN−k−i|B′
N−k−i′⟩

(
⟨Bi| ⊗ 1lC2N

)
HR

(
|B′

i′⟩ ⊗ 1lC2N

)
⊗ 1l

C4Ñ−N .
(A.29)
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The non-zero blocks exist if and only if i = i′ and BN−k−i = B′
N−k−i′ . Hence, we

have

H̃R̃,N−k =
N−k⊕
i=k

⊕
BN−k−i:

BN−k−i⊂{N+1,...,Ñ}

HR,i ⊗ 1l
C4Ñ−N . (A.30)

That means
∥H̃R̃,N−k∥∞ = max

i=k,...,N−k
∥HR,i∥∞ ≥ ∥HR,k∥∞. (A.31)

In the next lemma we will find the upper bound for Eq. (A.26) in the case
N = 2k for k ∈ N.

Lemma 9 Let k ∈ N and N = 2k. For matrices R and HR,k defined in Subsection
A.1.2 we have

max
R: 0≤R≤1l

C22N+1

R=
∑
πW

⊤Z
π ⊗Mπ

∥HR,k∥∞ ≤ 1−Θ

(
1

k2

)
. (A.32)

Proof. Let us fix R such that 0 ≤ R ≤ 1lC22N+1 and R =
∑

πW
⊤Z
π ⊗Mπ. Through

the rest of the proof, by Bl we denote subsets of {1, . . . , 2k}, such that |Bl| = l,
for l = 0, . . . , 2k. Following the notation introduced in Subsection A.1.2, we define
four types of vectors:

1. |+Ak⟩ = x|0⟩|Ak⟩+
∑
Bk+1:

|Bk+1∩Ak|=k

|1⟩|Bk+1⟩,

2. |−Ak⟩ = x|1⟩|Ak⟩+
∑
Bk−1:

|Bk−1∩Ak|=k−1

|0⟩|Bk−1⟩,

3. |⊕Ak⟩ =
∑
Bk+1:

|Bk+1∩Ak|=1

|1⟩|Bk+1⟩,

4. |⊖Ak⟩ =
∑
Bk−1:

|Bk−1∩Ak|=0

|0⟩|Bk−1⟩,

for each Ak ⊂ {1, . . . , 2k} and some x > 0. Now we define the following matrices:

1. I+ =
∑

Ak
|+Ak⟩⟨Ak|,

2. I− =
∑

Ak
|−Ak⟩⟨Ak|,

3. I⊕ =
∑

Ak
|⊕Ak⟩⟨Ak|,
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4. I⊖ =
∑

Ak
|⊖Ak⟩⟨Ak|.

For arbitrary Ak, A′
k ⊂ {1, . . . , 2k} we have

1. ⟨+Ak |+A′
k
⟩ = x2δ(Ak = A′

k) + |{Bk+1 : |Bk+1 ∩ Ak| = k, |Bk+1 ∩ A′
k| = k}|,

2. ⟨−Ak |−A′
k
⟩ = x2δ(Ak = A′

k) + |{Bk−1 : |Bk−1 ∩ Ak| = k − 1, |Bk−1 ∩ A′
k| =

k − 1}|,
3. ⟨⊕Ak |⊕A′

k
⟩ = |{Bk+1 : |Bk+1 ∩ Ak| = 1, |Bk+1 ∩ A′

k| = 1}|,
4. ⟨⊖Ak |⊖A′

k
⟩ = |{Bk−1 : |Bk−1 ∩ Ak| = 0, |Bk−1 ∩ A′

k| = 0}|.
Observe that if Ak = A′

k, then the above inner products are x2 + k, x2 + k, k, k,
respectively. If |Ak ∩ A′

k| = k − 1, then all the inner products are equal to one.
Finally, if |Ak ∩A′

k| < k− 1, then we obtain all the inner products are equal to zero.
Moreover, we note two useful facts about matrices I+, I−, I⊕, I⊖. Firstly, we have

I†+I+ + I†⊕I⊕ = I†−I− + I†⊖I⊖. (A.33)

Secondly, one can show that

∥I†+I+ + I†⊕I⊕∥∞ = x2 + 2k + 2k2. (A.34)

As far as the first equality is straightforward, to show the second one, note that
for each Ak there is exactly k2 sets A′

k such that |Ak ∩ A′
k| = k − 1. This means

that, by the Birkhoff’s theorem [125], we can express I†+I+ + I†⊕I⊕ in the basis
given by vectors |Ak⟩ as I†+I+ + I†⊕I⊕ = (x2 + 2k)1l + 2

∑k2

i=1Πi, where Πi are
permutation matrices. By the triangle inequality, we have that the spectral norm
is no greater than x2 + 2k + 2k2. By taking the normalized vector |x⟩ ∝∑Ak

|Ak⟩
we get ⟨x|

(
I†+I+ + I†⊕I⊕

)
|x⟩ = x2 + 2k + 2k2.

To state the upper bound for ∥HR,k∥∞ we will use the definition of HR

from Eq. (A.22) and the decomposition from Eq. (A.24). For a given Ak, A
′
k ⊂

{1, . . . , 2k} we have that

(⟨Ak| ⊗ 1lY)HR,k(|A′
k⟩ ⊗ 1lY) =∑

π:
π(Ak)=A

′
k

Mπ −
∑
π:

π(0,Ak)=0,A′
k

Mπ =
∑
π:

π(0)̸=0,
π(Ak)=A

′
k

Mπ −
∑
π:

π(0)̸=0,
π(0,Ak)=0,A′

k

Mπ. (A.35)

Let us now define

GR,k = (I†+ ⊗ 1lY)R(I+ ⊗ 1lY) + (I†⊕ ⊗ 1lY)R(I⊕ ⊗ 1lY)+

− (I†− ⊗ 1lY)R(I− ⊗ 1lY)− (I†⊖ ⊗ 1lY)R(I⊖ ⊗ 1lY).
(A.36)
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Taking Ak, A′
k ⊂ {1, . . . , 2k} we have:

(⟨Ak| ⊗ 1lY)GR,k(|A′
k⟩ ⊗ 1lY) =


x2

∑
π:

π(Ak)=A′
k

Mπ + x
∑

B′
k+1,π:

|B′
k+1∩A′

k|=k,

π(0,Ak)=B′
k+1

Mπ + x
∑

Bk+1,π:
|Bk+1∩Ak|=k,
π(Bk+1)=0,A′

k

Mπ+

+
∑

Bk+1,B
′
k+1,π:

|Bk+1∩Ak|=k,
|B′

k+1∩A′
k|=k,

π(0,Bk+1)=0,B′
k+1

Mπ +
∑

Bk+1,B
′
k+1,π:

|Bk+1∩Ak|=1,
|B′

k+1∩A′
k|=1,

π(0,Bk+1)=0,B′
k+1

Mπ


−


x2

∑
π:

π(0,Ak)=0,A′
k

Mπ + x
∑

B′
k−1,π:

|B′
k−1∩A′

k|=k−1,

π(Ak)=0,B′
k−1

Mπ+

+x
∑

Bk−1,π:
|Bk−1∩Ak|=k−1,
π(0,Bk−1)=A′

k

Mπ +
∑

Bk−1,B
′
k−1,π:

|Bk−1∩Ak|=k−1,
|B′

k−1∩A′
k|=k−1,

π(Bk−1)=B′
k−1

Mπ +
∑

Bk−1,B
′
k−1,π:

|Bk−1∩Ak|=0,
|B′

k−1∩A′
k|=0,

π(Bk−1)=B′
k−1

Mπ


.

(A.37)

Above formula can be simplified to

(⟨Ak| ⊗ 1lY)GR,k(|A′
k⟩ ⊗ 1lY) =

=

x
2
∑
π:

π(Ak)=A
′
k

Mπ + x
∑

B′
k+1,π:

|B′
k+1∩A

′
k|=k,

π(0,Ak)=B
′
k+1

Mπ + x
∑

Bk+1,π:
|Bk+1∩Ak|=k,
π(Bk+1)=0,A′

k

Mπ



−

x
2

∑
π:

π(0,Ak)=0,A′
k

Mπ + x
∑

B′
k−1,π:

|B′
k−1∩A

′
k|=k−1,

π(Ak)=0,B′
k−1

Mπ + x
∑

Bk−1,π:
|Bk−1∩Ak|=k−1,
π(0,Bk−1)=A

′
k

Mπ

 .

(A.38)

Let us write the above as (⟨Ak| ⊗ 1lY)GR,k(|A′
k⟩ ⊗ 1lY) =

∑
π cπMπ, where cπ are

some constants. For each π, let us determine the value of cπ:
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• For π such that π(0) = 0, π(Ak) = A′
k we have cπ = x2 − x2 = 0.

• For π such that π(0) = 0, π(Ak) ̸= A′
k we have cπ = 0.

• For π such that π(0) ̸= 0, π(Ak) = A′
k we have cπ = x2 + x+ x = x2 + 2x.

• For π such that π(0) ̸= 0, π(Ak) ̸= A′
k, π(0, Ak) ̸= 0, A′

k there exists a0 ̸∈
{0} ∪ Ak, such that π(a0) ∈ {0} ∪ A′

k. Therefore, we consider two subcases:

– If for each a ̸∈ {0} ∪ Ak it holds π(a) ̸∈ A′
k, then π(a0) = 0, π(0) ∈ A′

k

and A′
k ⊂ π(0, Ak). Then, cπ = x− x = 0.

– If π(a0) ∈ A′
k, then we have two options:

∗ If π(a0, Ak) = 0, A′
k, then cπ = x− x = 0.

∗ If π(a0, Ak) ̸= 0, A′
k, then cπ = 0.

• For π such that π(0) ̸= 0 and π(0, Ak) = 0, A′
k, we have cπ = −x2 − x− x =

−(x2 + 2x).

Therefore, we can see that GR,k = (x2 + 2x)HR,k. Then, utilizing Eq. (A.33),
Eq. (A.34) and Eq. (A.36) we get

−(x2 + 2k + 2k2)1lC4N ≤ GR,k ≤ (x2 + 2k + 2k2)1lC4N , (A.39)

and finally we obtain

∥HR,k∥∞ ≤ x2 + 2k + 2k2

x2 + 2x
. (A.40)

Minimizing over x > 0, we get for x ≈ 2k2 that ∥HR,k∥∞ ≤ 1 − Θ(1/k2), which
completes this lemma.

A.1.4 Proof of Lemma 2 for qubit case

Proof of Lemma 2. We have the following sequence of conclusions

F2 ≤ F̃2 (a)
= 1

2
+ 1

2
max

k=0,...,⌊N/2⌋
max

R: 0≤R≤1l
C22N+1

R=
∑
πW

⊤Z
π ⊗Mπ

∥HR,k∥∞ (b)

≤ 1
2
+ 1

2
max

k=0,...,⌊N/2⌋
max

R̃: 0≤R̃≤1l
C22Ñ+1

R̃=
∑
π W̃

⊤Z
π ⊗M̃π

∥H̃R̃,N−k∥∞ (c)

≤ 1
2
+ 1

2
max

k=0,...,⌊N/2⌋
1−Θ

(
1

(N−k)2

)
(d)

= 1−Θ
(

1
N2

)
,
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where (a) follows by Eq. (A.2), Eq. (A.4) and Lemma 6, (b) by Lemma 7, (c) by
Lemma 8 and (d) by Lemma 9.

A.2 Proof of upper bound for any dimension d
Lemma 10 Let d ∈ N. The maximum value of the average fidelity function Fd,
defined in Eq. (4.2) is upper bounded by

Fd ≤ 1−Θ

(
1

N2

)
. (A.41)

Proof. The thesis is true for d = 2 which follows from Lemma 2. Now, let us fix
d ∈ N. Let us consider the optimal learning scheme L such that Favg

d (L) = Fd.
Without loss of the generality, we assume that L satisfies the commutation condition,
that is

[L, 1lCd ⊗ U ⊗ (1lCd ⊗ Ū)]⊗N ] = 0, (A.42)

for every unitary matrix U ∈ U(Cd). Then, for any U , we have

Fd = Fd(PU ,QU), (A.43)

and
Fd(PU ,QU) ≤

d− 1

d
+

1

d
min
i

tr(PU,iQU,i). (A.44)

Moreover, for j1 ̸= j2 it holds

tr(PU,j1QU,j2) ≤ tr(PU,j1(1ld −QU,j1)) ≤ 1−min
i

tr(PU,iQU,i). (A.45)

Now, we use L to construct a new learning scheme L′ of qubit von Neumann
measurements in the following way. To do so, we need to contruct three parts of
learning scheme – measurement P ′

U , the initial state σ′ and retrieval part R′.
To construct P ′

U , let Π ∈ Proj(Xd) be a projector onto |0⟩, |1⟩ and let us
define an isometry matrix V =

∑1
i=0 |i⟩⟨i| ∈ L(Xd,X2). Having access to unknown

qubit von Neumann measurement P ′
U we may use it to implement von Neumann

measurement PU⊕1ld−2
acting on Ω(Xd). To do that, we take σ ∈ Ω(Xd) and measure

it in the following way

|0⟩⟨0| ⊗ ΠσΠ+ |1⟩⟨1| ⊗
d−1∑
i=2

tr(σ|i⟩⟨i|)|i⟩⟨i|. (A.46)

If on the first system we measure “0”, then we can project the initial state σ′ ∈ Ω(X2)
into V †(ΠσΠ)V and measure it by using PU . Otherwise, we do nothing. As a
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result we implement the measurement of the form

1∑
i=0

tr(V †σV U |i⟩⟨i|U †)|i⟩⟨i|+
d−1∑
i=2

tr(σ|i⟩⟨i|)|i⟩⟨i| = PU⊕1ld−2
(σ). (A.47)

During the retrieval stage R′, we project the input state ρ ∈ Ω(X2) into V ρV †.
Moreover, as the output of L is a classical label “0”, . . ., “d − 1”, to finalize the
construction of L′, all the labels “1”, . . ., “d− 1” are returned as “1”.

Finally, for a given unitary matrix U ∈ U(X2) and the learning network L′ we
may calculate

F2(P ′
U ,Q′

U) =
1

2

(
tr(V PU,0V

†QU⊕1ld−2,0) + tr(V PU,1V
†(1ld −QU⊕1ld−2,0))

)
≥ 1

2
min
i

tr(PU⊕1ld−2,iQU⊕1ld−2,i) +
1

2

(
1− tr(PU⊕1ld−2,1QU⊕1ld−2,0)

)
≥ min

i
tr(PU⊕1ld−2,iQU⊕1ld−2,i) ≥ dFd − (d− 1).

(A.48)

Therefore, we get

dFd − (d− 1) ≤ Favg
2 (L′) ≤ F2 ≤ 1−Θ

(
1

N2

)
, (A.49)

which completes the proof.

A.3 Pretty good learning scheme

The pretty good learning scheme LPGLS =
(
σ, {Ci}N−1

i=1 ,R
)

consists of the initial
state σ, which is a tensor product of N copies of the maximally entangled state
|ω⟩ = 1√

2
|1lC2⟩⟩, processing channels {Ci}N−1

i=1 that are responsible for majority
voting (see Section 4.3.1) and a binary measurement R = {R, 1l−R}. To construct
the effect R, we fix N0 ∈ N and take n = N0 − 1. Let us define

sn(k,m) :=
k∑
i=0

n−k∑
j=0

δi+j−m

(
k

i

)(
n− k

j

)
(−1)n−k−j, (A.50)

being the convolution of binomial coefficients. We consider the effect R of the form

R =
n∑
k=0

|Rk⟩⟨Rk| (A.51)
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such that
|Rk⟩ =

|Mk⟩⟩
||Mk||2

, (A.52)

L
(
C2,C2n+1

)
∋Mk =

n+1∑
m=0

sn(k, n−m)|0⟩+ sn(k, n+ 1−m)|1⟩√(
n+1
m

) ⟨Dn+1
m |, (A.53)

for k = 0, . . . , n and |Dn+1
m ⟩ is the Dicke state.

Lemma 11 Let |x⟩ =
[
a
b

]
, a, b ∈ C. Then, we have Mk|x⟩⊗n+1 = (a+ b)k(a−

b)n−k|x⟩.

Proof. Direct calculations reveal

Mk|x⟩⊗n+1 =

 ∑n
m=0

(
n+1
n−m

)
· sn(k,m)

( n+1
n−m)

am+1bn−m∑n
m=0

(
n+1

n+1−m

)
· sn(k,m)

( n+1
n+1−m)

ambn+1−m

 =
n∑

m=0

sn(k,m)ambn−m|x⟩

= (a+ b)k(a− b)n−k|x⟩.
(A.54)

Moreover, to prove that R is a valid effect, let us now define

M := [sn(k,m)]nk,m=0 (A.55)

and a diagonal matrix

D :=
n∑

m=0

1(
n
m

) |m⟩⟨m|. (A.56)

Lemma 12 With the notation given above, it holds that M2 = 2n1lCn+1.

Proof. First, observe that Cn+1 = span
(
[xk]nk=0 : x ∈ C

)
. Let us take any vector

of the form |x⟩ := [xk]nk=0, where x ∈ C. We have

M |x⟩ =
[

n∑
m=0

sn(k,m)xm

]n
k=0

=
[
(x+ 1)k(x− 1)n−k

]n
k=0

= (x− 1)n

[(
x+ 1

x− 1

)k]n
k=0

.

(A.57)
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Finally, we calculate

M2|x⟩ = (x− 1)n
(
x+ 1

x− 1
− 1

)n ( x+1
x−1

+ 1
x+1
x−1

− 1

)k
n
k=0

= 2n|x⟩. (A.58)

Lemma 13 Using the notation presented above, we have the following equation
MD = (MD)⊤.

Proof. We will show that ⟨k|MD|m⟩ = ⟨m|MD|k⟩ for any m, k = 0, . . . , n.
W.l.o.g. we can assume that k < m. On the one hand, it holds that

⟨k|MD|m⟩ = sn(k,m)(
n
m

) =
∑

i=0,...,k
j=0,...,n−k
i+j=m

(−1)n−k−j
(
k
i

)(
n−k
j

)(
n
m

) =

k∑
i=max(0,m+k−n)

(−1)n−k−m+i
(
k
i

)(
n−k
m−i

)(
n
m

) =

(−1)n−k−m
k∑

i=max(0,m+k−n)

(−1)i
k!m!(n− k)!(n−m)!

n!i!(k − i)!(m− i)!(n− k −m+ i)!
.

(A.59)

On the other hand, we can calculate

⟨m|MD|k⟩ = sn(m, k)(
n
k

) =
∑

i=0,...,m
j=0,...,n−m
i+j=k

(−1)n−m−j(m
i

)(
n−m
j

)(
n
k

)

=
k∑

i=max(0,m+k−n)

(−1)n−k−m+i
(
m
i

)(
n−m
k−i

)(
n
k

)
= (−1)n−k−m

k∑
i=max(0,m+k−n)

(−1)i
k!m!(n− k)!(n−m)!

n!i!(k − i)!(m− i)!(n− k −m+ i)!
,

(A.60)

which gives us the desired equality and completes the proof.

Lemma 14 The operator R defined in Eq. (A.51) satisfies 0 ≤ R ≤ 1lC2n+2 , and
therefore R = {R, 1l−R} is a valid POVM.
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Proof. Let us fix N0 ∈ N and take n = N0 − 1. Let us consider a matrix
X := n+2

n+1
MDM⊤. On the one hand, by using Lemma 12 and Lemma 13, we get

X =
n+ 2

n+ 1
(MD)⊤M⊤ =

n+ 2

n+ 1
D(M2)⊤ =

n+ 2

n+ 1
2nD. (A.61)

On the other hand, we have

tr
(
M †

kMk′

)
=

n∑
m=0

sn(k,m)sn(k
′,m)(

n+1
n−m

) +
n∑

m=0

sn(k,m)sn(k
′,m)(

n+1
n+1−m

)
=

n∑
m=0

sn(k,m)sn(k
′,m)

[
1(
n+1
n−m

) + 1(
n+1

n−m+1

)]

=
n+ 2

n+ 1

n∑
m=0

sn(k,m)sn(k
′,m)(

n
m

) = ⟨k|X|k′⟩.

(A.62)

Therefore, for all k ̸= k′ we get tr
(
M †

kMk′

)
= 0. According to the definition

Eq. (A.51), we get ⟨Rk|Rk′⟩ = δk,k′ , which gives us 0 ≤ R ≤ 1lC2n+2 .

Lemma 15 Let us fix N0 ∈ N. The approximation QU = {QU,0, 1lC2 − QU,0} of
the von Neumann measurement PU obtained in the pretty good learning scheme is
of the form

QU,0 =
N0

N0 + 1
PU,0. (A.63)

Proof. Given a unitary matrix U ∈ U(C2) we take PU,0 = |x⟩⟨x| for some unit
vector |x⟩ ∈ C2. Let us decompose the (n + 2)-qubit space in the following way
C2n+2

= Z ⊗ X , where Z = C2 and X = C2n+1 . In the proof of Lemma 14
we defined the matrix X = n+2

n+1
MDM⊤ and showed that X = n+2

n+1
2nD, and

tr
(
M †

kMk′

)
= ⟨k|X|k′⟩. Therefore, for any k = 0, . . . , n we have ∥Mk∥22 = n+2

n+1
2n

(nk)
.
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Due to this fact and by Lemma 11, we may express the effect QU,0 as

QU,0 = trX

((
1lC2 ⊗ PU,0

⊗n+1
)
R
)
=
(
1lC2 ⊗ ⟨x|⊗n+1

)
R
(
1lC2 ⊗ |x⟩⊗n+1

)
=

n∑
k=0

1

∥Mk∥22
Mk|x⟩⟨x|⊗n+1M †

k =
n∑
k=0

1

∥Mk∥22
|a+ b|2k|a− b|2(n−k)|x⟩⟨x|

=
n+ 1

n+ 2

n∑
k=0

(
n
k

)
2n

|a+ b|2k|a− b|2(n−k)|x⟩⟨x| = n+ 1

n+ 2

(|a+ b|2 + |a− b|2)n
2n

|x⟩⟨x|

=
n+ 1

n+ 2
|x⟩⟨x|,

(A.64)

which completes the proof.
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Appendix B

PyQBench: a Python library for
benchmarking gate-based quantum
computers

In this Appendix we show examples of usage PyQBench. First, we will describe
in detail how to use PyQBench’s CLI after defining an experiment and a backend.
Next, based on discrimination between measurement in Hadamard basis and
computational one, we will show PyQBench as a library.

B.1 PyQBench as a CLI

In this section we will present possible format of outputs which we can obtain using
PyQBench’s CLI.

Running the experiment and collecting measurements data

After preparing YAML files defining experiment and backend and running the
benchmark, the result of running the above command can be two-fold:

• If the backend is synchronous, the output will contain measurement outcomes
(bitstrings) for each of the circuits run.

• If backend is asynchronous, the output will contain intermediate data con-
taining, among others, job_ids correlated with the circuit they correspond
to.

For synchronous postselection experiment, the part of output looks similar to the
one below.
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Listing B.1: Output YML file sync_results.yml
metadata:
experiments:
type: certification-fourier
qubits:
- target: 0
ancilla: 1

- target: 1
ancilla: 2

- target: 14
ancilla: 16
angles:
start: 0.0
stop: 6.283185307179586
num_steps: 32

gateset: ibmq
method: postselection
num_shots: 8192
backend_description:
name: ibmq_kolkata
asynchronous: false
provider:
group: open
hub: ibm-q
project: main

data:
- target: 0
ancilla: 1
phi: 0.0
results_per_circuit:
- name: id
histogram: {’00’: 2108, ’01’: 2107, ’10’: 2064, ’11’: 1913}
mitigation_info:
target: {prob_meas0_prep1: 0.008399999999999963,

prob_meas1_prep0: 0.006}
ancilla: {prob_meas0_prep1: 0.0126, prob_meas1_prep0:

0.009800000000000031}
mitigated_histogram: {’00’: 0.25603047917671484, ’01’:

0.2573966558350486, ’10’: 0.2521648777124897, ’11’:
0.23440798727574674}

- name: u
histogram: {’00’: 2108, ’01’: 2107, ’10’: 2064, ’11’: 1913}
mitigation_info:
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target: {prob_meas0_prep1: 0.008399999999999963, prob_meas1_prep0:
0.006}

ancilla: {prob_meas0_prep1: 0.0126, prob_meas1_prep0:
0.009800000000000031}

mitigated_histogram: {’00’: 0.25603047917671484, ’01’:
0.2573966558350486, ’10’: 0.2521648777124897, ’11’:
0.23440798727574674}

The data includes target, ancilla, phi, and results_per_circuit. The first
three pieces of information have already been described. The last data results_per_
circuit gives us the following additional information:

• name: the information which measurement is used during experiment, either
string "u" for PU or string "id" for P1l. In this example we consider P1l.

• histogram: the dictionary with measurements’ outcomes. The keys represent
possible bitstrings, whereas the values are the number of occurrences.

• mitigation_info: for backends corresponding to IBM Q devices, the object
backends.properties().qubits contains information that might be used
for error mitigation using the MThree method [119,120]. If the mitigation
info is not available this field will be absent.

• mitigated_histogram: the histogram with measurements’ outcomes after
the error mitigation.

Remarks on using the asynchronous flag

For backends supporting asynchronous execution, the asynchronous setting can
be configured to toggle it. For asynchronous execution to work, the following
conditions have to be met:

• Jobs returned by the backend have unique job_id.

• Jobs are retrievable from the backend using the backend.retrieve_job
method, even from another process (e.g. if the original process running the
experiment has finished).

Since PyQBench cannot determine if the job retrieval works for a given backend, it is
the user’s responsibility to ensure that this is the case before setting asynchronous
to true. In this case, the output async_results.yml looks similar to the one
below.
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Listing B.2: Output YML file async_results.yml
metadata:

experiments:
type: discrimination-fourier
qubits:
- {target: 0, ancilla: 1}
- {target: 1, ancilla: 2}
- {target: 14, ancilla: 16}
angles: {start: 0.0, stop: 6.283185307179586, num_steps: 32}
gateset: ibmq
method: postselection
num_shots: 8192

backend_description:
name: ibmq_kolkata
asynchronous: true
provider: {group: open, hub: ibm-q-psnc, project: main}

data:
- job_id: 63e7f17a17b7ed49ca24e05b
keys:
- [0, 1, id_v0, 0.0]
- [0, 1, id_v1, 0.0]
- [0, 1, u_v0, 0.0]
- [0, 1, u_v1, 0.0]
- [0, 1, id_v0, 0.2026833970057931]
- [0, 1, id_v1, 0.2026833970057931]

(Optional) Getting status of asynchronous jobs

PyQBench provides also a helper command that will fetch the statuses of asyn-
chronous jobs. The command is:

qbench disc-fourier status async_results.yml

and it will display dictionary with histogram of statuses.

Resolving asynchronous jobs

Finally, if the status of jobs is DONE, for asynchronous experiments, the stored
intermediate data has to be resolved in actual measurements’ outcomes as follows:

qbench disc-fourier resolve async-results.yml resolved.yml
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The resolved results, stored in resolved.yml, would look just like if the experiment
was run synchronously. For this example the part of resolved output looks as below.

Listing B.3: Output YML file resolved.yml
metadata:

experiments:
type: discrimination-fourier
qubits:
- target: 0
ancilla: 1
- target: 1
ancilla: 2
- target: 14
ancilla: 16
angles:
start: 0.0
stop: 6.283185307179586
num_steps: 32
gateset: ibmq
method: direct_sum
num_shots: 8192

backend_description:
name: ibmq_kolkata
asynchronous: true
provider:
group: open
hub: ibm-q-psnc
project: main
data:
- target: 0
ancilla: 1
phi: 0.0
results_per_circuit:
- name: id
histogram:
’00’: 2108
’01’: 2107
’10’: 2064
’11’: 1913

mitigation_info:
target:
prob_meas0_prep1: 0.008399999999999963
prob_meas1_prep0: 0.006
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ancilla:
prob_meas0_prep1: 0.0126
prob_meas1_prep0: 0.009800000000000031

mitigated_histogram:
’00’: 0.25603047917671484
’01’: 0.2573966558350486
’10’: 0.2521648777124897
’11’: 0.23440798727574674

- name: u
histogram:
’00’: 2015
’01’: 1989
’10’: 2116
’11’: 2072
mitigation_info:
target:
prob_meas0_prep1: 0.008399999999999963
prob_meas1_prep0: 0.006

ancilla:
prob_meas0_prep1: 0.0126
prob_meas1_prep0: 0.009800000000000031

mitigated_histogram:
’00’: 0.24453814824760045
’01’: 0.24254197782645848
’10’: 0.2585792025412591
’11’: 0.2543406713846819

Therefore, the final results will look the same no matter in which mode the
benchmark was run, and hence in both cases the final output file is suitable for
being an input for the command computing the discrimination probabilities.

Tabulating results

As a last step in the processing workflow, the results file has to be passed to
tabulate command saving the results in a CSV file presented in Table 7.1.

qbench disc-fourier tabulate results.yml results.csv

B.2 PyQBench as a library
Here, we will demonstrate how qbench package can be used with user–defined
measurement. For this purpose, we consider discrimination scheme between PH and
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P1l for the Hadamard gate. Before we start let us determine the optimal strategy
and the optimal discrimination probability for this scheme.

Proposition 9 Let us consider discrimination scheme between PH and P1l where
H is the Hadamard gate. The explicit formula for discriminator in this example
reads:

|ψ0⟩ =
1√
2
(|00⟩+ |11⟩), (B.1)

with final measurements being equal to

V0 =

(
α −β
β α

)
, (B.2)

and
V1 =

(
−β α
α β

)
, (B.3)

where

α =

√
2−

√
2

2
= cos

(
3

8
π

)
, (B.4)

and

β =

√
2 +

√
2

2
= sin

(
3

8
π

)
. (B.5)

Finally, the optimal probability of correct discrimination is equal to

psucc(PH ,P1l) =
1

2
+

√
2

4
. (B.6)

Proof. Let U = H and let ΦU and Φ1l be two unitary channels. We will show that

min
E∈DU(C2)

∥ΦUE − Φ1l∥⋄ = ∥ΦUE0 − Φ1l∥⋄, (B.7)

where
E0 =

1√
2

(
1 + i 0
0 −1− i

)
. (B.8)

For HE0 we calculate that
ν2((HE0)

†) =
1

2
(B.9)

So, we obtain
∥ΦHE0 − Φ1l∥⋄ =

√
2. (B.10)
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It implies that it is enough to prove

min
E∈DU(C2)

∥ΦHE − Φ1l∥⋄ =
√
2. (B.11)

This condition is equivalent to show that for every E ∈ DU(C2)

ν(H†E) ≤ 1√
2

(B.12)

which is equivalent to show that for every E ∈ DU(C2) there exists ρ ∈ Ω(C2) such
that

|tr (ρHE) | ≤ 1√
2
. (B.13)

Now, let us define E =

(
E0 0
0 E1

)
and take ρ =

(
1
2

0
0 1

2

)
. Then, for every

E ∈ DU(C2) we have

|tr(ρHE)| = 1

2
√
2

∣∣∣∣tr( E0 E1

E0 −E1

)∣∣∣∣ = 1

2
√
2
|E0 − E1|

≤ 1√
2
,

(B.14)

which completes the proof of Eq.(B.7). Now, let us take |ψ0⟩ of the form

|ψ0⟩ =
1√
2
(|00⟩+ |11⟩). (B.15)

We calculate the trace distance

∥ (PH ⊗ 1l) (|ψ0⟩⟨ψ0|)− (P1l ⊗ 1l) (|ψ0⟩⟨ψ0|)∥1 =
√
2. (B.16)

It implies |ψ0⟩ is the discriminator, and moreover

psucc(PH ,P1l) =
1

2
+

√
2

4
. (B.17)

Next, similarly as in Section 6.2.2, we determine the final measurements PVi . For
the discrimination task between PH and P1l the explicit form of V0 and V1 is given
as follows:

V0 =

(
α −β
β α

)
, (B.18)
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and
V1 =

(
−β α
α β

)
, (B.19)

where

α =

√
2−

√
2

2
= cos

(
3

8
π

)
, (B.20)

and
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√
2 +

√
2

2
= sin

(
3

8
π

)
. (B.21)

We include the Mathematica notebook [107] in mathematics file computing V0 and
V1 of the final optimal measurement PVi , i ∈ {0, 1}.

Decomposition

To use the above benchmarking scheme in PyQBench, we first need to decompose
the unitary matrices above into sequences of gates. In standard approach, a circuit
taking |00⟩ to the Bell state |ψ0⟩ comprises the Hadamard gate followed by CNOT
gate on both qubits (see Fig. B.1). To decompose V0 observe that V0 = RY

(
3
4
π
)
,

H •
|00〉

Figure B.1: Decomposition of the Bell state |ψ0⟩.

where RY is rotation gate around the Y axis. To obtain V1 we need only to swap
the columns, i.e.

V1 = RY

(
3

4
π

)
X . (B.22)

Remark 6 It is worth mentioning that each NISQ device has own native build-in
gates which can be implemented in quantum circuit. For example IBM Q devices
have the following native gates: RZ,RX and CX, whereas Rigetti computers have:
RZ,RX and CZ. By default, PyQBench uses native gates to perform benchmarks
running through CLI. However, if a user creates their experiment by using the
PyQBench library, we need to decompose a circuit with native gates on our own.

Implementation

We will now demonstrate how to implement this scheme in PyQBench. For this
example we will use the Qiskit Aer simulator [126]. First, we import the necessary

171



functions and classes from PyQBench and Qiskit. We also import numpy for the
definition of np.pi constant and the exponential function. The exact purpose of
the imported functions will be described at the point of their usage.

Listing B.4: Imports needed for running benchmarking example
import numpy as np
from qiskit import QuantumCircuit, Aer
from qbench.schemes.postselection import benchmark_using_postselection
from qbench.schemes.direct_sum import benchmark_using_direct_sum

To implement the discrimination scheme in PyQBench, we need to define all the
necessary components as Qiskit instructions. We can do so by constructing a circuit
object QuantumCircuit() acting on two qubits 0 and 1 and then converting them
using to_instruction() method.

Listing B.5: Defining components for Hadamard experiment
def state_prep():

circuit = QuantumCircuit(2)
circuit.h(0)
circuit.cnot(0, 1)
return circuit.to_instruction()

def u_dag():
circuit = QuantumCircuit(1)
circuit.h(0)
return circuit.to_instruction()

def v0_dag():
circuit = QuantumCircuit(1)
circuit.ry(-np.pi * 3 / 4, 0)
return circuit.to_instruction()

def v1_dag():
circuit = QuantumCircuit(1)
circuit.ry(-np.pi * 3 / 4, 0)
circuit.x(0)
return circuit.to_instruction()

def v0_v1_direct_sum_dag():
circuit = QuantumCircuit(2)
circuit.ry(-np.pi * 3 / 4, 0)
circuit.cnot(0, 1)
return circuit.to_instruction()
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We now construct a backend object, which in this case is an instance of Aer
simulator.

Listing B.6: Defining a backend
simulator = Aer.get_backend("aer_simulator")

In the simplest scenario, when we do not want to tweak execution details and simply
wishes to run the experiment on a given backend, everything that is required is
to run benchmark_using_postselection or benchmark_using_direct_sum func-
tion, depending on the user preference. It is worth mentioning that exactly here we
can fix qubits (target and ancilla) which we want to use in the experiment and
number of experiments sampled the empirical probability of correct discrimination.
Recall, in the postselection scheme the total number of experiments equals 4·
num_shots_per_measurement, whereas in the direct sum experiment the total
number is 2· num_shots_per_measurement.

Listing B.7: Simulation benchmark by using postselection
postselection_result = benchmark_using_postselection(

backend=simulator,
target=0,
ancilla=1,
state_preparation=state_prep(),
u_dag=u_dag(),
v0_dag=v0_dag(),
v1_dag=v1_dag(),
num_shots_per_measurement=10000)

Listing B.8: Simulation benchmark by using direct sum
direct_sum_result = benchmark_using_direct_sum(

backend=simulator,
target=1,
ancilla=2,
state_preparation=state_prep(),
u_dag=u_dag(),
v0_v1_direct_sum_dag=v0_v1_direct_sum_dag(),
num_shots_per_measurement=10000)

The postselection_result and direct_sum_result variables contain now the
empirical probabilities of correct discrimination. We can compare them to the
theoretical value and compute the absolute error.
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Listing B.9: Examining the benchmark results
p_succ = (2 + np.sqrt(2)) / 4
print(f"Analytical p_succ = {p_succ}")
print(f"Postselection: p_succ = {postselection_result}, abs. error =

{p_succ - postselection_result}")
print(f"Direct sum: p_succ = {direct_sum_result}, abs. error =

{p_succ - direct_sum_result}")

Analytical p_succ = 0.8535533905932737
Postselection: p_succ = 0.8559797193791593, abs. error =

-0.0024263287858855564
Direct sum: p_succ = 0.85605, abs. error = -0.0024966094067262468

Gaining more control of the experiment

In the example presented above we used functions that automate the whole process
– from the circuit assembly, through running the simulations to interpreting the
results. But what if we want more control over some parts of this process?

To show how to modify the basic example, for the rest of this example we focus
only on the postselection case, as the direct sum case is analogous. We continue by
importing two more functions from PyQBench.

Listing B.10: Assembling circuits
from qbench.schemes.postselection import (

assemble_postselection_circuits,
compute_probabilities_from_postselection_measurements)

circuits = assemble_postselection_circuits(
target=0,
ancilla=1,
state_preparation=state_prep(),
u_dag=u_dag(),
v0_dag=v0_dag(),
v1_dag=v1_dag())

Recall that for a postselection scheme we have two possible choices of the mea-
surement, PU or P1l, and two possible choices of a final measurement, PV0 or
PV1 . It gives a total of four circuits needed to run the benchmark. The function
assemble_postselection_circuits creates all four circuits and places them in a
dictionary with keys "id_v0", "id_v1", "u_v0", "u_v1".
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We will now run our circuits using noisy and noiseless simulation. We start by
creating a noise model using Qiskit.

Listing B.11: Adding noise model
from qiskit.providers.aer import noise

error = noise.ReadoutError([[0.75, 0.25], [0.8, 0.2]])

noise_model = noise.NoiseModel()
noise_model.add_readout_error(error, [0])
noise_model.add_readout_error(error, [1])

Once we have our noise model ready, we can execute the circuits with and without
noise. To this end, we will use Qiskit’s execute function. One caveat is that we
have to keep track which measurements correspond to which circuit. We do so by
fixing an ordering on the keys in the circuits dictionary.

Listing B.12: Running circuits
from qiskit import execute

keys_ordering = ["id_v0", "id_v1", "u_v0", "u_v1"]
all_circuits = [circuits[key] for key in keys_ordering]

counts_noisy = execute(
all_circuits,
backend=simulator,
noise_model=noise_model,
shots=10000).result().get_counts()

counts_noiseless = execute(
all_circuits,
backend=simulator,
shots=10000).result().get_counts()

Finally, we use the measurement counts to compute discrimination probabilities
using compute_probabilities_from_postselection_measurements function.

Listing B.13: Computation probabilities
prob_succ_noiseless =

compute_probabilities_from_postselection_measurements(
id_v0_counts=counts_noiseless[0],
id_v1_counts=counts_noiseless[1],
u_v0_counts=counts_noiseless[2],
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u_v1_counts=counts_noiseless[3])

prob_succ_noisy =
compute_probabilities_from_postselection_measurements(
id_v0_counts=counts_noisy[0],
id_v1_counts=counts_noisy[1],
u_v0_counts=counts_noisy[2],
u_v1_counts=counts_noisy[3])

As a result, we obtained prob_succ_noiseless = 0.8524401115559386 and
prob_succ_noisy = 0.5017958400693446. As expected, for noisy simulations,
the result lies further away from the target value of 0.8535533905932737.
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Appendix C

Certification of von Neumann
measurements

In this Appendix, we will focus on calculating the distance from the q-numerical
range the to the origin of the coordinate system.

C.1 Distance of q-numerical range to zero

Let us begin with the two-dimensional case when the unitary matrix U has two
eigenvalues λ1 and λ2. Without loss of generality we can assume λ1 = 1. From [57]
we know that the q-numerical range is an elliptical disc with eccentricity equal to
q and foci qλ1 and qλ2, see Fig. C.1. Let c denote the distance from the center
of the ellipse to the focus and a be the distance from the center of the ellipse to
its vertex. Using this notation the eccentricity yields q = c/a. Let b denote the
distance from the center of the ellipse to its co-vertex, which it the point which
saturates the minimum.

First, we will calculate b. We note that

c =
1

2
∥qλ1 − qλ2∥ =

q

2
∥λ1 − λ2∥ =

√
1− δ

2
∥λ1 − λ2∥ . (C.1)

From the properties of the ellipse and the form of the eccentricity q we have

b =
√
a2 − c2 =

√
c2

q2
− c2 = c

√
1

q2
− 1 = c

√
1

1− δ
− 1 = c

√
δ

1− δ
. (C.2)

Hence

b =

√
1− δ

2
∥λ1 − λ2∥

√
δ

1− δ
=

√
δ

2
∥λ1 − λ2∥ . (C.3)
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Figure C.1: Schematic illustration of an ellipse and notation used in Appendix,
where we use shortcut notation ν := νq(U).

On the other hand we have

νq(U) + b =

∥∥∥∥qλ1 + qλ2
2

∥∥∥∥ =
q

2
∥λ1 + λ2∥ =

√
1− δ

2
∥λ1 + λ2∥ , (C.4)

and therefore

νq(U) =

√
1− δ

2
∥λ1 + λ2∥ −

√
δ

2
∥λ1 − λ2∥

=
1

2

(√
1− δ ∥λ1 + λ2∥ −

√
δ ∥λ1 − λ2∥

)
.

(C.5)

Now we need to show that the above expression for the distance νq (U) is valid
also for higher dimensions. The boundary of q-numerical ranges for larger matrices
is described in [57]. It consists of parts of a few ellipses obtained is an analogous
way. Let λ1 and λd be the pair of the most distant eigenvalues of U . Let λi and λj
bo some pair of eigenvalues such that i, j ̸= 1, d. Let ν̃q (U) be the distance from
zero the ellipse built on λi and λj in the same way as above. Our goal is to prove
that ν̃q (U) > νq (U).

We note that ∥λ1 − λ2∥ > ∥λi − λj∥. Hence to prove that ν̃q (U) > νq (U) it
suffices to show that ∥λ1 + λ2∥ < ∥λi + λj∥. As all the eigenvalues lie on the
unit circle, then from the parallelogram law we have ∥λ1 + λ2∥2 = 4− ∥λ1 − λ2∥2.
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Therefore

∥λ1 + λ2∥ =

√
4− ∥λ1 − λ2∥2 <

√
4− ∥λi − λj∥2

=
√

4−
(
4− ∥λi + λj∥2

)
= ∥λi + λj∥ .

(C.6)

and thus ν̃q (U) > νq (U), from which it follows that

ν√1−δ (U) =
1

2

(√
1− δ ∥λ1 + λd∥ −

√
δ ∥λ1 − λd∥

)
(C.7)

holds for any dimension d. The above formula can be easily translated into
trigonometric functions where Θ is the angle between λ1 and λd. Hence, we have

ν√1−δ (U) =
√
1− δ cos

(
Θ

2

)
−
√
δ sin

(
Θ

2

)
. (C.8)

Therefore, we have

pII = ν2√
1−δ (U ⊗ 1l) = ν2√

1−δ (U) =

(√
1− δ cos

(
Θ

2

)
−
√
δ sin

(
Θ

2

))2

. (C.9)
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