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a b s t r a c t

Sudden cardiac death from lethal arrhythmia is a preventable cause of death. Ventricular
fibrillation and tachycardia are shockable electrocardiographic (ECG)rhythms that can
respond to emergency electrical shock therapy and revert to normal sinus rhythm if diag-
nosed early upon cardiac arrest with the restoration of adequate cardiac pump function.
However, manual inspection of ECG signals is a difficult task in the acute setting. Thus,
computer-aided arrhythmia classification (CAAC) systems have been developed to detect
shockable ECG rhythm. Traditional machine learning and deep learning methods are
now progressively employed to enhance the diagnostic accuracy of CAAC systems. This
paper reviews the state-of-the-art machine and deep learning based CAAC expert systems
for shockable ECG signal recognition, discussing their strengths, advantages, and draw-
backs. Moreover, unique bispectrum and recurrence plots are proposed to represent shock-
able and non-shockable ECG signals. Deep learning methods are usually more robust and
accurate than standard machine learning methods but require big data of good quality
for training. We recommend collecting large accessible ECG datasets with a meaningful
proportion of abnormal cases for research and development of superior CAAC systems.
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1. Introduction

Sudden cardiac death (SCD) is an essential preventable natural death cause. It has an estimated annual incidence of up to
5 million cases globally [1]. SCD is defined as a cardiac arrest that occurs within 24 h of symptom onset or when the victim is
last seen well [2]. In cardiac arrest, the heart prevents beating or fails to beat effectively, resulting in the cessation of oxygen
delivery to the complete body due to the stoppage of blood flow. Ischemic brain injury typically sets in within minutes of
cardiac arrest [3], leaving only a small window of opportunity for therapy to abort SCD [4–6].

Most of the SCD cases are caused by ischemic heart disease, but the primary arrhythmic disorder is common in those aged
below 35 years [2,7]. Regardless of etiological origin, early electrocardiographic (ECG) diagnosis of shockable versus non-
shockable rhythm [8,9] upon circulatory collapse is crucial. The shockable ECG rhythms comprising ventricular fibrillation
(VF) and ventricular tachycardia (VT) can potentially revert to normal sinus rhythm with the restoration of adequate cardiac
pump function upon emergency administration of electrical shock delivered via implantable cardioverter-defibrillator
devices [5] or automatic external defibrillator (AED) [4]. In contrast, shock therapy will neither reestablish sinus rhythm,
nor cardiac flow in non-shockable rhythms, which comprise asystole (absent electrical activity in the heart) and pulseless
electrical activity, where electromechanical decoupling disables heart contraction despite organized electrical heart rhythm
[2,4–7,120,121]. Given that downstream management and prognosis are based on the correct ECG interpretation during car-
diac arrest, artificial intelligence (AI) methods have been increasingly incorporated into computer-aided arrhythmia classi-
fication (CAAC) systems to enhance the accuracy of real-time detection of shockable ECG rhythms [9–11].

The majority of SCDs occur out-of-hospital without access to ECG diagnosis and resuscitation, resulting in poor survival or
neurological outcomes [1–3]. In the setting of cardiac arrest, AED devices are generally used to deliver electrical shocks to the
heart to revive normal heart rhythm [12]. Accurate ECG rhythm diagnosis (shockable versus non-shockable) is essential in
AED design, which motivates the burgeoning development of novel CAAC systems and related AI-based methods.

2. The morphology of shockable and non-shockable ECG signals

The ECG is the primary and most accessible diagnostic tool for detecting diverse heart conditions, including ischemic
heart disease, conduction abnormalities, and arrhythmia [13]. The ECG detects and records the heart rate and rhythm by
detecting myocardial electrical activity throughout the cardiac cycle. In designing AED, the accurate identification of shock-
able versus non-shockable ECG rhythms is vital in order to establish defibrillation parameters [8–11]. Based on ECG signal
characteristics, shockable and non-shockable rhythms can be classified using threshold values of heart rate, ECG QRS wave
width and height[8]. These details are presented in Tables 1 and 2.

2.1. Shockable rhythms

2.1.1. Ventricular fibrillation (VF)
VF is a fatal arrhythmia that often results in death without timely intervention [14]. It may be due to ischemic heart dis-

ease, cardiomyopathy, or primary arrhythmic conditions [15]. During VF, due to rapid fine twitch-like contractions of the
myocardium, the heart cannot supply the blood appropriately to get meaningful output. Hence, early identification is critical
for the delivery of shock therapy [16,17]. An example of VF signal is shown in Fig. 1 [18].

2.1.2. Ventricular tachycardia (VT)
VT is described as three or more ventricular ectopic beats in a sequence [15]. Ventricular ectopic is characterized by

broader ECG QRS morphology. When VT exceeds 30 s, it is termed sustained VT. Unlike VF, VT can sometimes produce rea-
sonable cardiac output and be compatible with life. However, it can also induce hemodynamic compromise, especially at
higher heart rates, resulting in cardiac arrest (pulseless VT). Additionally, it can degenerate into VF. Hence, early detection
of cardiac arrest is essential. An example of VT signal (Ref. [18]) with a broader QRS duration of individual ECG complexes is
depicted in Fig. 2.

Table 1
Classification of shockable and non-shockable rhythms based on width of QRS complex and beats per minute values of ECG signal.

Rhythm Types of Rhythms Origin Width of QRS (ms) and beats per minute (BPM)

Shockable (i) Polymorphic Ventricular Tachycardia Ventricular (i) QRS > 120 & BPM > 150
Non-Shockable (i) Supraventricular Tachycardia

(ii) Supraventricular Tachycardia with narrow QRS
(iii) Other non-shockable rhythms with narrow QRS
(iv) (iv) Agonal Rhythms

Supraventricular (i) 120 < QRS < 150 & BPM < 150.
(ii) QRS < 120 & BPM > 100.
(iii) QRS < 120
(iv) QRS > 120 and BPM < 100.
(v) BPM < 20
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2.2. Non-shockable rhythms

2.2.1. Asystole

� There is both an absence of electrical (ECG depolarization and repolarization) and mechanical ventricular activities, which
manifest as ‘‘flatline” on ECG and absent heart contraction. The ECG in systole is never truly ‘‘flat” due to signal noise.
Hence, a threshold value of <0.1 mV is typically applied [8]. An example of an asystole ECG signal (Ref. [18]) is shown
in Fig. 3. Note that in addition to the subtle signal variation, there is a broader baseline fluctuation that is probably
due to body movement, for instance, during cardiopulmonary resuscitation. The illustration exemplifies the difficulty
to differentiate from fine VF, as mentioned above [12].

Fig. 1. An example of VF ECG signal.

Fig. 2. . An example of VT ECG signal.

Table 2
Classification of shockable and non-shockable rhythms based on amplitude values of ECG signal.

Rhythm Types of Rhythm Amplitude (mV)

Shockable (i) Coarse Ventricular fibrillation
(ii) Fine Ventricular fibrillation

(i) > 0.2 mV
(ii) Between 0.1 and 0.2 mV.

Non-Shockable (i) Asystole (i) < 0.1 mV
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2.2.2. Pulseless electrical activity (PEA)
The presence of an organized ECG rhythm without a detectable pulse is referred to as PEA. It includes normal sinus

rhythm, sinus tachycardia, and supraventricular tachyarrhythmias such as atrial fibrillation (AF), atrial flutter, atrioventric-
ular nodal reentrant tachycardia, and atrioventricular reentrant tachycardia [8]. Generally associated with palpable pulses,
these ECG rhythms’ appearance during cardiac arrest implies electromechanical dissociation where electrical activity is
uncoupled from and fails to induce cardiac myofibril contraction. Possible causes, including severe biochemical, metabolic,
hemodynamic, and mechanical derangements, should be systemically ruled out and reversed rapidly if possible. Electrical
shock therapy is unlikely to restore adequate cardiac output. An example of a PEA signal (Ref. [19]), sinus tachycardia, is
shown in Fig. 4.

3. Computer-aided arrhythmia classification (CAAC)

Manual inspection of morphological alterations associated with various shockable and non-shockable ECG rhythms is
subjective, qualitative, and error-prone. The discrimination between shockable rhythms from non-shockable must be instan-
taneous and accurate. The ECG during cardiac arrest can be dynamic. One of the main challenges for detecting actionable
shockable rhythm lies with transitional beats, which is when the non-shockable rhythm changes into the shockable rhythm.
In such conditions, immediate recognition is required for life-saving treatment [8]. AED devices are embedded with different
CAAC algorithms, while the efficiency of the device depends on the type of CAAC algorithm integrated in it.

Fig. 3. An example of an asystole ECG signal.

Fig. 4. An example of a sinus tachycardia ECG signal.
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This article reviews the state-of-the-art methods developed for shockable arrhythmia detection. The general block dia-
gram of a CAAC system is shown in Fig. 5. A detailed description of each block of CAAC is given in the following sections.

AI is a branch of science involving the design of computer programs that simulate human intelligence methods in extract-
ing and processing information based on previous experience and then making decisions [20]. AI has various applications in
many fields, such as healthcare [21,22,116–119], gaming [23], data security [24–26], and others[27–29].

This paper reviews the related studies that have applied AI to shockable rhythm recognition in the literature, from 2015
to 2020. Besides, we are focusing on the effect of nonlinear features in recognizing the shockable rhythms. We carried out the
experiments by analyzing the impact of various nonlinear feature combinations in terms of the accuracy, comparing our
results with those provided by the state-of-the-art methods. To the best of our knowledge, this is the first comprehensive
review focusing on nonlinear features for automated detection of shockable ECG signals.

4. Databases

For ECG-based signal analysis, several databases are publicly available. This section lists the most widely-used databases
for shockable rhythms analysis, describes how the database records were obtained, and discusses recorded signals’
characteristics.

4.1. MIT-BIH arrhythmia database

This database [19,30] can be downloaded freely from (https://www.physionet.org/content/mitdb/1.0.0/) [19]. The data-
base comprises >4000 long-term ambulatory ECG recordings. There are 48 half-hours, two-channel ambulatory ECG record-
ings of 47 subjects (male: female 25:22; age range 23–89 years), and two additional recordings (201 and 202) characterizing
the same subject. The resolution for digitization is 11 bits over a 10-mV range, and each channel is digitized at 360 samples
per second. The lead configuration of the database is as follows: the modified lead II (ML-II), lead V1, was obtained by locat-
ing the electrodes on the chest. In ML- II, the normal QRS complexes are notable. In some cases, (as in records 102 and 104),
surgical dressings (some of the subjects were inpatients) precluded ML-II, and the alternative lead V5 was used.

The records of the MIT-BIH database, according to the Association for the Advancement of Medical Instrumentation
(AAMI), are partitioned into five groups: normal (N), supraventricular ectopic (SVE), ventricular ectopic (VE), fusion (F),
and unknown (Q) (see Table 3).

4.2. The Creighton University Ventricular tachyarrhythmia database (CUDB)

The Creighton University Ventricular Tachyarrhythmia Database (https://archive.physionet.org/physiobank/database/
cudb/) [31] includes data of 35 subjects with 8-minutes ECG recordings. It concerns patients that have suffered continuous
VT, ventricular flutter, and VF seizures. All database records were digitized in real-time analog signals from patient screens
except for the first record obtained from a long-term ECG (Holter) recording. The records were digitized at 250 Hz with 12-
bit resolution over a 10 V range with 127,232 samples for each record.

4.3. MIT-BIH Malignant Ventricular arrhythmia database (VFDB)

The MIT-BIH Malignant Ventricular Arrhythmia Database (https://archive.physionet.org/physiobank/database/vfdb/) [18]
includes data of22 subjects with half-hour ECG recordings who have suffered continuous seizures of VT, ventricular flutter,
and VF. All annotations of this database concern rhythm change, most of them are marking changes in cardiac rhythm.

Fig. 5. General block diagram of a CAAC system.
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4.4. American Heart Association Database (AHADB)

The American Heart Association (AHA) (https://www.ecri.org/american-heart-association-ecg-database-usb) [30] pre-
sents information about ventricular ectopy, collected over 40 years, based on its severity. The AHA is a structured dataset
used to evaluate ventricular arrhythmia of 82-channel selections of analog ambulatory ECG recordings. These recordings
are classified into eight classes. Each class has10recordings, as the most important of which are: 1) Ventricular ectopy, 2)
Isolated unifocal PVCs, 3) Isolated multifocal PVCs, 4) Ventricular bi- and trigeminy, 5) R-on-T PVCs, 6) Ventricular couplets,
7) Ventricular tachycardia, and 8) Ventricular flutter/fibrillation. There are two versions of this database; the first one is the
short version that includes 30 min of annotated signals and 5 min of unannotated signals. In comparison, the extended ver-
sion includes two and a half hours of unannotated signals and 30 min of annotated signals. Besides, 75 records are available
as the test set for the evaluation.

4.5. The MIT-BIH atrial fibrillation database (AFDB)

The MIT-BIH Atrial Fibrillation Database (https://physionet.org/content/afdb/1.0.0/) [30,32] comprises twenty-five long-
term ECG recordings of subjects suffering from atrial fibrillation. Each record contains two ECG signalswith10-hour duration
and sampling rate of 250 Hz. In Table 4, we have summarized the number of training and testing data used in this study.

4.6. Cross-validation of data

The k-fold cross-validation is a beneficial technique which can be used to address the overfitting issue [33]. In the k-fold
validation, the available n samples are divided into k disjoint subsets each of size n/k. The cross-validation experiment is
repeated k-times, using each time one of these subsets for validation, while the remaining subsets are used for training pur-
poses. In our study, a popular 10-fold cross-validation scheme was employed.

5. Methods

Nowadays, AI has been increasingly used in designing CAAC systems. AI methods for ECG analysis can be classified into
two main approaches: traditional machine learning (ML) and deep learning (DL) methods. In the following sections, we dis-
cuss robust ML and DL methods used for classifying shockable and non-shockable rhythms. Furthermore, we discuss in detail
the advantages, disadvantages, challenges, and possible future research directions in this relevant field.

Table 3
Summary of ECG beats presented in the MIT-BIH database according to ANSI/AAMI EC57: 2012 standard classes.

MIT-BIH N SVE VE F Q

heartbeat
types

Normal Atrial premature Premature ventricular
contraction

Fusion of normal and
ventricular

Paced

Left bundle branch
block

Aberrant atrial
premature

Ventricular escape Fusion of normal and
paced

Right bundle branch
block

Nodal (junctional)
premature

Unclassifiable

Atrial escape Supraventricular
Premature

Nodal (junctional)
escape

Table 4
The total number of 2 s ECG segments (Train + Test) collected from three datasets.

Database Class name Train Test Total

MIT-BIH Shockable 19,000 4760 23,760
Non-Shockable 8640 2160 10,800

CUDB Shockable 1280 320 1600
Non-Shockable 569 143 712

VFDB Shockable 2854 714 3568
Non-Shockable 15,625 3907 19,532

Total 47,968 12,004 59,972
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5.1. Machine learning (ML) methods

MLmethods used for automated detection of shockable ECG signals include four main steps: preprocessing the input ECG
signals, extracting the features (attributes) from the preprocessed signals, selecting the subset of essential features from the
extracted features, and feeding these features to the classifiers (Fig. 5).

5.1.1. 1) Preprocessing
Robust preprocessing algorithms are needed to have high classification accuracy. This preliminary step reduces the ECG

signal noise by smoothing the ECG signal and reducing drift suppression and baseline wander. This preprocessing step makes
the ECG signal suitable for subsequent processes. The most common methods used to reduce signal noise are the following:
(i) Second-order low-pass and high-pass Butterworth filtering [9,34–38], (ii) Daubechies wavelet 6 (db6) [39]; and (iii)
Orthogonal wavelet filter [11,40]. In addition, many previous works have segmented ECG signals into ECG beats or segments
of varying durations (e.g., 2 and 5 s) before extracting the features. The most common algorithm used here is the Pan-
Tompkins algorithm [41], which detects the ECG R-peaks for segmentation.

5.1.2. 2) Feature extraction
The next stage is the feature extraction stage, which is considered the most crucial stage in ML. Previous studies have

mostly focused on developing optimal feature extraction methods. The common extracted features applied to shockable
ECG rhythm diagnosis can beclassifiedintofourmaincategories:temporal/morphologicalfeatures, spectralfeatures, time–fre-
quency/wavelet features, and complexity features (nonlinear features[42]). The complexity features are the widely-
explored feature extraction method [42] used in CAAC systems for shockable diagnosis because of the time-varying and ran-
dom nature of ECG signals. The details on these features are given below:

a) Temporal/Morphological features

These features are described in the time domain, representing amplitude, slope, and heart rate. The most common fea-
tures are threshold crossing interval (TCI) [43], threshold crossing sample count (TCSC) [44], mean absolute value (MAV)
[45], standard exponential (STE) [46], and modified exponential (MEA) [46].

The TCI is determined as the time interval between sequential pulses that crosses a threshold. The threshold value is set
to 20% of the maximum absolute values of each one-second segment. Similarly, the TCSC is an enhanced version of the TCI
parameter with some changes consisting in the use of a three-second segment instead of a one-second segment, consider-
ation of both positive and negative thresholds instead of only the positive threshold, and counting samples that meet the
preset interval within a given time interval instead of counting pulses. The STE is determined as the number of crossing
points of an ECG signal with a decaying exponential curve on both sides. The MEA is the altered version of STE that elevates
the curve at the point of crossing onto their lative maximum. This change gives rise to more reliable detection results.
Besides, many other temporal and morphological features have been used in other studies, but they are less typical. These
features include auxiliary counts (count1, count2, and count3) [47], bCP [48], x1, and x2 [49]. These features are used to
decrease the dimension of ECG signals.

b) Spectral features

These features are defined in the frequency domain. They account for spectral concentration, normalized spectral
moments, and the corresponding power information in different frequency bands. These features include VF filter (VFleak)
[50], spectral algorithm (M, A1, A2 and A3) [51], and median frequency (MF) [52].

The VFleak is a narrow band-stop filter response that determines the mean frequency region of an ECG segment, and its
output is the VF filter leakage. The spectral algorithm computes the power information and energy content over different
frequency ranges using Fourier analysis. The MF is a central frequency of the spectral mass observed in an ECG segment.
In addition, there are some other spectral features used in literature such as spectral characteristics (x3, x4, and x5) pre-
sented in [52] or time-domain baseline content (bWT) presented in [48].

c) Time-frequency/wavelet features

These features are based on wavelet analysis of ECG signals such as kurtosis [53], measuring the proportion of outliers
inclined to the distribution of a sample data, and skewness[54], measuring the asymmetry of the data around the sample
mean, standard deviation, and other features. These features are provided a frequency and amplitude moderated function.

d) Complexity features (nonlinear features)

These features include different measures associated to the complexity of the considered ECG segment [55,56].The most
common complexity features extracted from ECG include the recurrence quantification analysis features (RQA) [57], Shanon
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entropy [58], Renyi entropy [58], sample entropy (SamEn) [59], permutation entropy [60], fractal dimension (FD) [61],
approximate entropy (ApEn) [62], higher order spectra (HOS) [63], and the energy [64].

The RQA parameters measure the patterns recurrence and ascertain the complexities in ECG signals [57]. The main RQA
features are as follows: Recurrence Rate (RR1, RR2), Determinant (DET1, DET2), entropy (ENTR1, ENTR2), Mean diagonal
length (L1, L2), Recurrence time entropy (RP), and Longest diagonal line (DD) [65–68]. The Shannon entropy demonstrates
that information obtained from a specific event is inversely proportional [58]. SamEn quantifies the entropy of an ECG seg-
ment. A low value of SamEn shows that the signal is more like to itself. A high value of SamEn intimates the chance of shock-
able rhythms [59]. Renyi entropy (re) has a higher dynamic range compared to Shannon entropy [58]. HOS is a spectral
presentation of third and higher-order moments that defines nonlinear correlations of multiple frequency components of
an ECG signal [63]. The HOS features extracted are named: HOS Entropy 1, 2, 3, and 4. The features of the HOS are estimated
using the bispectrum B(f1, f2), which is the Fourier transform of the 3rd order correlation of a signal. In this paper, bicoher-
ence and the normalized bispectrum (in the range from 0 to 1) plots for shockable and non-shockable signals are presented
[63,69]. The energy feature (e) is used to estimate the regularity in a signal [64]. In addition, there are other less common
complexity features such as covariance (CVbin), area (abin), frequency (Frqbin), kurtosis (Kurt), and sLog Energy [53].

In summary, this paper focuses on the nonlinear features, specifically on the energy and entropy measures. Thus, the fol-
lowing entropy measures were considered in our study: Shanon entropy [58], Renyi entropy [58], SamEn [59], permutation
Eentropy [60], and modified multiscale entropy [70]. The entropy of an ECG signal becomes higher as the signal variability
and complexity increase.

5.1.3. 3) Feature selection
This step allows one to remove the number of redundant features, reduce the computational cost, and improves the sys-

tem’s overall performance. The three primary categories of feature selection methods used on this step are as follows: a)
wrapper methods, b) filter methods, and c) embedded methods.

a) Wrapper: It is considered the best approach for selecting features in terms of accuracy, but at the cost of computa-
tional complexity [71]. This method uses cross-validation by training the model many times using different features
and comparing the results. The common methods here are: 1) recursive feature elimination [72], 2) forward feature
selection [73], and 3) genetic algorithms [74].

b) Filter: This approach uses statistical measures to select the best set of features before the training process. Here, the
features are evaluated against a proxy rather than cross-validation accuracy. The common techniques are as follows:
1) correlation, 2) chi-squared [75], 3) analysis of variance (ANOVA) [76], and 4) ReliefF [77].

c) Embedded: This approach includes the methods that do not fall into the above-mentioned approaches (wrapper and
filter). L1 regularization is an example of such a method [78].

5.1.4. 4) Features reduction
AT this step, a smaller set of new variables is established, each being a mixture of input variables, including the same

information as the whole set of input variables. Many feature reduction techniques transform the selected features into
low dimensional space. Principal component analysis (PCA) [79], linear discriminant analysis (LDA) [79], and locality sensi-
tive discriminant analysis (LSDA) [80] are examples of feature reduction techniques.

5.1.5. 5) Classification
Classification is the final step used to categorize the input ECG signal class after choosing the vital features. Classification

methods can be grouped into two categories: supervised learning and unsupervised learning. In supervised learning, specific
outcome labels are predefined, whereas, in unsupervised learning, the class belongings are determined based on a clustering
concept. When designing a CAAC system, we are able to get use of previous records with predetermined results (e.g., shock-
able rhythm versus non-shockable rhythm). Hence, supervised ML methods are widely used in this area.

Supervised ML methods can be broadly categorized into a classification or a regression category. As the output of a CAAC
system consists of a discrete set of output labels, many proposed CAACs take advantage of the efficiency of conventional clas-
sification algorithms, such as Support Vector Machines (SVMs) [81], Naïve Bayes Classifier [82], k-Nearest Neighbors (k-NNs)
[83], Decision Trees (DT) [84],and ensemble classifiers [85–87], in recognizing shockable arrhythmias.

5.2. Deep learning (DL) methods

In recent years, extended versions of neural networks, called deep neural networks, have attracted much interest in
computer-aided diagnosis implementation for almost all diseases [88,89]. Deep networks consist of two or more fully con-
nected multilayer perceptrons. Based on their construction, deep learning networks are classified into various classes such as
fully connected networks, belief networks, and convolutional networks. One of the main advantages of deep learning net-
works is that they perform the feature extraction automatically. The common deep learning networks used in ECG signal
analysis are convolutional neural network (CNN) [90,91] and recurrent neural network (RNN) [92].

The most critical stage in data classification is the feature extraction stage. It affects the system’s overall performance
more than other stages. The use of DL network scan improves the robustness of a CAAC system compared to an ML-based
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system where the features are extracted manually. In general, DL algorithms are more effective than classical ML algorithms
for detecting shockable ECG signals. The main shortcoming of DL is the shortage of big data training samples required to train
the networks for a better performance.

5.3. Performance evaluation metrics

Various metrics used to evaluate an ECG classification task are given below [93]:
Accuracy(Acc): this is the most widely-used metric for determining the system’s overall performance. It is defined as

follows:

Acc = (TP + TN)/(TP + FP + TN + FN), ð1Þ

where, TP, TN, FP, FN represent the number of true positives, true negatives, false positives, and false negatives, respectively.
Sensitivity(Sen): Also known as recall, sensitivity represents the proportion of true positives among the entire set of pos-

itive samples:

Sen = TP/(TP + FN) ð2Þ
Positive Predictivity (Pre): Also known as the precision, it represents the proportion of TP among all classified positive

and is defined as follows:

Pre = TP/(TP + FP) ð3Þ
Specificity (SP): Also known as true negative rate, it represents the proportion of true negatives among all classified neg-

ative samples:

SP = TN/(TN + FP) ð4Þ
F-measure: It is a harmonic mean of positive prediction and sensitivity, defined as follows:

F-Measure = 2�(Pre � Sen)/(Pre + Sen) ð5Þ
Area under curve (AUC): This metric, computed from receiver operator characteristic(ROC) analysis, is also widely used in

ECG-based studies [9].

6. Results and discussion

In this section, we discuss step-by-step machine learning results and describe robust state-of-the-art conventional ML
and DL techniques developed for shockable ECG signal detection. We outline the main advantages disadvantages of these
methods and provide future recommendations for designers of CAAC systems.

The input shockable ECG signals acquired from publicly available databases, such as MIDB and VFDB, have some high and
low frequency noise which may lead to wrong classification of ECG signals. Thus, the data preprocessing step becomes cru-
cial to ensure that the impact of noise in the input ECG signals is minimized. We analyzed various data filtering methods
used to preprocess shockable ECG rhythms and found that the Butterworth high-pass filter is performing well in reducing
drift suppression and baseline wander [9,35,36,38]. Fig. 6 summarizes the effects of several filtering techniques used for
removing the noise from the ECG signals. Fig. 7 shows the ECG signal obtained after applying the Butterworth filtering
and high pass filter for baseline wander techniques [9,35,36,38].

6.1. Results of feature extraction

The majority of classifiers used in the literature provide a high detection accuracy of shockable ECG rhythms only if the
main features are extracted correctly. It can be noted that linear SVM provided the highest overall classification accuracy
compared to other classifiers applied to the same databases (MIDB, CUDB, VFDB, and AHADB). The performance of the three
main categories of features extraction methods (mentioned in Section 5) using an SVM classifier (a base classifier for all
experiments in this paper) for the common databases for 2 s ECG segments (see Table 4) is shown in Fig. 8. A 10-fold
cross-validation technique was used in all our experiments.

As shown in Fig. 8, the complexity (nonlinear) features category of methods provided the highest average accuracy com-
pared to the temporal and spectral categories. Therefore, in this study, we focused on the analysis of nonlinear feature
extraction in detecting shockable arrhythmia signals.

In this work, 23 nonlinear features were extracted from ECG signals and fed to SVM classifier for classification. Table 5
reports the average mean and standard deviation values of the extracted nonlinear features for both shockable and non-
shockable signal classes of 2-second signals obtained from common ECG databases (i.e. CUDB, MIDB and VFDB).
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Table 5, summarizes the average means and standard deviations of the extracted nonlinear features reported for both
shockable and non-shockable signal classes. The presented results show the effectiveness of non-linear features in charac-
terizing the shockable rhythms. We then identified 10most informative combinations of features (using the feature selection

Fig. 6. Effect of using several filtering techniques: a) the noisy signals, b) after applying Butterworth filtering, c) finite impulse response (FIR)filter, d)
Gaussian filter, e) Median filter, f) moving average filter.
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algorithms, see Section 5, that provided the highest average accuracy over all datasets). These combinations of features are
reported in Table 6.

It is worth noting that the use of a single feature led to a low performance compared to combinations of features. For
instance, when using only ApEn, we obtained the accuracy of 70.78% only, whereas combing it with other nonlinear features,
such as ApEn, FD, and hurstExponent, helped us increase the accuracy to 86.54%. Also, we can observe that combining more
non-linear features leads to increase in the accuracy; we obtained the highest accuracy when combining all non-linear fea-
tures together.

Fig. 9 presents typical bispectrum contour plots for shockable and non-shockable ECG signals collected from FVDB. From a
visual inspection of the figures, we can discriminate between shockable and non-shockable subjects. In the non-shockable

Fig. 7. Elimination of baseline wander using filtering methods.
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ECG plots (Fig. 9(a,c)), there are connections between two-frequency spectrums, and the peaks are concentrated in the cen-
ter. In the non-shockable ECG plots (Fig. 9(b,d)), there are spectrum connections and the peaks are present entire plot and
spread throughout the frequency spectrum. Fig. 10 presents a typical recurrence plot(RP) of non-shockable (Fig. 10(a,b)) and
shockable signals (Fig. 10(c,d)). More dots (changes) could be observed in the non-shockable signals compared to the shock-
able ones. Also, a more regular pattern in the recurrence plot of a shockable ECG could be observed, indicating a higher
rhythmicity compared to a non-shockable ECG.

The confusion matrix plots for shockable and non-shockable ECG signals without using the PCA strategy, and using this
strategy, for the three datasets (CUDB, MIDB and VFDB) are shown in Fig. 11(a) and (b), respectively, where the average accu-
racy of 87.95% was obtained without using PCA, and that of 91.14% when using PCA. The discussed algorithm used without
PCA provided the sensitivity of 82.8%, positive predictivity of 94.6% and specificity of 94.3%, whereas, when using PCA, the
sensitivity of 83.7%, positive predictivity of 98.7% and specificity of 98.6%, were achieved.

Table 5
Summary of the average mean and standard deviation (Std) values of the extracted nonlinear features reported for both shockable and non-shockable signal
classes.

Feature Nonlinear Features

Non-Shockable Shockable

Mean Std Mean Std

ApEn 0.4974 0.2609 0.5761 0.2896
FD 1.2412 0.1042 1.3353 0.1203
HOS entropy 1 0.2862 0.1133 0.3020 0.1069
HOS entropy 2 0.1260 0.1251 0.1300 0.1000
HOS entropy 3 0.0835 0.1207 0.0857 0.0951
HOS entropy 4 2.7502 0.5597 2.8301 0.5188
Hurst exponent 0.8935 0.0874 0.9179 0.0699
modifiedMultiScaleEntropy 0.1395 0.1112 0.2053 0.1697
Permutation entropy 0.6906 0.0059 0.6920 0.0018
Renyi entropy �23.5925 1.8065 �23.6152 1.6079
Sample entropy 0.5163 0.0982 0.5781 0.1167
Shanon entropy �1.9904 4.3479 �1.6275 2.8209
sLogEnergy 23.5590 1.9834 23.1670 1.9447
RR1 0.0106 0.0012 0.0106 9.7414
RR2 0.1747 4.4533 0.1747 8.3925
L1 2.2693 0.1031 2.2637 0.1111
L2 5.3439 5.3439 6.7125 1.7904
DET1 0.3647 0.0485 0.3529 0.0422
DET2 0.9595 7.7932 0.9595 1.3428
ENTR1 0.4442 0.0527 0.4322 0.0476
ENTR2 1.7556 5.1213 1.7556 1.3428
RP 0.1056 0.3081 0.1162 0.3205
DD 1.6765 1.3557 1.5837 1.3326

Fig. 8. Average accuracy (%) of the feature extraction methods for all common ECG databases.
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Table 7 presents the summary of main experimental results provided by conventional ML methods used for automated
detection of shockable ECG signals.

Many ML methods focus on the improvement of the results of the feature extraction step. There are also a few drawbacks
related to morphological feature methods such as TCI, TCSC, etc. The main limitation of the TCI method is the choice of one-

Table 6
Accuracy results obtained using 10 most informative ECG signal features.

Order
number

Selected combinations of features ordered according to their accuracy Acc
(%)

1 Renyi entropy + Shanon entropy + permutation entropy + sample
entropy + ApEn + FD + RQA + HOS + modifiedMultiScaleEntropy

87.95

2 Renyi entropy + Shanon entropy + permutation entropy + sample entropy + ApEn + FD + RQA + HOS + sLogEnergy + Hurst
exponent

87.95

3 Renyi entropy + Shanon entropy + permutationEntropy + sample
entropy + ApEn + FD + RQA + HOS + modifiedMultiScaleEntropy + Hurst exponent

87.54

4 Renyi entropy + Shanon entropy + permutation entropy + sample
entropy + ApEn + FD + RQA + HOS + modifiedMultiScaleEntropy + sLogEnergy + Hurst exponent

87.13

5 Renyi entropy + Shanonentropy + permutation entropy + sample entropy + ApEn + FD + RQA + HOS 86.70
6 ApEn + FD + Hurst exponent 86.54
7 Renyi entropy + Shanonentropy + permutation entropy + sample

entropy + ApEn + FD + RQA + HOS + modifiedMultiScaleEntropy + sLogEnergy
86.31

8 ApEn + FD + sLogEnergy 85.72
9 ApEn + FD + RQA 85.31
10 ApEn + FD + permutation entropy 85.31

Fig. 9. Typical bispectrum and its contour plots for non-shockable (a,c) and shockable(b,d)ECG signals.
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second analysis window, which may miss the R peak when the heartbeat rate is <60 bpm (a not uncommon occurrence
among normal subjects as well as in the database records) or when there is a post-ectopic pause. When this happens, the
method will make a wrong decision. The TCSC method does not consider the shape of the ECG signal, and therefore may fail
to recognize some shockable cases.

We recommend using the complexity measure method [55,56] for feature extraction because of its ability to work with
non-uniformly-spaced trajectories. Also, we recommend using agenetic algorithm with sequential forward feature selection
for feature extraction. These two methods have achieved the highest accuracy compared with other method [36].

The performance of the presented ML methods depends on the selection of robust features extracted using advanced non-
linear signal processing techniques. Hence, it depends on the expertise of the practitioner carrying out this selection (very
subjective). Most of the methods perform well on smaller datasets and the prediction accuracy falls gradually as the size of
dataset grows. In order to overcome these limitations, the appropriate DL models should be implemented, tested and used in
practice.

6.2. Deep learning

Several deep learning models have been proposed in the literature to overcome the problems of traditional machine
learning technique s[100–108]. Fig. 12 reports the classification accuracies obtained for the MITDB data using various deep
learning models of automated detection of shockable ECG signals. It can be observed that the use of a single CNN model led

Fig. 9 (continued)
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the highest accuracies comparing to the other models. As a result, this model is widely used for automated shockable ECG
detection. The use of RNNwith CNN has boosted the sensitivity of the model, compared to CNN alone. However, the obtained
accuracy is still lower than that provided by CNN on this database. The use of the other models with CNN, such as SWT and
LSTM, also leads the increase of their accuracy.

Fig. 13 reports the classification accuracies obtained using various deep learning models for automated detection of
shockable ECG signals on the three common databases (CUDB, MITDB and VFDB). In this case, the use of CNN only led to
a low performance compared to the other models. When hybrid features were used with CNN, the best overall performances
were achieved. In addition, the use of CNN with LSTM and RNN has boosted the performance of the model compared to CNN
alone.

Table 8 presents the summary of main experimental results provided by DL methods used for automated detection of
shockable ECG signals.

Many DL methods make use of CNNs, which provided the highest performance compared to the other DL models. We
recommend using CNNs with wavelet transform, which can ensure a good accuracy even for small datasets. The major
drawbacks of most of these DL models are a possible overfitting and high computational complexity, which may result
in unreliable performance. Overall, we can observe that DL methods are more robust than classical ML prediction models
in most cases. However, most DL approaches require big data for an effective model’s training and are usually very time-
consuming.

Fig. 10. Typical recurrence plot for non-shockable (a,b) and shockable (c,d) ECG signals.
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Overall, the weaknesses of the existing CAAC systems are as follows:

i. More data are needed.Most of previous studies collected ECG signals from small databases, such as the MIT-BIH data-
base, which led to a low classification performance especially using DL methods.

ii. Collecting the data. There is no standard methodology for collecting and organizing the data, which makes it difficult
to compare them among different databases. In addition, the quality of ECG data used is generally low in most of the
works focusing on short-term ECG recordings.

iii. The complexity of deep learning models. Most of DL models are complex, which hinders their deployment in real
applications (e.g. portable healthcare devices). Moreover, the hardware used are generally very expensive.

iv. Imbalanced data. Most of the datasets considered in this field are imbalanced; the number of normal cases is usually
much larger than the number of anomalous cases. This may affect the efficiency of DL models.

v. Robust models need to be developed. Many ML models are not robust and suffer from overfitting, which makes the
models unsuitable for real applications.

Fig. 11. Confusion matrix for shockable and non-shockable ECG signals: (a) without using the PCA strategy, and (b) using the PCA strategy.
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Table 7
Summary of the main results provided by state-of-the-art machine learning methods used for detecting shockable ECG rhythms.

Author/Year Methods Database Advantages Disadvantages Performance Future works and
suggestions

Nguyen et al. [34],
2018

Count2
VF-filter Leakage Measure (Lk)
Threshold Crossing Interval (TCI)
CentroidFrequency (CF)
binary genetic algorithm
SVM

CUDB
VFDB

Overcome overfitting
Less complex
Obtained high accuracy with
small features

Working on public database
without clinical setting
Low performance

Acc = 95.9%
SP = 96.8%
PPV = 87.6%

1. Try to work on other big
databases

2. Try to apply this
method to different
kinds of ECG signals

Cheng and Dong [35],
2017

Personalized features
SVM

MIT-BIH
arrhythmia
CUDBVFDB

Low complexity
Fast

The design of QRS-complex
template is not adaptive in
this method

Acc = 95.5%
SP = 95.6%
AUC = 98.9%

Try to update the template
for real-time ECG

Nguyen et al. [36],
2017*

GA
SFFS with modified VMD
SVM

CUDB
VFDB

Obtained high performance with
small features
Overcome overfitting

Time consumed Acc = 99%
Sen = 97.36%
SP = 99.61%

Try to apply this method to
other ECG signals

Kong et al. [94], 2019 Integrated radial basis function (IRBF)
and relevance vector machine (RVM)

MIT-
BIHarrhythmia

1. Used for rapid modeling
without parameter
optimization

2. Used for fast modeling and
recognition

3. Its prediction has probability
significance

Data not suitable for real
applications

Acc = 98.16% Applied to consumer
products, such as household
or commercial massage
chairs

Buscemaet al. [95],
2020

Artificial adaptive systems and fuzzy
transformation

AFDB
MITBIH
arrhythmia

1. Fast processing and suitable
for real applications

2. Computationally highly
efficient

The data not suitable for
real applications

Acc = 95% 1. Remote monitoring of
ECG over a novel device

2. Try to present new
wearable photo-
plethysmograph [PPG]
wrist-watch sensor.

Kumar et al. [96], 2018 Flexible analytic
wavelet transform (FAWT)
Log energy entropy (LEE)
Permutation entropy (PEn)
Random forest (RF) classifier

MIT-BIH
AFDB

1. No need for R-peak and P-
wave detection

2. Robust system

Sensitive to the R-peak
detection errors

Acc = 96.84% Try to diagnose other
cardiac diseases

Islam et al. [97], 2016* HBD-irregularity
Affine normalization

MIT-BIH AF and
MIT-BIH
Arrhythmia

1. Needs a minimum prepro-
cessing and training

2. Robust to different kinds of
noise

3. Applicable to different
technologies

1. Overfitting problem
2. Low accuracy on big

data

Acc = 96.38% 1. Try to develop a robust
AF detection process

2. Try to use data augmen-
tation technique

Asgari et al. [98], 2015* Stationary wavelet transform
SVM

MIT-BIH AFIB 1. Reduces the need for the
detection of P-peak or R-
Peak

2. High accuracy using short
data segment

3. Does not depend on
4. R peak locations for the

detection of AF

1. The method does not
choose the most effec-
tive wavelet scale for
denoising

2. Work on small data set

Acc = 96.9% 1. Further enhancement in
terms of specificity

2. Try to enhance the
method using multi-
resolution analysis

3. Try to work on big data

(continued on next page)
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Table 7 (continued)

Author/Year Methods Database Advantages Disadvantages Performance Future works and
suggestions

Ladavich et al. [99],
2015

Gaussian mixture model (GMM)
Expectation–Maximization (EM)
P-wave absence (PWA)

MIT-BIH AF 1. Robust to noise and artifacts
2. Can detect shorter AF epi-

sodes and AF episode end-
ings with high accuracy

3. Rate independent

1. Cannot detect short epi-
sodes in large data sets

2. Depend on the absence
of P-waves

Acc = 93.12% 1. Try to use this method
with another kind of
ECG signal

2. Try to use data augmen-
tation technique

Tripathy et al. [37],
2018

Digital Taylor-Fourier transform
(DTFT)
Phase difference (PD)
Least square support vector machine
(LS-SVM) classifier with linear and
radial basis function (RBF)

CUDB
VFDB

Can be used for the detection of
other pathologies from ECG
signals

Complexity
Time-consuming

Acc = 89.81%
Sen = 86.38%
SP = 93.97%

Evaluated the method for
detection of other heart
ailments

LIH et al. [9], 2017* DWT
nonlinear features
Sequential forward feature selection
(SFS)
kNN

MIT-BIH
arrhythmia
CUDBVFDB

Highly sensitive in capturing the
shockable rhythms
Cost-effective

Complex Acc = 98.34%
Sen = 95.49%
SP = 99.14%

Try to implement deep
learning methods to
increase the accuracy

Sharma et al. [11], 2019 Wavelet-based features
Fuzzy entropy (FE) Renyi entropy
(RenE)
SVM

MIT-BIH
arrhythmia
CUDBVFDB

No need for pre-processing on
ECG signals
No need for R-peaks detections

Working on small data Acc = 97.8%
Se = 93.42%
SP = 98.35%

Try to extract
other nonlinear features to
improve the performance

This Study 2020 Preprocrssing + renyiEntropy +
shanonEntropy +
permutationEntropy +
sampleEntropy + ApEn +
FD + RQA + HOS +
modifiedMultiScaleEntropy +
SVM

MIT-BIH
arrhythmia
CUDBVFDB

1. No need for detecting R
peaks

2. Can be used for the detection
of other pathologies from
ECG signals

3. Robust system

1. Complex
2. Low accuracy with big

features number

Acc = 87.95% Using these features on
other physiological signals
(e.g. EEG)
Using feature reduction
techniques to improve the
performance

This Study 2020 Preprocrssing + PCA + SVM MIT-BIH
arrhythmia
CUDBVFDB

1. No need for detecting R
peaks

2. Can be used for the detection
of other pathologies from
ECG signals

3. Robust system
4. Achieved high accuracy with

low features number

Time consumed Acc = 90.14% Using these features on
other physiological signals
(e.g. EEG)

* RecomSmended.
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The proposed solutions to overcome these limitations are as follows:

i. We recommend applying the existing state-of-the-art methods on big data, such as MWM-HIT database [109] and
PTB-XL database [110], or constructing new large ECG datasets.

ii. We recommend collecting and working on new high-quality and long duration ECG data.
iii. We recommend using one of the compression techniques to convert the complex deep learning models into simpler

models or building a deep learning model with fewer layers and activation functions.
iv. We recommend using data augmentation methods to increase the size of data sets, or designing a new training model

[111], or new loss function such as the focal loss function, as discussed in [112].

We recommend using cross-validation techniques (e.g. 10-fold cross-validation [113]) to make the considered machine
learning model more robust. In addition, we also recommend using optimization algorithms, such as a genetic algorithm for
features optimization [114], in order to improve the overall performance of the models.

7. Future work

The cloud-based system linked to mobile and wearable devices for shockable arrhythmia detection could be proposed in
the future. An example of such a system is shown in Fig. 14. The input ECG signals obtained from a wearable device are com-
municated to a smartphone and stored on a local server located in the hospital. After that, the data is sent to the cloud ser-
vice, where a trained deep learning model is deployed and maintained to make the diagnosis. Finally, the diagnostic decision

Fig. 12. Classification accuracies obtained using various deep learning models on MITDB.

Fig. 13. Classification accuracies obtained using various deep learning models on CUDB, MITDB and VFDB databases.
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Table 8
Summary of the main results provided by state-of-the-art deep learning methods used for automated detection of shockable ECG signals.

Author/Year Methods Database Advantages Disadvantages Performance Future works and suggestions

Andersen et al.[100]
2019

CNN
RNN

AFDB
MITDB
NSRDB

1. Faster
2. classification of long-term

recordings
3. The features are learned directly

from the data

1. Problem with detection of
the noisy ECG segments

Acc = 89.30% 1. Try to recognize the noise level in
each ECG segment

Baalmanet al. [101]
2020

Morphology based deep
learning

Private AF
data

Unique to classic rule-based algorithms
No feature extraction stage

1. Low incidence of AF
2. Used limited information

from single cardiac cycles
of one single lead

3. Complexity

Acc = 96% 1. Try to use the Fourier cosine ser-
ies as input for a neural network

2. Need improvements in visualiza-
tion techniques

Panda et al. [102]
2020*

Fixed frequency range
empirical wavelet transform
(FFREWT) Filter-bank
convolutional neural network

CUDBVFDB Can used for the multiscale analysis of
ECG signal.
No feature extraction stage

Working on small number of
subjects to develop the model

Acc = 99.03% Try to use more training data

Acharya et al. [103]
2018

CNN MITDB
VFDB
CUDB

Invariant to translation
No need handcrafted feature for the
classification
No need R peak detection

Need a big data to train
Training time of CNN is longer
compared to models

Acc = 93.2%
Se = 95.32%
SP = 91.04%

Try to improve the performance by
performing bagging algorithm and
data augmentation

Xia et al. [92] 2018* Short-term Fourier transform
(STFT)
Stationary wavelet transform
(SWT)
Deep convolutional neural
network (DCNN)

MIT-BIH
AFIB

1. Does not rely on peak detection
2. Can achieve good accuracy on a

small data segment

1. Work on small data
2. Problem with detection of

some signals
3. Time cost

Acc = 98.63% 1. Try to work on ECG signal directly
2. Try to work on big data
3. Try to work on other datasets

Dang et al. [105] 2019 CNN-BLSTM MIT-BIH AF 1. Does not consume a large amount
of time and energy for selecting
and extracting features

2. Real-time speed
3. Low cost

1. Overfitting problem
2. The model is not employed

for genuine clinical
diagnosis

Acc = 96.59% 1. Try to use all the points of RR
intervals

2. 2 Genuine clinical contributions
needed

3. Classification of multiple arrhyth-
mia signals

4. Try to work on other data
Li et al. [106] 2019 CNN-SVM method Private AF

data
1. High accuracy on big data
2. Overcome the overfitting

1. Low accuracy on small
data

2. Complex

Acc = 96% 1. Try to establish a follow-up
system

2. Try to work on big data
Faust et al. [95] 2018* RNN MIT-BIH

Atrial
Fibrillation
Database

1. No feature extraction method
2. Can used for long-term monitoring
3. Cost effective

1. Using short segment
2. Working on limited data
3. Time cost

Acc = 99.72% 1. Try to use this algorithm in Inter-
net of Things (IoT) technology

2. Try to detect different AF types
3. Try to work on different heart

diseases
4. Try to work on different dataset

Wang Jibin [96] 2020 CNN and the improved Elman
neural network (IENN)

AFDB
MIT-BIH

1. End-to-end classification
mechanism

2. The convergence rate of the model
is also accelerated to some degree

Only focused on AF detection
and
needs more large and diverse
data set

Acc = 98.8%
Sensitivity = 98.6%
Specificity = 98.9%

Try to combine more modified ENN
structures with deep
learning frameworks for analysis
more types

* Recommended.
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is sent back to the local server and the patient via a smartphone. Such a system processes the diagnosis automatically and
could serve as triage to decrease the workload of healthcare specialists in hospitals. Most of the previous studies used CNN-
based deep learning models; here, in addition, we recommend using other deep learning models, such as long short-term
memory (LSTM) and autoencoders, and evaluating the required performance metrics.

Moreover, the use of non-linear features, such as Hurt and Lyponev exponents, and the proposed unique bispectrum and
RP plots, can improve the classification performance. Besides, it would be also important to tackle the data imbalance prob-
lem by using one the existing data balancing procedures, e.g. the focal loss technique [115]. Furthermore, exploring some
lightweight transfer learning models is also a possible solution to enhance the prediction accuracy. Finally, the impact of
uncertainty, while building traditional machine learning and deep learning models needs to be investigated and evaluated
[122].

8. Conclusions

Ventricular tachyarrhythmia is a preventable cause of sudden cardiac death. Early detection of shockable ECG rhythms,
followed by emergency shock therapy, can save lives. The manual reading of ECG signals remains, however, a challenging
task in the acute setting. Thus, the development of effective CAAC systems would help clinicians screen and recognize accu-
rately shockable arrhythmias cases. In this paper, we have comprehensively reviewed recent CAAC systems for shockable
arrhythmia detection developed from 2015 to 2020 and based on conventional ML and DL methods.

Furthermore, we have presented unique bispectrum and recurrence plots for visualization of shockable and non-
shockable ECG signals. We have discussed the main advantages and drawbacks of the state-of-the-art CAAC systems and
compared various conventional ML- and DL-based techniques for automated detection of shockable ECG signals. We found
that DL methods generally provide more reliable performance in ECG modeling than conventional ML techniques. Unfortu-
nately, the computational cost remains one of the main limitations of DL methods. Therefore, we are focusing on the effect of
nonlinear features in recognizing shockable rhythms. Hence, we carried out the experiments by analyzing the impact of var-
ious nonlinear feature combinations in terms of accuracy, comparing our results with those provided by the state-of-the-art
methods. We have obtained an average accuracy of 87.95% without using PCA, and of 91.14% when using this technique.

Several unresolved challenges related to the effective use of deep learning methods in shockable ECG modeling remain
relevant. We have provided a few recommendations for tackling these challenges and improving a CAAC system’s overall
performance. We conclude that large public databases need to be created to classify shockable ECG detection data accurately.
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Supplementary Material

Access to source code mentioned in the article:

1. Temporal/Morphological features and Spectral features

https://github.com/FelipeURJC/ohca-vs-public-dbs.

2. Time-frequency/wavelet features:

https://in.mathworks.com/help/stats/skewness.html.
https://in.mathworks.com/help/stats/kurtosis.html.

3. Complexity features (nonlinear features):

https://in.mathworks.com/matlabcentral/fileexchange/46765-recurrence-quantification-analysis-rqa.
https://in.mathworks.com/matlabcentral/fileexchange/50289-a-set-of-entropy-measures-for-temporal-series-1d-

signals.
https://in.mathworks.com/matlabcentral/fileexchange/3013-hosa-higher-order-spectral-analysis-toolbox.
https://www.mathworks.com/matlabcentral/mlc-downloads/downloads/submissions/13063/versions/1/previews/box-

count/html/demo.html#:~:text=A%20possible%20characterisation%20of%20a,1%2C%202%2C%203).

4. Feature selection:

https://in.mathworks.com/help/stats/feature-selection.html.

5. Classification and feature extraction:

https://in.mathworks.com/help/stats/index.html?s_tid=CRUX_lftnav.

6. Deep learning:

https://in.mathworks.com/help/deeplearning/ug/deep-learning-in-matlab.html#:~:text=What%20Is%20Deep%20Learn-
ing%3F&text=Deep%20Learning%20Toolbox%E2%84%A2%20provides,vision%20algorithms%20or%20neural%20networks.
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