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a b s t r a c t

Automatic medical image analysis (e.g., medical image classification) is widely used in the
early diagnosis of various diseases. The computer-aided diagnosis (CAD) systems enable
accurate disease detection and treatment. Nowadays, deep learning (DL)-based CAD sys-
tems have been able to achieve promising results in most of the healthcare applications.
Also, uncertainty quantification in the existing DL methods have not gained enough atten-
tion in the field of medical research. To fill this gap, we propose a novel, simple and effec-
tive fusion model with uncertainty-aware module for medical image classification called
Binary Residual Feature fusion (BARF). To deal with uncertainty, we applied the Monte
Carlo (MC) dropout during inference to obtain the mean and standard deviation of the pre-
dictions. The proposed model has two main strategies: direct and cross validated using four
different medical image datasets. Our experimental results demonstrate that the proposed
model is efficient for medical image classification in real clinical settings.

� 2021 Elsevier Inc. All rights reserved.
1. Introduction

In the past few years deep learning (DL) [1–3], one of the subfields of machine learning (ML), has seen a histrionic renais-
sance that is mainly due to computational supremacy and accessibility to huge datasets. The area has seen outstanding
advancement in terms of capability of machines to recognize and manipulate data (i.e., images [4], language and text analysis
[5,6], gene selection [7], etc.). The two fields that stand to gain vastly from the resurgence of DL are healthcare and medicine.
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Among the various types of computer programming, ML is characteristically distinct as it has the ability to transform input
into outputs with the help of rules that are derived from set of training examples. Essential requirements for developing a ML
system are proficiency in the domain and engineering concepts that aid in building specific feature extractors for transform-
ing data and perceiving suitable patterns. On the other hand, DL has the competence of developing and learning patterns
automatically from raw data or feature learning from data with the help of successively arranged layers comprising of prim-
itive non-linear operations. Determining features and performing a task are combined into one framework. Highly complex
functions are learned with iterative warping of data through the layers. The scalability of DL model pertaining to large data-
set enables them to outperform traditional ML models.

Distinct features of DL models have proved to be useful in image analysis, specifically in medical domain. Image acqui-
sition devices have seen incredible advancement and thus data generated is also large. This swift growth in medical images
also required extensive interpretation by human expert which is prone to error because of intricacy of images, difference in
explanation approaches, subjectivity, accuracy and throughput [8]. Identifying objects from natural images has been made
easier by empowering machines with the use of DL networks. Advancement in DL technology is gradually getting incorpo-
rated across the healthcare sector through imaging based medical diagnosis and data processing. Image diagnosis deals with
identification of abnormalities, quantification of measurement and detecting changes over time. DL methods have shown
potential in providing state-of-the-art unbiased and automated interpretation of different types of medical images that
are useful for information processing and accurate diagnosis. DL techniques have opened new avenues in healthcare sector
addressing wide range of problems from screening of carcinomas to monitoring of diseases and treatment suggestions.

1.1. Fusion-based machine learning and deep learning methods

Imaging technology is a vital aspect of medical diagnosis but suffers from information limitation due to single modal
medical images. Due to this reason fusion of medical images is one of the sought-after research areas. There are two major
types of medical image fusion – single mode fusion and multimodal fusion [9]. As single-mode lacks in providing sufficient
information, multimodal image fusion is studied as it covers an extensive range of methods that address complex medical
related issues [10]. Amalgamation of images with exhaustive spectral and anatomical information from either a single
modality or multiple modalities into a single image is known as image fusion. The chief emphasis of image fusion lies in
improving the quality of a particular image while safeguarding the pertinent characteristics of image such that it can be used
for diagnosis. Thus, robust and self-learning techniques are required for medical image analysis using fusion method. Tradi-
tionally there are two types of fusion – early fusion and late fusion [11]. Illustration of features from multiple modalities is
formed in early fusion which is followed by learning of correlation and connections between features of individual modality.
Late fusion allows use of unimodal decision values along with a fusion mechanism. Usage of different modules on diverse
modalities creates flexibility and makes it easier to handle missing modality. In multimodal approach domain-specific deep
neural networks (DNNs) are used to create the individual representations that are finally combined using addition or con-
catenation methods [12].

Late fusion for convolutional networks has been studied along with two other fusion strategies, namely information
exchange at an intermediate layer and simultaneous linking of information using cross-stitch technique at different layers,
to provide a detailed comparison among the three fusion techniques for DL [13]. Apart from the mentioned fusion technique,
for biometric recognition system two types of fusion methods: pre-classification and post-classification are presented. In
pre-classification, fusion occurs before classification and procedures used are feature-level and sensor-level techniques.
Pre-classification fusion generally suffers from redundant data, noise and problems pertaining to multi-environment acqui-
sition of images. The post-classification fusion takes place after the classification procedure, thus it is devoid of noise and
enhances the recognition performance of the system [14]. Spatial and temporal based medical image fusion methods have
shortcomings while the extracting features and to overcome the defects, convolutional neural network (CNN) has been used
for image fusion. Fusion branch has been used in deep CNN to integrate the classification results of two decoder branches
such that the alpha values are obtained as the result of soft segmentation [15].

It can be noted from previous studies that fusion techniques are time consuming and failed in utilizing the temporal infor-
mation. A progressive fusion network has been used to extract intra-frame temporal as well as spatial correlation among
several low-resolution frames. Therefore, medical image fusion varies from spatial domain to DL and researchers have pro-
posed various fusion methods with their own set of advantages and shortcomings. Most of the fusion methods are open to
modification and address the problems related to it. DL has played a crucial part in improving the effect of fusion in medical
images [16]. Despite all these, the important point is the level of trust in machine and DL models in their outcomes. In other
words, the certainty of the methods regarding the results obtained remains a very important and key area.

1.2. Uncertainty quantification in deep learning and machine learning

In application of UQ techniques play an important role to enhance the predictability and validity of ML and DL methods
[17]. A comprehensive review on UQ methods in ML and DL is presented in [17]. It is used to evaluate the reliability of a ML
or DL model. During the development of DL algorithms, efforts are mainly directed to boost the performance of the model
instead of risk management associated with it. Images are important in medical imaging and application because they help
in diagnosis and provide clinical intervention options. As a result, such important applications necessitate a method that can
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enumerate the risk of failure, quantify uncertainties and identify the source of the uncertainty. In DL systems predictive fail-
ure occurs due to innate ambiguity of task or failure of trained model to define the data. Ambiguity in the data results in
intrinsic uncertainty while model uncertainty stems from vagueness in model specifications. The contributing factors to
the model uncertainty are parameter uncertainty and bias of the model. Hence, parameter and intrinsic uncertainty mainly
contribute to the prognostic failure of various DL models. Precise estimation of uncertainties is necessary as it will help us to
understand the limitations of learning models and alert unsure predictions. Across a wide-ranging spectrum of applications,
DL-based models have attained commendable predictive precision but meticulous quantification of their predictive uncer-
tainty is a challenging task specially in the medical field. Over the years, researchers have addressed this problem with dif-
ferent techniques and approaches.

1.3. Uncertainty quantification in medical data analysis

Medical image interpretation is an exciting task as it is intricate and often marks the presence of unwanted artifacts,
obstructions, limited contrast and so on. Use of DL methods for analyzing medical data comes with its advantages as well
as disadvantages in form of uncertainty. Predictions lacking UQ are not considered reliable. Therefore, UQ is an important
aspect in DL and more evidently in medical data analysis as decisions taken or diagnosis made based on the outcome of
the different methods will have direct impact in real life situation. Uncertainty modeling is based on two main uncertainties
namely – epistemic or model uncertainty and aleatoric or data uncertainty. Studies have shown the use of Bayesian tech-
niques, Gaussian methods and ensemble techniques for the quantification of uncertainty [17]. As discussed in the recently
published review paper, classification uncertainty is associated with DL models [17]. The presence of noise is estimated by
classification uncertainty. Bayesian DL (BDL) method depended on both uncertainty and calibration [18] helped in increasing
the classification accuracy of the network. Raczkowsk et al. [19] used accurate, reliable and active (ARA) framework (image
classification) with Bayesian CNN (BCNN) for the classification of histopathological images of colorectal carcinoma. The pro-
posed work calculated the uncertainty associated with each tested image. Authors also showed that using variational
dropout-based entropy measure of uncertainty increased the learning process of DL network. Therefore, it can be analyzed
from different studies that evolving DL techniques have the potential to transform the biomedical image processing. But it
comes the challenge of reliability of DL prediction and hence, the issue of uncertainty emerges. With advancement in
research, different techniques have been developed to quantify the uncertainty such that reliability and prediction capability
of DL methods can be enhanced.

1.4. Concluding remarks and organization

This study aims to propose a new fusion mechanism for greater productivity of medical image features. But at the same
time, we have a glimpse of whether our proposed model is aware of the uncertainty of the obtained results or not. As men-
tioned earlier, UQ plays an important role in increasing the trust in the results obtained by various machine and DL methods.
Therefore, it can be argued that one of the key motivations of this study is to propose intelligent-based approaches for clas-
sifying medical images. In addition, another motivation is that, our proposed models should be aware of their certainty and
uncertainty during predictions. Furthermore, presenting models with outstanding performance and promising outcomes is
also one of our main motivations in this study. Finally, we seek to increase trust in the results obtained by clinicians, physi-
cians and patients by considering uncertainties and maximizing the uncertainty of predictions. This is very important chal-
lenge in medical applications. Taking into account the differences and gaps in the previous studies, we propose two novel,

simple yet efficient fusion models called direct-based BinAry Residual feature Fusion (direct-based BARF) and cross-based
BARF for medical image classification. To do so, the proposed fusion model uses both the binary tree combination (BTC) and
residual combination techniques. Meanwhile, our proposed fusion model is able to deal with its uncertainties using Monte
Carlo (MC) dropout. Furthermore, the proposed model benefits from the combination of MC dropout with standard dropout.
Along with dealing with uncertainty, providing a comprehensive model that can perform well on a variety of data is one of
the important gaps in the medical domain. Therefore, it can be summarized that having impressive performance along with
considering uncertainty is a key goal in medical studies using ML and DL methods. Hence, we considered this important goal
of our study. In summary, the main contributions of the study are listed as follows:

� Proposed two new fusion techniques (direct and cross-based BARF) to extract features from different DL methods and
used for medical image classification.

� Computed the performance of all applied fusion models for each class separately.
� Applied both BTC and residual combination techniques to develop the proposed fusion models.
� Quantified prediction uncertainties for the proposed fusion models using MC dropout.
� Combined MC and standard dropouts are employed to optimize the performance of the proposed fusion models;
� Considered data size (big and small) and data type (i.e., grayscale or color).
� Compared the performance of our proposed fusion models with different DL methods when tested on four different med-
ical image datasets.
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The rest of this study includes the following sections. Section 2 provides main preliminaries linked to our proposed
model. In Section 3, the proposed uncertainty-aware BARF models are discussed in detail. The experimental results and dis-
cussions are presented in Sections 4 and 5, respectively. Finally, we conclude the study and list several open research direc-
tions in Section 6.

2. Preliminaries

In this section, we first explained the main differences between fusion models. Then, we briefly explained CNNs (also
called ConvNet) and Residual Neural network (ResNet). Then, we discussed the working of binary tree combination (BTC).
The detailed application of Monte Carlo (MC) dropout, difference between MC dropout and standard dropout are discussed.

2.1. Fusion models

A broad range of fusion models have exhibited extraordinary performance to optimize the results of single models
[20,21]. Fig. 1 shows four different well-known fusion models including early or data-level fusion, intermediate fusion, slow
fusion and late or decision-level fusion. Fusion models fist train individual modalities and then joined by using different
strategies such as voting, score averaging, Canonic Correlation Analysis (CCA) and many more [13]. A significant number
of previous studies on supervised learning tasks have broadly relied on ensembling of feature embeddings of separately
extracted trained deep models (called late or decision-level fusion) for a wide variety of applications. But the early and
data-level fusion have also obtained promising outcomes. But each of these models have strengths and weaknesses. Mean-
while, fusing diverse modalities of DL-based medical image analysis is conducted using various fusion models [22]. These
fusion models can be considered as an interdisciplinary research field which combine and correlate disparate homogeneous
and heterogeneous data modalities to deal with a wide variety of difficult prediction tasks in different research areas such as
human–computer interaction, computer vision, biomedical informatics, medical data analysis and many more. In other
words, depending on the medical task/problem, multimodal fusion approaches can range from fusion of multi-view data
of the same modality or fusing heterogeneous data modalities. The previous studies have shown that application of diverse
types of fusion models for medical data analysis have yielded extraordinary results. Based on these advantages, we employed
a novel the early feature-level fusion model for medical image classification task.

2.2. CNNs and ResNet

Convolutional neural networks (CNNs or ConvNet) are a type of DNNs developed based on their shared-weights structure
and translation invariance which are an alternative class of classical artificial neural networks (ANNs) [23]. CNNs have
achieved remarkable success in a board range of applications such as computer vision [24], text analysis [5] and many more.
There are various pre-trained architectures based on CNNs. Residual-based NN is a pre-trained deep CNN model which uses
the short-cut concept introduced in 2015 [25]. Fig. 2 compares the building diagram of CNNs and ResNet. Residual connec-
tions are a class of skip connections which permit gradients to flow using a network directly.

As indicted in Fig. 2, residual connections allow the flow of information from initial layers to other layers except their next
layer. Inspired by this strategy, we proposed a novel, simple and efficient residual-based fusion model for medical image
classification. It is worth noting that, we have only one skip connection. In other words, each layer of our proposed model
also connects to its second higher layer. The more details about the proposed model is provided in the following sub-
sections.

2.3. Binary Tree Combination (BTC)

A binary tree is a tree-based structure in which each node has only two sub-trees (also called children). There is a differ-
ence between a normal tree and binary tree. There is no limit on the degree of nodes in a normal tree while the degree of
each node in a binary tree is not more than two. In this study we employed a complete binary tree which has the following
characteristics:

� All higher (external) nodes in our model has two internal children;
� In the proposed binary tree, the depth is same from the leaves to the root in the entire process.

In the normal routine of trees, we start from the root and reach the leaves, but we employed the reverse system in our
work. We connected the leaf nodes in pairs step by step to form the root. Generally, the total nodes (N) of a tree with height h
and tree’s degree d can be calculated as
N ¼
Xh�1

i¼0

di ¼ dh � 1
d� 1

; ð1Þ
where h is the height of a tree and d is the tree’s degree. Therefore, for a complete binary tree (d = 2), we have
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Fig. 1. Illustration of various fusion-based architectures [20,21].

Convolutional 

layer

Convolutional 

layer

Convolutional 

layer

Relu

Convolutional 

layer

Convolutional 

layer

Convolutional 

layer

Relu

Fig. 2. Traditional architecture of: (a) CNN and (b) ResNet [26]. Note: ReLU is the rectified linear unit.
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N ¼
Xh�1

i¼0

2i ¼ 2h � 1
2� 1

¼ 2h � 1: ð2Þ
In summary, for a complete binary tree with height h, the tree has 2h � 1 nodes (total nodes) and number of leaves is 2h. In
this study, we employed reverse binary tree strategy (Fig. 3.b) as our combination approach called Binary Tree Combination
(BTC).

2.4. Uncertainty quantification module

Nowadays, ML and DL methods have a significant ability to ideally learn powerful representations and then map the high
dimensional data samples to an array of outputs. Due to this ability, ML and DL methods are able to achieve promising pre-
dictive results. However, they poorly perform in measuring uncertainties based on the obtained results. Basically, almost all
ML and DL methods ”do not know” what exactly ”they know” and for this reason, they may certainly classify one sample
which they have never seen before. The uncertainty estimate of such methods help to understand and explore what exactly
these models do not know. Furthermore, UQ plays a fundamental role in dealing with noise structures. This unique feature
provides exceptional conditions for the ML and DL models to better understand their limits and acknowledge uncertain
predictions.

2.4.1. Uncertainty in NN/DL models
Generally, there are two major views on types of uncertainty. But, Tagasovska and Lopez-Paz [27] suggested three impor-

tant types: approximation, aleatoric and epistemic uncertainties. While, more studies considered just aleatoric and epistemic
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uncertainties as main ones [28–31]. Based on the previous studies, we considered aleatoric and epistemic uncertainties as two
main uncertainties in ML and DL. The exact definition of aleatoric and epistemic uncertainties can be found in [28,32]. There
are many UQ methods to deal with uncertainties such as Monte Carlo (MC) dropout [32], deep ensemble [33], BDL [34,35],
and so on. In this work, we quantified uncertainties using MC dropout [32].

2.4.2. Monte Carlo (MC) dropout as uncertainty measure
MC dropout introduced by Gal and Ghahramani [32] is a powerful approach used to perform VI on BNNs. The main pur-

pose of Bayesian technique is to find the most appropriate posterior distribution which is often intractable from a compu-
tational point of view. To solve this problem, sampling methods are widely being used. As shown in [32] MC sampling
scheme is used to sample the posterior of BNNs (or BDL) from the prior parameter by applying multiple stochastic forward
passes during test time.

As explained in [32] MC dropout is another approach which performs VI on BNNs. Based on excellent performance of MC
dropout in the review literature [36], we employed it as our UQ method. A brief details of MC dropout is given in the follow-
ing. Suppose ŷ be the final output of an ANNmodel having L layers and loss function E :; :ð Þ (e.g., the softmax loss). Let yi be the
observed output of xi for i = 1 to N data points and X,Y be the input and output sets, respectively. To obtaine a minimization
objective (also called as cost), we can frequently use L2 regularisation which weighted by different weight decay k:
Ldropout :¼ 1
N

XN
i¼1

E yi; ŷið Þ þ k
XL
i¼1

jjWijj22 þ jjbijj22
� �

: ð3Þ
Based on [32], MC dropout in different ANN and DL models can be used as an uncertainty measure. To show the predictive
distribution of the model, we used p yjx;Dð Þ which y is the target (class), x is the input and D includes whole training data
with N samplesD ¼ xi; yið ÞNi¼1. The predictive distribution can inspect the variance to indicate the uncertainty. In order to cal-
culate the predictive distribution, a distribution over the functions or the parameters as the posterior distribution (i.e.,
p HjDð Þ) should be used. The MC dropout [32] can provide a scalable solution to learn such predictive distributions. Each
dropout is relevant to different sample obtained from the approximate parametric posterior distribution as Ht � q HjDð Þ
where Ht is a dropout configuration or a simulation obtained by q HjDð Þ. Therefore, the approximate predictive distribution
is given by
q y�jx�ð Þ ¼
Z

p y�jx�;xð Þq xð Þdx; ð4Þ
where q(x) is the variational distribution and x = Wif gLi¼1 is the random variable set related to a model including L layers.
Afterwards, the predictive variance of model can be calculated by
Varq y�jx�ð Þ y�ð ÞT y�ð Þ
� �

� s�1ID þ 1
N

XT
t¼1

y
^ � b�

;Wt
1; . . . ;W

t
L

� �T
y
^ � x�;Wt

1; . . . ;W
t
L

� �� Eq y�jx�ð Þ y�ð ÞTEq y�jx�ð Þ y�ð Þ: ð5Þ
For simplicity, the MC integration of the model’s likelihood can uncover the predictive distribution as follows:
q yjxð Þ�VI RX p yjx;Hð Þ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
Likelihood

q HjDð Þ|fflfflfflffl{zfflfflfflffl}
Posterior

dH;

�MC 1
N

XT
t¼1

p yjx;Htð Þ;w:r:t:Ht � q HjDð Þ;
ð6Þ
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where VI represents variational inference. In order to further simplify these equations, the likelihood can be considered as a
Gaussian distribution:
1 Sou
p yjx;Hð Þ ¼ N f x;Hð Þ; s2 x;Hð Þ� �
; ð7Þ
where the Gaussian function N can be specified by using the mean f x;Hð Þ as well as the variance s2 x;Hð Þ corresponding to
the output of the MC dropout. As a summary we have:
MCdropout xð Þ � f x;Hð Þ; s2 x;Hð Þ: ð8Þ

In Fig. 4, we illustrated the working of MC dropout1 in NNs.

2.4.3. MC dropout vs standard dropout
Let’s start with standard dropout which is applied only during training time. Standard dropout is a regularization

approach used to deal with overfitting. It should be noted that standard dropout is not used during the test time. Instead,
there are all the connections and nodes, but the weights are accordingly adjusted. It may be noted that for standard dropout,
the predictions during the test time is deterministic. The MC dropout can be applied during both training and test time.
Unlike standard dropout, the predictions are not deterministic, but it depends on the nodes or links are randomly chosen.
Hence, the applied model with MC dropout predicts diverse values each time. Also, the fundamental goal of MC dropout
is to acquire some random predictions and then interpret those random predictions as samples of a probabilistic distribution.

3. Proposed uncertainty-aware BARF models

In this section we introduced our proposed fusion models in two sub-sections. First, we showed a schematic view of BARF
model to show its working. We then explained the direct-based BARF model which is a prerequisite to understand our sec-
ond proposed architecture called cross-based BARF. Both models contain uncertain (probabilistic) modules which help to
measure the uncertainty of the whole model. A general view of the proposed BARF fusion model based on BTC is illustrated
in Fig. 5. (Fig. 6).

3.1. Proposed direct-based BinAry Residual feature Fusion (BARF)

The early fusion techniques generate joint consensus of different input features obtained from several modalities (mod-
els). The proposed BARF is type of ensemble of different methods. The early feature-level fusion includes many features and
hence the running time increases. However, such large-scale feature vectors along with appropriate learning methods pro-
vide better performance in the end. Hence, having outstanding performance justifies the uniqueness of a ML/DL method. In
addition, better performance and accurate diagnosis in medicine is inevitable because of the close connection between the
diagnosis and people’s lives. Hence, we have provided a new early feature-level fusion model which can classify medical
images accurately.

In this study, two new feature level fusion models (named direct and cross-based BARF models) are implemented by a
simple yet efficient concatenation of different feature sets obtained from multiple information sources (pre-trained DL mod-
els). The direct-based BARF model utilizes different useful properties of recent modern state-of-the-art pre-trained DL mod-
els, including the DenseNet-201, VGG-19, EfficientNet-B7, InceptionResNetV2, InceptionV3, MobileNetV2, ResNet152V2, and
Exception methods. Let X ¼ X1;X2;X3; . . . ;X8h i, where Xi is the output embedding of ith pre-trained model. Let

Xi ¼ Xi1 ;Xi2 ;Xi3 ; . . . ;Xij

D E
be the flattened output of the eight pre-trained models. Suppose, Xi is a one-dimensional vector

which contains j real numbers in R.
In this study, we used three types of Dense layers in our proposed BARF model: Dense 64, Dense 32, and Dense 16 at first,

second, and third levels of our model, respectively. The formulation of each node at Dense layers (Dense 64) used in the first
level of our BARF model is defined as follows:
D64 Xið Þ ¼ ReLU
X
j

RijXij

 !
; ð9Þ
where D64 is the output of each node in the Dense 64, ReLU is its activation function, and Ri is the coefficient vector to create
the linear combination of vector Xi.

It should be noted that there are four Dense layers (Dense 32) at the second level of the BARF model. Here we present the
formula of the first Dense layer at the second level of BARF model which is the same for the other three Dense layers. To
obtain this formula, we replace the vector Xi in Eq. 9 by:
Y ¼ concat Dropout0:3 D64 X1ð Þð Þ;Dropout0:3 D64 X2ð Þð Þð Þ; ð10Þ
rce: https://docs.aws.amazon.com/prescriptive-guidance/latest/ml-quantifying-uncertainty/mc-dropout.html

359



x x x

(x, ) (x, ) (x, )(x, ) (x, ) (x, )

p( (x, ))

Fig. 4. A general view of MC dropout in NNs. The gray circles show some randomly switching neurons off whereas MC dropout uses the black circles to
show the neurons in forward propagation.

Feature 
Extractor 1

Feature 
Extractor 2

Feature 
Extractor 3

Feature 
Extractor 4

Feature 
Extractor N -1

Feature 
Extractor N. . .

Concatenation 1 Concatenation 2 Concatenation C. . .

Concatenation 1 Concatenation M. . .

C = N / 2

M = C / 2

Concatenation 1 Concatenation K K = M / 2. . .

Concatenation F

N models

F = 2 / 2 = 1
. .

 . 
. .

( htpe
D eerT

D
)

Final Concatenation 

Fig. 5. A general view of BTC strategy used in the proposed BARF fusion models. In this work, we have N models for feature extraction and the depth of tree
is D. As mentioned earlier, this model follows the idea of BTC which means at each step forward half of the base models of the previous level remains. For
example, we can see that C is equal to N/2. This means that the number of base methods (N) must be a power of 2 (N = 2j), where j = {1, 2, 3, . . .,N}. Note: N is
the number of base models while N is the symbol of the set of natural numbers. The depth D is equal to j.
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D32 Yð Þ ¼ ReLU
X
j

RjYj

 !
; ð11Þ
where j the length of vector Y.
Finally, we present the formula for the Dense layers at the third level of BARF model. There are two Dense layers (Dense

16) at the third level. Here, we present the formula for the first one. Consider:
Z ¼ concat D32 1ð Þ;D32 2ð Þ;MCDropout0:3 D64 X1ð Þð Þ;MCDropout0:3 D64 X2ð Þð Þ;MCDropout0:3 D64 X3ð Þð Þ;MCDropout0:3 D64 X4ð Þð Þð Þ;
ð12Þ
Then:
D16 Zð Þ ¼ ReLU
X
j

RjZj

 !
; ð13Þ
where D32 1ð Þ and D32 2ð Þ are the first and second Dense 32 layers at the second level and j the length of vector Z.
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Fig. 6. A schematic view of the proposed direct-based BARF with same input images for all pre-trained models.It may be noted that the activation function
in all dense layers is ReLU function.
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In the following, we have provided the main characteristics of our proposed direct-based BARF model.

� Pre-trained models on ImageNet dataset: pre-trained models on ImageNet dataset have always been one of the best
options to extract the features hidden in different kinds of images. We have used 8 different pre-trained models in the
proposed direct/cross based BARF models. Each pre-trained model extracts one feature map from the given input medical
image. The feature maps of different models are fused in the remainder of the architecture. Since the ImageNet weights of
pre-trained models are achieved by 3-channel of colored images, we need to convert the gray-scale images to 3-channel
images. This approach helps to remain the same weights of pre-trained models meaningful. By putting a gray-scale image
three times together, we achieved one 3-channel image. This technique is used to convert gray-scale images to 3-channel
images [37].

� Feature fusion as ensemble of different deep neural networks (DNNs): One of the best ways to take advantage of different
DNN components is to combine them creatively. We have designed a feature fusion-based model as an ensemble archi-
tecture in which we have combined the properties of eight different deep neural networks. It should be noted that this
step is the first key point in UQ in our proposed model as it acts like an ensemble.

� Binary Tree Combination (BTC): The general architecture of our deep ensemble model is inspired by the structure of bin-
ary trees. The tree structure of the model allows us to utilize different kinds of CNN combinations. The key advantages in
designing our BARFmodel are: (i) using the properties of double and quadruple combinations of pre-trained models at the
same time, and (ii) taking advantage of residual blocks (connections). It should be noted that the main backbone of the
proposed BARF model follows the BTC approach. BTC also allows us to employ both standard dropout (applying dropout
just at the training time) and probabilistic dropouts (applying dropout at the training and inference time) at the same
time at the same level of tree-based model.

� Direct residual fusion components: We have added two residual fusion blocks to our model. The advantages of residual
modules are proven in the context of DNNs. This is the main and only difference in our proposed direct and cross models.
In the direct model there are two residual layers in the two sides of the tree. In the ”direct-based BARF” model, each of
these residual layers connects the output of the probabilistic dropout components of one side of the tree to two levels
higher at the same side in the tree structure. Other features at these higher levels come from non-probabilistic (standard)
dropout components. Therefore, the residual components help to combine the certain and uncertain results of the drop-
out level in the tree-based structure of the model.

� Uncertainty awareness module: As mentioned before, the model has a dropout level which contains two kinds of drop-
outs. The normal dropouts just run at the training time and the probabilistic dropouts run during both the training and
inference steps. These probabilistic dropout components are the second key points in quantifying uncertainty of our pro-
posed direct and cross-based BARF models.
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3.2. Proposed Cross-based BARF

The only difference between the second proposed fusion model and the first one is the residual components. As men-
tioned in the previous sub-section (see 3.1), in both direct and cross models, there is one residual layer in each main side
of the tree (there are two main sides). In the direct-based BARF model each layer connects the output of probabilistic dropout
components of one side of the tree to two levels higher at the same side of the tree. In the cross-based BARF model, each
residual layer connects the output of probabilistic dropout components of one side of the tree to two levels higher at the
another side of the tree. It helps the destination components of residual layers to take the advantages of based models’ prop-
erties in both sides of the tree. Using this approach, we mix the features achieved by the pre-trained models in both sides of
the tree using the residual connection components. A schematic view of the proposed cross-based BARF is shown in Fig. 7.

4. Experimental outcome

In this section, the experimental outcomes of applied methods using different medical image datasets is presented. We
first explain the datasets used and then discuss the experiment setup of current study. Finally, the results obtained using
each medical dataset are presented..

4.1. Datasets

In this study, we used four medical image datasets: coronavirus (COVID-19) CT scans2, chest X-ray images3, Optical Coher-
ence Tomography (OCT) images3, and skin cancer dermoscopic images4. Table 1 presents the details of each dataset used in our
study. As three out of four datasets used in our study are grayscale images, we pre-processed [37] these images before feeding to
the pre-trained models. We feed gray-scale image three times along with together to achieve a 3-channel model. More infor-
mation about the medical datasets is presented in Table 1. Sample image of each dataset is shown in Fig. 8.

4.2. Experiment Setup

The experiments are performed on a Windows-based system with GeForce RTX 2080 Ti. The four datasets described in
sub-Section 4.1 are divided into two main groups: training and validation. The coronavirus (COVID-19) CT scans are not offi-
cially split to train and validation sets, 80% of the total images are used as training and the rest (20%) for validation. However,
we directly used other three datasets as they are originally separated into training and validation categories (official train/-
validation split). The performance parameters used to evaluate the prediction are as follows: recall (Eq. 14), precision (Eq. 15),
F1-score (Eq. 16), accuracy (Eq. 17), and the area under the curve (AUC). In this study, as we used the grayscale images, pre-
processing is highly recommended to improve the proposed fusion-based medical image classification model [37].
2 Sou
3 Sou
4 Sou
Recall ¼ TP
TP þ FN

; ð14Þ

Precision ¼ TP
TP þ FP

; ð15Þ

F1� score ¼ 2 � Recall � Precision
Recallþ Precision

¼ 2TP
2TP þ FP þ FN

; ð16Þ

Accuracy ¼ TP þ TN
TP þ TN þ FP þ FN

; ð17Þ
where TP is the true positive, TN is the true negative, FP is the false positive, and FN is the false negative.
In this study, we employed eight well-known pre-trained models for ex tracing features of raw medical images: Dense-

Net201, VGG19, EfficientNetB7, Inception-ResNet v2, Inception v3, MobileNetV2, ResNet152V2 and Xception to extract the
features from the raw medical images. More details about these pre-trained models are provided in Sections 3.1 and 3.2.

4.3. Results

In this section, we investigate the impact of different deep feature fusion models used for medical image classification
with various evaluation metrics. Deep feature extractions are important techniques not only used for medical image classi-
fication but for many other applications also. The main reason is that all the extracted features have their own advantages
which can be used in a specific domain. Hence, we proposed a simple, efficient yet powerful fusion model. The proposed
rce: https://www.kaggle.com/hgunraj/covidxct
rce: https://data.mendeley.com/datasets/rscbjbr9sj/3
rce: https://www.kaggle.com/fanconic/skin-cancer-malignant-vs-benign

362



DenseNet201 VGG19 EfficientNetB7 Inception-
ResNet v2 Inception v3 MobileNetV2 ResNet152V2 Xception

Dropout 
(0.3)

Number of Classes (Softmax)

InputInput Input Input Input Input Input Input

Flatten Flatten Flatten Flatten Flatten Flatten Flatten Flatten

Dense (64) Dense (64) Dense (64) Dense (64) Dense (64) Dense (64) Dense (64) Dense (64) 

Richer Features
Dense (32) Dense (32) Dense (32) Dense (32) 

MC 
Dropout

Dense (16) Dense (16) 

Dropout 
(0.3)

Dropout 
(0.3)

Dropout 
(0.3)

Dropout 
(0.3)

Dropout 
(0.3)

Dropout 
(0.3)

Dropout 
(0.3)

MC 
Dropout

MC 
Dropout

MC 
Dropout

MC 
Dropout

MC 
Dropout

MC 
Dropout

MC 
Dropout

Richer Features

Cross Connection

Fig. 7. A schematic view of the proposed cross-based BARF with same input images for all pre-trained models. It may be noted that the activation function
in all dense layers is ReLU function.

Table 1
Details of datasets used in this study.

Dataset Disease/Cancer # of Samples # of Classes Type Category

CT scan COVID-19 104009 3 Grayscale Big data
X-ray Pneumonia 5856 2 Grayscale Small data
OCT Retinal Structural Changes 84484 4 Grayscale Big data
Dermoscopic Skin cancer 3297 2 Colory Small data
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BARF model includes two main strategies: direct and cross (see 3.1 and 3.2). To show their performance, we applied early
and late fusions of eight pre-trained models and then compared their performances with our proposed direct and cross-
based BARF models. All fusion models have included uncertainty quantification module. However, as discussed earlier,
the proposed direct and cross-based BARF models benefited from the simultaneous use of standard and MC dropouts, the
residual connection helped to provide this option.

In the following, we report the obtained results for each dataset separately. We have first shown the results obtained for
COVID-19 (CT scan) dataset at the validation stage in Table 2. It can be noted from the table that, both direct and cross-based
BARF fusion models have outperformed the early and late fusion models. However, we noticed that the direct-based BARF
fusion model performed slightly better than the cross-based BARF fusion model. Hence, we have chosen direct-based BARF
fusion model as the best fusion model for COVID-19 classification in this study [38]. Another important feature of our study
is examining the results for each class individually. This advantage allows us to carefully investigate the performance of
models for each class. Figs. 9–12 provide the detailed performance metrics (i.e., recall, precision, and F1-score) of the pro-
posed fusion models obtained using CT scans (COVID-19) for both training and validation phases.

In our second experiment, we tested the developed fusion models using X-ray dataset and the obtained results are shown
in Table 3. The CT scans (COVID-19) are applied to all four fusion models with UQmodule. It can be noted from the table that,
the proposed cross-based BARF achieved the best performance followed by early and direct-based BARF fusion models.
Figs. 13–16 show the performance of all fusion models tested using X-ray dataset for both training and validation phases
using early fusion, late fusion, direct-based BARF, and cross-based BARF, respectively.

Our third grayscale and final medical data is the OCT dataset are used to show the superiority of our both proposed BARF
models. The obtained results using OCT dataset is presented in Table 4. The results clearly show that our direct and cross-
based BARF models are superior to the other two applied fusion models (Early and late fusion models). Although the perfor-
mance of our both fusion models are promising, our proposed cross-based BARF model performed better (with the accuracy
of 92.50%) than direct-based BARF model with an accuracy of 91.40%. Figs. 17–20 show the performance of all fusion models
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Fig. 8. Sample image of each dataset: (a) COVID-19 (CT), (b) X-ray, (c) OCT, and (d) skin cancer, respectively.

Table 2
Performance comparison with various fusion models obtained using COVID-19 dataset at the validation stage.

Method Class Performance

Recall (%) Precision(%) F1-score (%) Accuracy (%) AUC

Early fusion COVID-19 99.35 99.91 99.62 - -
Normal 99.92 99.91 99.91 - -
Pneumonia 99.86 99.55 99.70 - -
Average 99.71 99.79 99.74 99.78 0.9994

Late fusion COVID-19 83.48 100 90.99 - -
Normal 99.99 96.74 98.33 - -
Pneumonia 94.13 99.81 96.88 - -
Average 92.53 98.85 95.40 97.62 0.9936

Direct-based BARF (ours) COVID-19 99.84 99.95 99.89 - -
Normal 99.99 99.92 99.95 - -
Pneumonia 99.92 99.93 99.92 - -
Average 99.91 99.93 99.92 99.93 0.9997

Cross-based BARF (ours) COVID-19 99.81 99.98 99.89 - -
Normal 99.99 99.91 99.94 - -
Pneumonia 99.85 99.89 99.86 - -
Average 99.88 99.92 99.89 99.92 0.9997
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tested on OCT dataset for both training and validation phases using early fusion, late fusion, direct-based BARF, and cross-
based BARF, respectively.

Finally, we investigated the performance of all fusion models using colored medical images (i.e., skin cancer [39]). As dis-
cussed above, unlike previous three datasets we have a 3-channel model for this colored image dataset. The performance of
all applied fusion models including UQ module is reported in Table 5. The obtained outcomes show that the direct and cross-
based BARF models have achieved the same accuracy of 89.24%, precision (89.11%) and F1-score (89.18%). However, cross-
based BARF has performed with better AUC of 0.9422. For this reason, we chose the cross-based BARF as the best model for
skin cancer classification dataset. Figs. 21–24 provide the performance of all fusion models tested with skin cancer images
dataset for both training and validation phases using early fusion, late fusion, direct-based BARF, and cross-based BARF,
respectively.

In summary, our results obtained indicate that both proposed BARF models achieved outstanding results. The outcomes
indicate that the cross-based BARF model has outperformed the other applied fusion models for three out of four medical
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Fig. 9. Detailed performance metrics of early fusion model tested on CT scans (COVID-19).

Fig. 10. Detailed performance metrics of late fusion model tested on CT scans (COVID-19).
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datasets (X-ray, OCT, and skin cancer) used in this study. However, our results reveal that direct-based BARF model obtained
slightly better performance for CT scan (COVID-19) classification task. These results confirm the strength of our both pro-
posed fusion models. Our results obtained justifies that the proposed approach is capable of simultaneously use both stan-
dard and MC dropouts. This means that the UQ method can be included in the BARF model for many healthcare applications
and real scenarios.
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Fig. 11. Detailed performance metrics of the proposed direct-based BARF model tested on CT scans (COVID-19).

Fig. 12. Detailed performance metrics of the proposed cross-based BARF model tested on CT scans (COVID-19).

M. Abdar, Mohammad Amin Fahami, S. Chakrabarti et al. Information Sciences 577 (2021) 353–378
5. Discussion

In this study, we introduced a novel and efficient fusion model for medical image classification named BARF using direct
and cross strategies. One of the important strengths of BARF is the use of fusion model in feature level like an ensemble
approach. This emphasizes the power of collective decision-making rather than individual decision-making to choose the
most important and effective features. Various studies have proven (for more information please see [17]) that, hybrid
frameworks perform much better than individual methods. Along with better performance, these combined methods are
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Fig. 13. Detailed performance metrics of early fusion model tested on X-ray images.

Table 3
Performance comparison with various fusion models obtained using X-ray dataset at the validation stage.

Method Class Performance

Recall (%) Precision(%) F1-score (%) Accuracy (%) AUC

Early fusion Normal 73.50 99.42 84.51 - -
Pneumonia 99.74 86.25 92.50 - -
Average 86.62 92.83 88.50 89.90 0.9371

Late fusion Normal 50.85 100 67.41 - -
Pneumonia 100 77.23 87.15 - -
Average 75.42 88.61 77.28 81.57 0.8954

Direct-based BARF (ours) Normal 72.22 100 83.86 - -
Pneumonia 100 85.71 92.30 - -
Average 86.11 92.85 88.08 89.58 0.9262

Cross-based BARF (ours) Normal 73.93 100 85.01 - -
Pneumonia 100 86.47 92.74 - -
Average 86.96 93.23 88.87 90.22 0.9368
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also appropriate to deal with uncertainties. These two advantages persuaded us to propose a hybrid system for medical
image classification. Uncertainty in the predicted results can put patients and even healthy people’s life at risk. This study
payed special attention to two important points: (1) getting impressive performance in medical image classification, and (2)
determining uncertainties in the predictions obtained using our proposed fusion model.

As shown in Section 4, the proposed direct and cross-based BARF models are tested on four different medical image data-
sets. The obtained outcomes reveal the outstanding performance by these fusion models. To highlight the superiority of our
BARF model, we applied two well-known fusion models namely early and late fusions. In order to provide a fair comparison,
since both proposed direct-based BARF and cross-based BARF models included MC dropout, we also added the uncertainty
module (i.e., MC dropout) to early fusion and late fusion. The obtained results reported in Section 4 clearly reveal that our
both fusion models have obtained impressive performance for various medical data classification.

To highlight the promising results of our proposed fusion models, we provided a detailed comparison with the existing
methods reported in the literature (see Table 6). We humbly emphasize that the purpose of this comparison is not to dimin-
ish the value of previous studies or methods. Our main goal is to propose a robust and accurate classification system for med-
ical image classification. Table 6 provides a comparative performance obtained using our proposed fusion methods with the
previous studies for each dataset.

It can be noted from Table 6 that our proposed fusion models have been able to perform reasonably well. We used big
datasets of COVID-19 (CT scan) and OCT to highlight the impact of our proposed fusion models. On the other hand, smaller
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Fig. 14. Detailed performance metrics of late fusion model tested on X-ray images.

Fig. 15. Detailed performance metrics of the proposed direct-based BARF model tested on X-ray images.
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X-ray and skin cancer datasets are used to evaluate the performance of our direct and cross-based BARF models with smaller
medical data. The next important point to be noted in Table 6 is that most of the past studies have avoided considering
uncertainty. As we mentioned earlier, dealing with uncertainty is a key point in medical data analysis. Therefore, it can
be argued that considering the uncertainty in this study has tremendous advantage. We have obtained good performance
(Table 6) using our fusion models for medical image classification. As shown in Table 6, the cross-based BARF model has
achieved better performance in 3 out of 4 datasets. Thus, cross-based BARF model performed better than direct-based BARF
model.
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Table 4
Performance comparison with various fusion models obtained using OCT dataset at the validation stage.

Method Class Performance

Recall (%) Precision(%) F1-score (%) Accuracy (%) AUC

Early fusion CNV 100 73.10 84.45 - -
DME 94.40 98.33 96.32 - -
DRUSEN 62.80 99.37 76.96 - -
Normal 98.80 95.74 97.24 - -
Average 89.00 91.63 88.74 89.00 0.9736

Late fusion CNV 100 82.78 90.57 - -
DME 95.20 99.58 97.34 - -
DRUSEN 41.20 100 58.35 - -
Normal 100 91.91 95.78 - -
Average 84.10 93.56 85.51 88.30 0.9833

Direct-based BARF (ours) CNV 100 80.39 89.12 - -
DME 95.20 97.14 96.16 - -
DRUSEN 72.80 99.45 84.06 - -
Normal 97.60 93.85 95.68 - -
Average 91.40 92.70 91.25 91.40 0.9821

Cross-based BARF (ours) CNV 100 81.70 89.92 - -
DME 93.20 99.15 96.08 - -
DRUSEN 77.20 99.48 86.93 - -
Normal 99.20 93.94 96.59 - -
Average 92.40 93.56 92.38 92.50 0.9806

Fig. 16. Detailed performance metrics of the proposed cross-based BARF model tested on X-ray images.
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For more clarity, sample output posterior distributions of COVID-19, X-ray, OCT, and skin cancer with their corresponding
uncertainty estimates using the proposed cross-based BARF are shown in Figs. 25 (COVID-19), 26 (X-ray), 27 (OCT), and 28
(skin cancer), respectively. In these figures, we have shown the posterior distribution of correctly classified (in blue) and mis-
classified or incorrect (in orange) classes. For example, if the output posterior distributions of correctly classified and mis-
classified overlap, it means that the model has lot of uncertainty. However, if the output posterior distributions of
correctly classified and misclassified do not have any overlap, then, it indicates certainty in predictions.It may be noted that
the number of MC samples, i.e., forward passes from dropout which can be used to calculate the predictive mean and uncer-
tainty is 500.

A very motivating point to consider is the ubiquity of ML and DL models for classifying the medical data. The results pre-
sented in Tables 2–5 clearly reveal that both early and late fusion models exhibited variable behaviors using different med-
ical data. In other words, the results indicate that in some medical image data early fusion resulted in worst performance
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Fig. 17. Detailed performance metrics of early fusion model tested on OCT images.

Fig. 18. Detailed performance metrics of late fusion model tested on OCT images.
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while with other medical image data, late fusion did not perform adequately. However, our both fusion models (i.e., direct
and cross-based BARF) showed highest performance and similar behavior using different medical image datasets. It may be
noted that our proposed fusion models are more general and comprehensive than the reported previous methods. Also, we
have equipped our fusion models with UQ module. Moreover, it can be noted from Table 6 most of the previous methods
aimed to achieve better performance and not facing the uncertainty quantification in the models and their predictions. In
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Fig. 19. Detailed performance metrics of the proposed direct-based BARF model tested on OCT images.

Fig. 20. Detailed performance metrics of the proposed cross-based BARF model tested on OCT images.
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this study, we have focused on both (i) good performance and able to handle uncertainty in the ML and DL models. Our both
proposed fusion models can be used as a clinical decision support system (CDSS) for medical image classification in real life
scenario. Finally, we have proposed an accurate medical image classification system with high classification performance
with UQ, which may be more beneficial for the clinicians and patients.
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Table 5
Performance comparison of various fusion models using skin cancer dataset at validation stage.

Method Class Performance

Recall (%) Precision (%) F1-score (%) Accuracy (%) AUC

Early fusion Benign 87.50 86.78 87.13 - -
Malignant 84.00 84.85 84.42 - -
Average 85.75 85.81 85.77 85.91 0.9053

Late fusion Benign 86.11 92.81 89.33 - -
Malignant 92.00 84.66 88.17 - -
Average 89.05 88.73 88.75 88.79 0.9492

Direct-based BARF (ours) Benign 88.06 91.88 89.92 - -
Malignant 90.67 86.35 88.45 - -
Average 89.36 89.11 89.18 89.24 0.9217

Cross-based BARF (ours) Benign 88.61 91.40 89.98 - -
Malignant 90.00 86.82 88.38 - -
Average 89.30 89.11 89.18 89.24 0.9422

Fig. 21. Detailed performance metrics of early fusion model tested on skin cancer images.
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5.1. Major advantages and disadvantages

Each ML and DL method has its own strengths and weaknesses. The main salient features of our developed fusion meth-
ods are given below:

� Achieved superior performance for medical image classification.
� Prediction of model uncertainty more accurately;
� Introduction of hybrid system to adopt a multilateral decision-making.
� Proposed a dynamic clinical decision support system for medical image classification with flexibility to choose various
base methods and tree depth.

� Evaluation of performance of the proposed model with various medical data.
� Used both binary and multiple classes of medical data;
� Analyzed of results accurately in each class of datasets to ensure the transparency in the final outcomes.
� Generated model is tested with small, big, gray and colored medical image data.
� Evaluated the stability of the model behavior using various medical image data.
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Fig. 22. Detailed performance metrics of late fusion model tested on skin cancer images.

Fig. 23. Detailed performance metrics of the proposed direct-based BARF model tested on skin cancer images.
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Table 6
Performance comparison of the proposed BARF model with other existing methods tested on the used datasets (%). Note: MIL: multiple instance learning, Both:
Augmentation + Self-supervision, UD-MIL: Uncertainty-Driven Deep Multiple Instance Learning, TWDBDL: Three-Way Decision Bayesian Deep Learning.

Dataset Study Method # of images Accuracy Recall Precision F1-score Uncertainty

COVID-19 Loey et al. [40] (2020) AlexNet 11012 76.38 63.83 N/A N/A NO
Loey et al. [40] (2020) ResNet50 11012 81.41 80.85 N/A N/A NO
Loey et al. [40] (2020) VGGNet16 11012 78.89 62.77 N/A N/A NO
Loey et al. [40] (2020) VGGNet19 11012 73.87 71.28 N/A N/A NO
Loey et al. [40] (2020) GoogleNet 11012 77.39 71.28 N/A N/A NO
Gunraj et al. [41] (2020) ResNet-50 104009 98.70 98.26 98.73 98.49 NO
Gunraj et al. [41] (2020) NASNet-A-Mobile 104009 98.60 98.20 98.30 98.24 NO
Gunraj et al. [41] (2020) EfficientNet-B0 104009 98.30 97.80 98.30 98.04 NO
Gunraj et al. [41] (2020) COVIDNet-CT 104009 99.10 98.76 99.16 98.96 NO
Bai et al. [42] (2020) DL 1186 96.00 N/A N/A N/A NO
Li et al. [43] (2020) Rubik’s cube Pro 2675 N/A 97.70 84.00 90.30 NO
Abdar et al. [38] (2021) UncertaintyFuseNet 19685 99.08 99.08 99.08 99.08 YES
Li et al. [44] (2021) MIL + Both 229 95.80 93.60 85.74 89.50 NO
Ours (2021) BARF (direct) 104009 99.93 99.91 99.93 99.92 YES

X-ray Liang and Zheng [45] (2020) CNN 5856 90.50 96.70 89.10 92.70 NO
Chhikara et al. [46] (2020) Deep CNN 5866 90.10 95.70 90.70 93.10 NO
Luján-García et al. [47] (2020) Xception Network 5232 87.98 99.20 84.30 91.20 NO
Ours (2021) BARF (cross) 5856 90.22 86.96 93.23 88.87 YES

OCT Kermany et al. [48] (2018) CNN 84484 96.10 96.12 96.10 96.10 NO
Huang et al. [49] (2019) Layer Guided CNN 84484 89.90 87.15 87.80 87.47 NO
Chetoui et al. [50] (2020) CNN 84484 98.46 98.37 N/A N/A NO
Sunija et al. [51] (2020) CNN 83484 99.69 99.69 99.69 99.68 NO
Wang et al. [52] (2020) UD-MIL 4644 93.30 N/A N/A 91.70 YES
Ours (2021) BARF (cross) 84484 92.50 92.40 93.56 92.38 YES

Skin cancer Hekler et al. [53] (2019) Fusion method 12336 N/A 89.00 N/A N/A NO
Bologna and Fossati [54] (2020) DIMLP-ensemble 3297 84.90 N/A N/A N/A NO
Lee and Renee [55] (2020) CNN 6600 82.90 N/A N/A N/A NO
Abdar et al. [35] (2021) TWDBDL 3297 88.95 N/A N/A 89.00 YES
Ours (2021) BARF (cross) 3297 89.24 89.30 89.11 89.18 YES

Fig. 24. Detailed performance metrics of the proposed cross-based BARF model tested on skin cancer images.
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Fig. 25. Example output posterior distributions of COVID-19 and their corresponding uncertainty estimates using the proposed cross-based BARF.

Fig. 26. Example output posterior distributions of X-ray and their corresponding uncertainty estimates using the proposed cross-based BARF.
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Fig. 27. Example output posterior distributions of OCT and their corresponding uncertainty estimates using the proposed cross-based BARF.
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The limitations of our proposed method are also presented below:

� Time-consuming to obtain results using both direct and cross-based BARF methods.
� Unable to return uncertain samples to medical experts caused due to lack of cooperation caused medical team.
� Yields better performance using large medical data than for smaller data.

6. Conclusion

The most recent advancements in medical imaging and artificial intelligence technology has the paved the way for accu-
rate diagnosis by developing novel robust CAD systems. Hence, we proposed a new feature fusion framework to extract the
most effective features from various datasets for our proposed BARF medical image classification model using two strategies
(direct and cross). Most of existing medical methods do not consider quantifying their uncertainty while predictions. To
overcome this weakness, we employed an uncertainty-aware module using Monte Carlo (MC) dropout with our BARF model.
Our proposed fusion models validated on all four medical datasets have obtained superior performance and demonstrated
increased certainty in the obtained results. In the future, we plan to propose a novel UQ method based on decision making
theory. Also, we aim to modify the proposed binary fusion model to have flexibility in choosing base feature extraction
methods.
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Fig. 28. Example output posterior distributions of skin cancer and their corresponding uncertainty estimates using the proposed cross-based BARF.
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