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Abstract—This paper introduces a new dynamic networked
trust model, the Random Neural Network Trust Model (RN-
NTM), which incorporates the dynamics of trust formation in
a network through a sequence of “votes” from each entity
regarding all other entities. The model assures fairness among
entities through a fixed replenishment rate of “voting rights”
for each entity, whose voting rights are reduced each time the
entity votes. A positive vote received by an entity increases
its voting rights and its trustworthiness, while a negative vote
reduces its voting rights and also its trustworthiness, and a
non-negative integer represents each entity’s instantaneous “trust
value”. An important property of the RNNTM is that an entity
cannot express its trust or distrust of the other entities, and
hence affect their trust values, when its trust level is down to
zero, so that untrustworthy entities are not allowed to express
trust or distrust. After developing the theoretical characteristics
for the RNNTM model, this paper details its use to evaluate
the trust value of multiple entities in a network of Internet of
Things (IoT) devices and gateways, where cyberattacks against
the gateways, and messages that should be received from IoT
devices at regular intervals, modify the parameters that express
the trust or distrust between entities. To illustrate its use for
a network of interaction gateways, servers and user equipment,
several detailed time-dependent simulations of the RNNTM are
conducted in the presence of cyberattacks.

Index Terms—Dynamic Trust Models, Random Neural Net-
works, G-Networks, Analytical Methods for Trust

I. INTRODUCTION

In the large peer-to-peer (P2P) wireless systems of the
future, the multi-disciplinary concept of trust will be needed
as a tool to determine whether user entities (UE) connect
with each other, and how each UE may evaluate the services
or data that they request and receive from each other [1].
However, trust is a complicated concept which has emotional
[2] and cognitive [3] foundations that have been studied from
a multidisciplinary perspective [4]. It is also of great practical
value, and is widely discussed in the business world [5] where
it is used to establish the competence and believable integrity
of a trustworthy person or enterprise, including key aspects
such as:
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• Connectedness to others who can corroborate trustwor-
thiness and provide their own evaluations, as well as

• Dependability, which requires that data from multiple
opinions and instances is available to establish trust.

Among the known business representations of trust, the Amer-
ican Express model is based on (i) Consistency, requiring
multiple instances and data regarding the behaviour or per-
formance of the trustworthy entity, (ii) Competence, based on
the ability to deliver results within expected or agreed Key
Performance Indicators (KPI) and (iii) Caring, a softer con-
sideration that requires empathy and listening to the opinions
of others, and also brings to bear the issue of participation in
collective and shared decision-making processes.

The need to formulate trust in the Internet goes back to the
commercial uses of networks that are enabled by cryptography
and trust in our ability to identify ourselves, order goods and
services online, and make secure payments [6]–[8]. The many-
to-many and peer-to-peer connectivity offered by modern
wireless networks, with the increased use of mobile connected
devices to express opinions and influence decisions, new trust
models emerge [9].

A. Contributions of the Present Paper

The purpose of this paper is to develop an operational model
of trust for future networks composed of many connected
devices, including servers that aim to produce secure and
reliable services to all the other entities, in a manner that
limits the influence of untrustworthy entities within the model,
and which allows all entities to express their trust or distrust
of others by the possibility of voting, which is distributed
in a rationed manner to each entity. Trust in a given entity,
in our model, is based on the opinion expressed by other
entities as well as on the frequency with which each entity
expresses its trust or distrust of others. Each entity (a device
or server) is fed with a flow of “permits” that allow it to
dispense its opinion regarding others, and it can indicate its
trust about another entity if it observes that this other entity is
accomplishing its normal work, or when it receives a normal
message from it, while it may express distrust about the
other entity if the other entity becomes non-responsive or if
experiences a cyber-attack. Entities that express themselves



more frequently than others can also lose their trust value, so
that the model discourages excessive “gossip” or attempts to
influence opinions, and entities with low trust value will have
a smaller chance of influencing the trust level of others.

To this effect, we propose a new time-dependent network
model of trust, the RNN Trust Model (RNNTM), which in-
corporates the dynamics of trust formation through a sequence
of “votes” from each entity to all other entities, that mimic
the successive expressions of trust and distrust that any entity
may formulate about other entities. The instantaneous trust
value of an entity ei at time t ≥ 0 is represented as a
non-negative integer Ki(t) ≥ 0. Interactions between entities
occur asynchronously at different instants of time, and lead to
changes in the value of Ki(t) for each ei, which also limits the
“right to express” itself of each entity so that more trustworthy
entities may express themselves more frequently. Furthermore,
events such as cyberattacks on certain entities will modify the
parameters that express the trust or distrust between entities,
which in turn affect the values of each Ki(t).

The original features of the RNNTM, as compared to
conventional trust models, are:

• RNNTM treats the trust level of each entity as a “right
to vote” which is replenished by a constant rate of rights
to vote that arrive externally to entity ei at a positive
constant rate Λi > 0, These rights to vote may be also
depleted by a constant (non-negative) flow of deplete
messages λi ≥ 0. Thus, the parameters Λi, λi can be
viewed as the rules imposed by an external regulator to
each entity ei in the system.

• When Λi = Λ, λi = λ for all 1 ≤ i ≤ n, this means that
all entities are placed on an equal footing regarding the
number of voting rights they receive per unit time and
the rate at which these voting rights are taken away from
them.

• The trust level and right to vote is reduced each time the
entity expresses trust or distrust towards another entity,
or when some other entity expresses distrust towards the
given entity. Thus, the “right to vote regarding the trust
of others” is modulated by the current trust level of the
voter, and entity ei cannot express its trust or distrust
of the other entities, and hence affect their trust values
at some time t, if ei’s trust value iKi(t) = 0. More
generally, the capability of ei’s to influence the trust level
of other entities ej depends on the probability that ei
itself has a positive trust level Prob[Ki(t) > 0]. Thus,
non-trustworthy entities are not allowed to affect the trust
level of other entities.

• On the other hand, each time an entity receives an
expression of trust from another entity, its trust level
increases by one.

Thus, in the RNNTM the trust level of an entity is determined
by its external replenishment and deletion rate of its rights
to vote, the frequency with which it expresses itself about
other entities, and the trust or distrust that is expressed by
other entities towards itself, for them that is expressed by

other entities, Its purpose is to model the manner in which
the mutual trust of a set of entities will evolve over time, in
response to the opinions expressed by the different entities
with respect to each other.

In Section I-B we review some related work, and in Section
II we detail the mathematical structure of the RNNTM and
its analytical solution. Section III is devoted to the analysis
of the collection of entities in the presence of cyberattacks,
and the recovery from attacks, which modify the interaction
rates between entities. An example of the use of the RNNTM
when a collection of devices or servers can be subjected to
cyberattacks is detailed in Section IV. Finally, conclusions and
suggestions for further work are provided in Section V.

B. Related Work

A recent discussion paper [10] recalls the role of trust as
an element of human and institutional identity, and points
to an analysis [11] that stresses the importance of Temporal
Embeddedness, implying that a trustworthy party can benefit
from another entity’s trust into the future, and hence value
and nurture the trust being placed in itself, while Social
Embeddedness allows the trusted entity to benefit from the
propagation of its trustworthiness through social networks. On
the other hand, Institutional Embeddedness of trust refers to
stable social institutions, such as the legal system and the
courts of law, regulatory bodies, professional organizations
and universities, that can certify trustworthiness within specific
contexts through the award of certifications and degrees related
to knowledge and professional capabilities, and propose codes
of behaviour that can reinforce the role of trust within human
society.

Early work has discussed how interactions in social net-
works can enhance trust relations [12], and an analysis of
the links between social networks and trust was examined
in the context of medical practice [13]. On-line feedback
that replaces human interaction for the establishment and
management of reputation was considered in [14], while the
manner in which specialized “recommender agents” can be
constructed and used is examines in [15].

More recent work has examined how trust representations
can enhance collective intelligence and successful search in
social systemes [16]. In [17], the analytical techniques that can
help evaluate reputation in peer-to-peer systems are discussed,
while other work has studied the effects of personalities and
human bias on the dyamics of trust [18], [19].. The related
computer science literature [20], [21] has often used trust in
relation to the Internet of Things (IoT) [22]. Trust was also
used for social networks [23], because it influences the manner
in which information spreads in peer to peer (P2P) networks
[24]. Since trust among n entities is often represented by a
directed “trust graph” (TG) where arcs represent the trust of
some entity regarding another entity, much work uses sets of
TGs to learn the trust values from data with machine learning
(ML) [25], and test whether certain TGs conform with the
data, or to discover trust relationships which disagree with
given datasets [26], [27].



II. DYNAMICS OF THE RNN TRUST MODEL (RNNTM)

The RNN Trust Model (RTM) is a computational model
for the trust that is associated with a set of n entities
E = {e1, ... , en} where the trust for entity ei at some
real-valued time t ≥ 0 is expressed as a non-negative integer
Ki(t) ≥ 0 which indicates that the entity cannot be trusted at
all at time t if Ki(t) = 0. On the other hand, if Ki(t) > 0
then it is worthy of some trust at time t, described by the
value of Ki(t). Thus, the trust in all of the entities at time t
is given by the n − vector K(t) = (K1(t), ... Kn(t)), and
as we shall see below the trust of each entity depends on the
trust value of the other entities. The RTM which concerns all
the n entities can be installed as a software API in each of
the n entities, and each of the entities can use the same rules
for updating it based on external events. These external events
include periodic broadcast messages, sent for instance every
ten seconds, from each entity to all of the other entities. The
repeated lack of an acknowledgement message in response to
a sent message, or a lack of messages coming from a specific
entity, could then be viewed as an indication of a malfunction
or cyberattack concerning the non-responsive entity, which
would then result in a reduction of the trust that is associated
with it.

The trust system we describe is affected by external prior
knowledge represented by the real-valued external trust pa-
rameter Λi ≥ 0 and the external distrust parameter λi ≥ 0,
for each entity ei, i = 1, ... , n, and by the parameters that
govern the interactions between entities that are defined below.
In our system, entity ei can express an opinion at time t
about some other entity as long its trust value is positive, i.e.
Ki(t) > 0; when it does so, its own trust level drops by one,
I.e. Ki(t

+) = Ki(t) − 1. Thus each entity has a “number of
voting rights” Ki(t) about other entities which is identical to
its own trust value. Thus the higher its own the value Ki(t)
is, the more votes ei has to express itself regarding trust or
distrust of others.

Thus, the trust level Ki(t) of entity ei is also the number of
“votes” or expressions of trust or distrust that it is allowed to
express about other entities at a given time; this resembles
a “plutocracy of trust”, where trustworthy individuals are
allowed to more frequently express their trust or distrust of
others. In this model, a probabilistic n× n connection matrix
P+ = [p+ij ] also represents for each entity ei the probability
that it may express trust about another entity ej , and similarly
the probabilistic n×n connection matrix P− = [p−ij ] represents
for each entity ei the probability that it may express distrust
about another entity ej . These matrices are constrained as
follows for each i = 1, ... n:

p+ij ≥ 0, p−ij ≥ 0, p+ii = p−ii = 0,

n∑
j=1

[p+ij + p−ij ] = 1, (1)

representing the opinion of each entity ei regarding its trust or
distrust for other entities. Finally, each entity ei has a specific
rate ri or speed at which it may express its trust or mistrust
about another entity. We use these parameters to define the

“weights” with which each entity expresses its trust or distrust
concerning other entities:

w+
ij ≡ rip

+
ij , w−

ij ≡ rip
−
ij , and ri =

n∑
j=1

[w+
ij + w−

ij ]. (2)

In general, the weights w+
ij , w

−
ij may change, and the parame-

ters Λi, λi may be updated or changed during the long periods
of usage of a given model. For instance, a cyberattack on an
entity may result in a loss of trust by the other entities towards
the entity that has been the victim of a successful cyberattack,
because the success of the attack implies that the entity was
not well protected to detect or mitigate a cyberattack, and after
an attack the entity itself may be compromised.

In the following, we will use the notation [X]+, which is
commonly defined as [X]+ = X, when X ≥ 0 and [X]+ =
0, when X < 0. The n entities interact with each other using
the parameters that we have defined, in the following manner
at any given time t:

Ki(t+∆t) = Ki(t) + 1

with probability Λi∆t+ o(∆t), (3)
Ki(t+∆t) = [Ki(t)− 1]+

with probability λi∆t+ o(∆t), (4)
IfKj(t) > 0, then Ki(t+∆t) = Ki(t) + 1

with probability rjp
+
ji∆t+ o(∆t), (5)

IfKj(t) > 0, then Ki(t+∆t) = [Ki(t)− 1]+

and Kj(t+∆t) = Kj(t)− 1

with probability rjp
−
ji∆t+ o(∆t). (6)

Thus (3) indicates that the external opinion of trust Λi re-
garding ei increases its trust level by one, while the external
opinion of distrust λi reduces it by one, as indicated in (4).
The expression of trust by some entity ej for ei will increase
its trust level by one as shown in (5), while the expression of
distrust will reduce its trust level by one, as in (6).

Using this definition of the RNNTM, and the results from
[28], [29], the following key result allows us to compute the
trust value in steady state for a set of n interacting entities:

Theorem Let:

qi = lim
t→∞

Prob[Ki(t) > 0], 1 ≤ i ≤ n. (7)

Then if the solution to the following non-linear system of
equations exists:

qi ≡
Λi +

∑n
j=1 qjw

+
ji

ri + λi +
∑n

j=1 qjw
−
ji

< 1, (8)

such that 0 ≤ qi < 1, for 1 ≤ i ≤ n, then:

lim
t→∞

Prob[K1(t) = k1, ... ,Kn(t) = kn]

= Πn
i=1(1− qi)q

ki
i , (9)

and lim
t→∞

E[Ki(t)] =
qi

1− qi
. (10)



Comment: For a particular model or application, one can set
thresholds for trustworthiness such as:

• ei is untrustworthy if qi ≤ θ1,
• ei is undetermined if θ1 < qi ≤ θ2,
• ei is trustworthy if qi > θ2, where:

0 ≤ θ1 < θ2 < 1 . (11)

A. Initialization

In an initial situation where we have no evidence regarding
whether any of the entities should be trusted or not, we will
initialize the parameter values as follows:

• We set the values w+
ij = w−

ij = w, λi = λ, Λi = Λ for
all distinct pairs of entities ei, ej , i ̸= j.

• To show “perfect ignorance” we also select qi = 0.5, i =
1, ... , n representing the probability of whether any
entity ei is trustworthy or not.

Thus, using (7), we can seek the set of parameter values that
we should take by using (8) and setting:

0.5 =
Λ + 0.5(n− 1)w

2(n− 1)w + λ+ 0.5(n− 1)w
, (12)

which yields:

2Λ + (n− 1)w = 2(n− 1)w + λ+ 0.5(n− 1)w , (13)

so that:
Λ = 0.75(n− 1)w + 0.5λ . (14)

To simplify the calculations we set λ = 0 and w > 0 can be
fixed at any convenient positive value so we obtain:

Λ = 0.75(n− 1)w, with λ = 0, and w > 0 . (15)

In the sequel, we will assume that w in (15) is chosen such
that:

w+
ij + w−

ij = 2w, ∀ i, j = 1, ...n, i ̸= j, w = 1 and

ri = 2(n− 1), Λi = 0.75(n− 1), i = 1, ... , n. (16)

With this initialization, we also need to understand the
maximum values that can be allowed for any w+

ij , w−
ij for

i ̸= j. We know from (8) that qi is an increasing function
of each w+

ji when w+
ji + w−

ji = 2 as fixed in (16), and that
the maximum value that qi cannot exceed 1 since it is a
probability. Therefore, we compute the value M, 0 ≤M ≤ 2
of each w+

ji that cannot be exceeded, by setting all the qi = 1
with the parameter values that have been chosen in (15) and
(16). We then use (8) to obtain:

2(n− 1) + (n− 1)(2−M) = 0.75(n− 1) +M(n− 1),

and M = 1.625 . (17)

Since we must maintain qi < 1, ∀i, we set the maximum and
minimum values ∀i, j, i ̸= j to:

0 ≤ w+
ij ≤ 1.55, and 0.45 ≤ w−

ij ≤ 2. (18)

Fig. 1. The top two figures show the RNNTM Trust Graph for a total of
49 IoT devices numbered N1 to N49 shown around the circle, and a single
Gateway N0 at the center, sampled at time units 2000 and 4000, where one
time unit is 10 seconds. We have set θ1 = 0.5 and θ2 = 0.7 in (11). The
colour code is Red if the Gateway is deemed untrustworthy, and Green if
the Gateway is deemed trustworthy. Trustworthy IoT nodes are colored Light
Blue, untrustworthy IoT nodes are colored Pink, and IoT devices whose status
is “undecided” are colored Yellow. In these simulations, a randomly chosen
20% of IoT nodes omit to send a message each time unit (i.e., each 10 sec),
which affects the trustworthiness of all nodes, since when a message is not
received from some node, the assumption is that it has been attacked and other
IoT nodes or Gateways will update their weights accordingly as detailed in
Section III. The second figure from the top shows that the Gateway has been
attacked some time before 2000 time units, and the third figure from the top
shows that it has recovered some time later. For exactly the same simulation
as the other figures, the bottom figure shows (in Orange) that the average
trust level of all IoT nodes varies with time for each subsequent 10 second
time unit; it also shows that the the instantaneous trustworthiness level of the
Gateway (Blue) which suffers a cyberattack some time after 1700 time units,
and that it then recovers from the attack several hundred time units later.

III. THE RNNTM FOR CYBERATTACKS ON IOT
GATEWAYS

In this section, we present an application of the RNN Trust
Model (RTM) that was introduced in the previous section in
an environment where denial of service (DoS) attacks occur
against some entity ei. We assume that a DoS attack against
an entity ei occurs at random and unexpectedly on average
every 1

αi
time units, where αi > 0 can be interpreted as the

attack rate, i.e. the average number of attacks per unit time.



Fig. 2. The simulation results in this figure relate to a 50 node system
with two gateways N0 and N1, where each of the nodes or entities is
expected to send a packet into the network at each of the discrete time units
(each 10 seconds). We use all the previously defined and fixed parameters
throughout the simulation. Each of the two gateways is independently subject
to intermittent DoS attacks that affect their trust values. The remaining 48 IoT
devices have each (and independently of each other) a probability of 0.2 that
any one of them may omit to send a packet into the network. The gateway
N0 suffers an attack at approximately the 2800 successive 10 second interval,
while N1 is subject to an attack at approximately the 6900 time instant. The
top figure shows (i) the instantaneous average trust value at each time instant
of the two gateways when they are NOT under attack (in Brown), (ii) the
instantaneous trust value of the gateway being attacked, which dips sharply
(in Blue for N0 or in Orange for N1) during the attack and during the
recovery from the attack, as well as trust level of the gateway that is not
under attack (in Blue for N0 or in Orange for N1). The figure below shows
the widely varying trust values of the 48 remaining IoT devices throughout
the simulation.

Equivalently, we can consider that in a time interval [t, t +
∆t[, the probability of a DoS attack against ei is αi∆t +
o(∆t), Note that the time scale of the weight parameters, i.e.
1

w+
ij

, 1
w−

ij

and hence of the parameters 1
ri

, as well as 1
Λi
, 1

λi
,

would be in the range of seconds or tens of seconds, since the
RTM is updated frequently (say each 10 seconds) whenever the

communication updates are sent and received by the different
entities ei.

On the other hand, the time that elapses between cyberat-
tacks may be hours, days or even weeks (e.g. once every two
or three weeks). After an attack, the entity ei that came under
attack will have to recover, and this will take a time of average
length Ti which may be as long an hour or more, so that in
practice we have 1

αi
> Ti and 1

αi
>> 1

ri
, 1

Λi
, 1

λi
. Thus, the

RNNTM model will typically have reached its steady-state
probability distribution between two successive cyberattacks.

A. Effect of the Cyberattack

When a DoS attack occurs against any entity ei, the attacked
entity becomes unavailable and cannot communicate with the
other entities. Also, until it recovers from the cyberattack it
will not be able to modify its outgoing weights w+

ij , w
+
ij , j ̸=

1. On the other hand, each (other) entity ej , j ̸= 1 reacts to the
lack of communication from ei by modifying its connection
weights towards ei as follows:

w+
ji ← w+

ji − ηji, w−
ji ← w−

ji + ηji, (19)

where 0 < ηji ≤ w+
ji. As a result, assuming λi = 0 for all

i as suggested in the initialization, after an attack the trust
probability qi of ei obtained from (8) is updated to the value
qui of ei as follows:

qui =
Λi +

∑n
j=1,j ̸=i qj(w

+
ji − ηji)

ri +
∑n

j=1,j ̸=i qj(w
−
ji + ηji)

,

=
Λi +

∑n
j=1,j ̸=i qjw

+
ji

r1 +
∑n

j=1,j ̸=i qjw
−
ji

×
1−

∑n
j=1,j ̸=i qjηji

Λ+
∑n

j=1,j ̸=i qjw
+
ji

1 +
∑n

j=2 qjηji

r1+
∑n

j=2 qjw
−
ji

,

= qi ×
1−

∑n
j=1,j ̸=i qjηji

Λ+
∑n

j=1,j ̸=i qjw
+
ji

1 +
∑n

j=1,j ̸=i qjηji

r1+
∑n

j=1,j ̸=i qjw
−
ji

< q1 . (20)

We will set ηji = w+
ji which is its maximum value. From

(16) we have the value w+
ij +w−

ij = 2 for all i ̸= j. When we
also use (15), we obtain the updated Trust Probability for the
attacked entity ei as:

qui =
0.75(n− 1)

2(n− 1) + 2
∑n

j=1,j ̸=i qj
,

=
0.375(n− 1)

(n− 1) +
∑n

j=1,j ̸=i qj
. (21)

B. Recovery from a Cyberattack

After a cyberattack recovery time of average length Ti, the
entity ei that has been attacked recovers from the attack and
sends “all clear” messages to all the other entities. These other
entities will then change their weights in successive steps s =



1, 2, 3, ..., following each of the messages that arrive from
ei to ej . These weight changes take the following form:

w
[+,s]
ji = w

[+,(s−1)]
ji + [

ηji
1 + ηji

]s ,

= w+
ji − ηji +

∞∑
s=1

[
ηji

1 + ηji
]s,

w
[−,s]
ji = w

[−,(s−1)]
ji − [

ηji
1 + ηji

]s ,

= w−
ji + ηji −

∞∑
s=1

[
ηji

1 + ηji
]s, (22)

where w
[+,0]
ji = w+

ji − ηji, w
[−,0]
ji = w−

ji + ηji,

hence lim
s→∞

w
[+,s]
ji = w+

ji, lim
s→∞

w
[−,s]
ji = w−

ji. (23)

The simulation results presented in this paper use the
settings in (16), 0 ≤ w+

ij ≤ 1.55 from (18) and ηji = w+
ji

which yield:

w
[+,(0)]
ji = 0, w

[−,(0)]
ji = 2, w

[+,(0)]
ji + w

[−,(0)]
ji = 2. (24)

We can also calculate τi, the average trustworthiness of ei
over a long length of time which includes alternating periods
when the system has been attacked and is recovering and when
it is operating normally:

τi ≈
αiTi

(αiTi + 1)

qui
1− qui

+
1

(αiTi + 1)

qi
1− qi

. (25)

Note that (25) is an approximate expression which neglects
the gradual growth of the trust that each entity has in ei after
an attack occurs, until the “all clear” signal is broadcast by ei.

IV. SIMULATION OF TRUSTWORTHINESS IN THE
PRESENCE OF LOST MESSAGES AND CYBERATTACKS

In the simulation experiments of this section, we show the
evolution of the coupled trust values for 50 entities or nodes
over time, in an IoT network. All the simulations proceed
in successive time units, each equal to 10 seconds, and the
corresponding trust evaluations are recorded and shown in
Figures 1, 2 and 3. Note that in all the simulations, all the
50 trust values are all coupled as described in the previous
sections. All entities are expected to broadcast messages to all
other entities at each time unit, and trust is updated for each
entity (gateway and IoT devices) based on this communication
behaviour.

The first setup includes one IoT Gateway (denoted node
N0) and 49 IoT devices (N1 to N49), and its results are
shown in Figure 1. The average trust value is calculated for
all of the 49 IoT devices, and the gateway’s trust value is also
computed at each time unit. At each time unit, 20% of the
IoT randomly fail to send messages. Thus, at each time unit,
each IoT device may fail to send its message with probability
0.2. This mimics sporadic communication errors or the packet
loss of the IoT devices. When a device ”forgets” to send a
message, its trust value drops. Since all messages are broadcast
to all entities, this behaviour is known to all other devices or
gateways, modifying the trust assessments of other devices,

Fig. 3. The three figures shown above represent the RNNTM Trust Graph for
a total of 50 entities, including 48 IoT devices numbered N2 to N50 shown
around the circle, and the two gateways N0, N1 at the center, sampled at the
time units 1000, 5000 and 10, 000, where each time unit is 10 seconds, and
θ1 = 0.5, θ2 = 0.7as in (11). The colour code is Red for an untrustworthy
gateway, and is Green when the gateway is deemed trustworthy. Trustworthy
IoT nodes are cf Light Blue color, untrustworthy IoT nodes are Pink, and IoT
devices whose status is the “undecided” trustworthiness levels are colored
Yellow. Each IoT device has a probability of 0.2 that it omits to send a
message in any time unit, and all other IoT nodes or Gateways update their
weights accordingly, as described in Section III. These diagrams allow us to
observe the changing trust levels for all of the entities over a total period of
100, 000 seconds.

and it propagates across the network’s trust landscape. After a
device ”forgets” to send a message, if it resumes its message
sending it will take several time units to recover its trust
in successive steps. Also, at epoch 1769, a simulated attack
targets the gateway, resulting in a shutdown lasting 360 time
units. This causes the gateway trust value to decline sharply,
reaching a minimum of around 0.25. During the shutdown,
the gateway ceases to interact with other entities, simulating
real-world conditions such as a DoS (Denial of Service) attack.

The simulation results in Figures 2 and 3 concern a 50 node
system with two gateways N0 and N1, where each of the
nodes or entities is expected to send a packet into the network
at each of the discrete time units (each 10 seconds). We use
all the previously defined and fixed parameters throughout the
simulation. Each of the two gateways is independently subject



to intermittent DoS attacks that affect their trust values. The
remaining 48 IoT devices have each (and independently of
each other) a probability of 0.2 that any one of them may
omit to send a packet into the network. When a gateway
suffers from a cyberattack, its usage is blocked for some time,
it does not send packets, and this results in a loss of trust
on the part of the remaining nodes. The algorithms in the
previous sections are used to update the trust values of all
of the entities. After an attack, the victim gateway will be
able to recover after a certain amount of time, and its trust
value will be upgraded accordingly. The gateway N0 suffers
an attack at approximately the 2800 successive 10 second
interval, while N1 is subject to an attack at approximately
the 6900 time instant. The top figure of Figure 2 shows (i) the
instantaneous average trust value at each time instant of the
two gateways when they are NOT under attack (in Brown), (ii)
the instantaneous trust value of the gateway being attacked,
which dips sharply (in Blue for N0 or in Orange for N1)
during the attack and during the recovery from the attack,
as well as trust level of the gateway that is not under attack
(in Blue for N0 or in Orange for N1). The figure below
shows the wide-ranging and varying trust values of each of
the 48 remaining IoT devices (nodes) in the system for each
successive instant of the simulation. The five diagrams shown
in Figure 3 summarize the trustworthiness of all of the 50
entities over a very long period of 100, 000 seconds.

V. CONCLUSIONS AND FUTURE WORK

The concept of trust among a finite number of entities is
often represented by a directed graph whose nodes represent
the entities, and labels as well as numerical values on the arcs
to represent the type and level of trust that is expressed by
some entities regarding some other entities. Various algorith-
mic techniques can then be used to deduce the level of trust
that is enjoyed by each of the entities that are represented in
the graph.

In this paper, we introduce the RNNTM that aims to
represent trust as a dynamic time-dependent quantity of the
different entities. In the RNNTM, the trust level of an entity
is determined by its external replenishment and deletion rate of
its rights to vote, the frequency with which it expresses itself
about other entities, and the trust or distrust that is expressed
by other entities towards itself, for them that is expressed by
other entities. Its purpose is to model the evolving trust level
of a set of entities, in response to the opinions expressed by the
different entities with respect to each other, and by theirown
behaviour

The RNNTM aims to allow the expressions of trust to vary
over time as a function of various significant events, such
as the exchange of information through message broadcasts,
and the possible existence of external adversarial effects,
such as cyberattacks, which will affect the trust that can be
attributed to different entities. We have therefore constructed a
mathematical model where trust levels of each entity are time-
varying, where all entities are treated fairly by the attribution
of an equal number of “voting rights per unit time” to all

of them, and the possibility for each of the entities to express
both trust (a positive vote) and distrust (a negative vote) to each
other, while each time an entity gives its opinion it also reduces
its ability for further votes. In the resulting dynamics, it turns
out that trustworthy entities have more impact on the overall
resulting “opinion” about other entities. The details of the
model are developed, and are then illustrated with simulations
regarding a network with IoT devices and gateways, which
can be subject to communication errors and cyberattacks. The
RNNTM is also a machine learning system [30], [31], so that
future work may use existing data about trust evaluations to
estimate the parameters of the RNNTM, and match predictions
from existing measured data. Furthermore, it will be useful to
consider other “voting modalities” which can be obtained by
extending the RNNTM to cases where entities are required
to express clear preferences, e.g., trust in some of the other
entities and distrust in all of the others. Another possible
extension may include the rationing of voting rights based
on the energy consumption of each entity [32].

Since this model, and the examples we have developed in
this paper, show how such a system can result in significant
time variations of the trust level, in future work, we plan to
show how the RNNTM may be used to dynamically decide
about how different IoT gateways may be chosen as a result of
their dynamically varying trust metrics. We will also examine
how these dynamic trust variations may result in workload
imbalance and additional delays in data processing that is
needed by the IoT devices from the IoT gateways.
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