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Abstract. Unmanned Aerial Vehicles (UAVs) are rapidly gaining pop-
ularity in a wide variety of applications, e.g., agriculture, health care, en-
vironmental management, supply chains, law enforcement, surveillance,
and photography. Dones are often powered by batteries, making energy
a critical resource that must be optimised during the mission of the
drone. The duration of a done’s mission depends on the amount of en-
ergy required to perform some manoeuvering actions (takeoff, level flight,
hovering, and landing), the energy required to power the ICT modules
in the drone, the drone’s speed, payload, and the wind. In this paper, we
present a model that minimizes the energy consumption of a low power
drone and maximizes the time required to completely drain the drone’s
battery and ensure the safe landing of the drone.

Keywords: Drones · Battery Capacity · Diffusion Approximation ·Mis-
sion Optimization · Energy

1 Introduction

The recent advances in Unmanned Arial Vehicle (UAV) technologies (e.g., data
collection, data storage, data processing, data transmission, data security, deliv-
ery of loads) [32] have increased their adoption rate for military and commercial
applications. The fast adoption rate is partly driven by the decrease in the cost of
drones and granting licenses to commercial service providers and hobbyists. Some
of the industries that are being transformed through the application of drones
include agriculture, environmental management, supply chains, law enforcement,
surveillance, and photography [27–29]. At the beginning of the COVID-19 pan-
demic, drones were used for deliveries [11] and to enforce restriction rules (social
distancing, no mass gatherings in open public spaces) designed to slow down the
transmission of the virus.
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Most drones are powered by batteries, making energy a critical resource that
must be optimised during the mission of the drone. One of the responsibility
of a drone pilot is to ensure that the drone returns with enough energy in the
battery that is sufficient for safe landing after its mission. If the drone’s battery
is completely depleted during its mission, it will crash to the ground and could
damage the drone or result in a lawsuit if it damages properties or causes harm
to human life. Even the most experienced drone “ground pilots” sometimes en-
counter drone crashes due to battery depletion. It is difficult to estimate how
much time is required to completely deplete the energy stored in the battery
during flight because a complex interaction of multiple factors influences the
battery energy depletion process in drones. These factors include weather (e.g.,
wind, temperature), drone speed, the ICT-related functionalities performed by
the drone, and the weight of the drone and the load carried by the drone (if
any). The energy stored in the battery could also be rapidly depleted due to
cyber attacks, which are designed to induce the ICT systems of the drone to
draw more energy from the drone unnecessarily. Some drones are configured to
return to the operator at predefined battery levels and to land at 15% battery
level automatically. Therefore, the drone operator should ensure the safe landing
of the drone while preventing any harm to human lives.

To adapt a UAV to perform its functionalities for a given application, ad-
vanced on-board information and communication technology significantly in-
crease its energy needs during a mission [6] because of the computationally in-
tensive visual information processing before transmission or storage [9]. Using
multiple cooperating UAVs to conduct a mission [23] also increases the compu-
tational burden and energy consumption of each UAV, in order to coordinate
movements and create a consistent view of the events or scenes that are mon-
itored [21], also leading to additional on-board energy consumption from com-
munications [22], and more on-board software [31]. On-board computing and
communication equipment cannot easily be put to sleep to save energy, to avoid
compromising the real-time needs which would be impaired by ”wake-up” de-
lays [17].

Since careful usage of the UAVs energy budget is needed to achieve the best
possible mission output from the battery storage and possible other on-board
energy sources such as phtovoltaic and fuel cells, the optimization of the power
consumption of an UAV via its speed was studied in [5,7,34]. More broadly, en-
ergy consumption is also a major concern in information processing systems [31]
and it has been analyzed via a variety of models with the purpose of understand-
ing and minimizing the energy consumption in this area in general [16,22].

However, the energy used to perform functions such as encryption, com-
pression of multimedia data, and communications is significant. In addition,
the interplay of multiple factors influencing energy consumption implies that
the energy drawn from the battery is not deterministic. Any energy harvesting
mechanism that is used on-board is also influenced by the environment. There-
fore, both the energy generation and consumption processes on-board a UAV
need to be modelled as stochastic processes.
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Markovian stochastic models have been applied to model the changes in
the energy content of a battery [4, 10, 18, 19, 24–26, 33]. However, the Poisson
assumption in the arrival of energy packets into the battery [15] may deviate
from reality. This is why we apply a diffusion model [12, 14, 20, 30] where the
interarrival times of energy and the depletion times of the energy follow any
distribution, as proposed in earlier work on energy consumption and battery
models [1, 2, 13].

In this paper, we present an optimization model to minimize the energy
consumption of a low power drone, and hence maximize the time required to
completely drain the drone’s battery and ensure the safe landing of the drone.
The rest of the paper is organised as follows: Section 2 contains a diffusion
model of a drone’s battery, Section 3 contains the proposed optimization model,
we present some numerical exaples in Section 4 and then conclude in Section 5.

2 Diffusion process for the energy depletion process of
the drone

The amount of energy present in the battery at time t may be represented
by a diffusion process. This process is frequently used to approximate more
complex and analytically intractable stochastic process. It is a strong Markov
process with continuous time and continuous space (continuous sample path).
We demonstrate how it may be used to evaluate the time after which a device
consumes a fixed amount of energy if the consumption per time unit is random.

Consider a Wiener (diffusion) process X(t), rcorresponding to the energy
stored at a battery at the time t. Its changes at unit time have mean β and vari-
ance α. For simplicity, we assume that β, α are constant. They can be interpreted
as instantaneous mean and variance of the change of X(t)

β = lim
∆t→0

E[X(t+∆t)−X(t)]

∆t

α = lim
∆t→0

V ar[X(t+∆t)−X(t)]

∆t
.

The process’ probability density function (pdf) f(x, t;x0)

f(x, t;x0)dx = P [x ≤ X(t) < x+ dx | X(0) = x0]

is defined by the diffusion equation (parabolic partial differential equation), e.g.
[8]

∂f(x, t;x0)

∂t
=
α

2

∂2f(x, t;x0)

∂x2
− β ∂f(x, t;x0)

∂x
. (1)

For the unrestricted process starting from the point x0

f(x, t;x0) =
1√

2Παt
exp(

(x− x0 − βt)2

2αt
) (2)
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and the incremental changes ofX(t) at interval dt

dX(t) = X(t+ dt)−X(t)

are normally distributed with the mean βdt and variance αdt.
If the value of the diffusion process represents the energy content of the

battery, then the life time the battery is corresponds to the time the diffusion
process needs to pass from the initial point x0 = B > 0, where B is the maximum
volume of the battery to x = 0. If we refer it to the UAV mission, it corresponds
to its maximal duration.

The distribution of the amount of energy present in the battery at time t is
given by the equation (1) with the absorbing barrier at x = 0, i.e. the process is
ended when it comes to zero. It corresponds to the condition

lim
x→0

f(x, t;x0) = 0.

The problem of diffusion with absorbing barrier was studied e.g. in [8] and
the solution in Eq. (3) was obtained with the use of the method of images: on
may treat the barrier as a mirror, and the solution is a superposition of two
unrestricted processes, one of unit strength, starting at the origin, and the other
of strength − exp( 2βx0

α ) starting at x = 2x0. It yields

f(x, t;x0) =
1√

2Παt

[
exp(− (x− βt)2

2αt
)

− exp(
2βx0
α
− (x− 2x0 − βt)2

2αt
)

]
(3)

The pdf of the first passage time distribution for a diffusion process that
starts from the point x = x0 and is absorbed at x = 0 is

γx0,0(t) =

∫ ∞
0+

∂f(x, t;x0)

∂t
dx

=

∫ ∞
0+

[
α

2

∂2f(x, t;x0)

∂x2
− β ∂f(x, t;x0)

∂x
]dx

= lim
x→0

[
α

2

∂f(x, t;x0)

∂x
− βf(x, t;x0]

=
x0√

2Παt3
e−

(x0−βt)2
2αt , (4)

with the Laplace transform

γ̄x0,0(s) = e−x0
β+
√
β2+2αs
α . (5)

Eq. (4) presents a probability density function in case of β < 0, when probability
that the process will reach the barrier equals 1, and

∫∞
0
γx0,0(t)dt = 1. Otherwise,

for β > 1, the probability that the process ends at the barrier is e−2βx0/α and
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the conditional pdf is γ′x0,0(t) = γx0,0(t)e2βx0/α and γ̄′x0,0(s) = γ̄x0,0(s)e2βx0/α.
The same refers to the case β < 0 with the initial point x0 placed left to the
absorbing barrier.

From (4) or (5) we compute the moments of the time the battary is active

E[γx0,0] =
x0
|β|
, E[γ2x0,0] =

|β|x20 + αx0
|β|3

.

In battery model, assuming x0 = B, the pdf given by Eq. (3) determines the
distribution of the energy still in the battery, and Eq. (4) the battery life time
distribution. Let us imagine that the units of energy are consumed with the
mean rate µ units and σ2

B is the variance of time intervals between consumption
of energy units. It means that the number of consumed energy units in time ∆
has the distribytion close to normal with mean µ∆ and variance σ2

Bµ
3∆ and

the parameters of the diffusion process are β = −µ and α = σ2
Bµ

3 = C2
Bµ,

where C2
B = σ2

Bµ
2 is the squared coefficient of variaton (variance/mean2) of this

distribution. A numerical example illustrating the pdf of the first passage time
distribution is given in Fig. 1.

3 Energy Optimization for an UAV during its mission

We investigate a problem of UAV control where the energy is limited by the
volume of the battery supplying energy to the UAV. The control should maximise
a chosen reward function.

There are two phases of the UAV mission. During the first one, the UAV uses
all its functions, including the transmission of the collected images. When the
energy goes below a certain level of b, the UAV passes to the second, energy-
saving phase before landing. During this phase, it is still collecting images, but
they are not transmitted. The diffusion parameters, corresponding to energy
consumption, are different in both phases, see Fig. 2.

The data recorded during the second phase may be accessed only after land-
ing when their validity has partially deteriorated. We assume in the reward func-
tion (7) that the value (relevance) of these data is decreasing following a certain
function Θ(·) with the time elapsed between their acquisition and availability.

The formal description of the problem is as follows.
Let B > 0 denotes the battery capacity before the UAV platform starts its

mission, and S be a minimum value of energy that the UAV battery must contain
when it lands after ending the mission, with B > S ≥ 0.

Let u, v be non-negative real numbers such that B ≥ u > v ≥ S.
Define the non-negative random variables τu and Yτu [u, v] such that the dif-

fusion process D ≡ {Xt, t ≥ 0} with X0 = B has the values

τu = {inf t : Xt = u}, τu + Yτu [u, v]} = {inf t > u : Xt = v}. (6)

Thus τu is the first passage time of the diffusionD to level u. Also τu+Yτu [u, v]
is the first passage time of D to level v at time τu+Yτu [u, v] after its first passage
time to u at time τu.
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Fig. 1. Probability density function γB,0(t) of the first passage time from a full battery
at B = 50 to an empty battery at x = 0, i.e. the pdf of the battery life time distribution,
when the mean power consumption (energy conumption per time unit) is µ = 1. The
curves show the influence of the squared coefficient of variation of energy consumption
per time unit C2

B = σ2
Bµ

2 on the life time. We see how the increase of C2
B increases

the variance of the battery life time distribution

Then our problem is to choose a decision point represented by an “energy
switching level” b, B ≥ b ≥ S for the battery, from “normal energy consumption”
to “reduced energy consumption”, which maximises the useful duration of the
mission.

Thus we must solve the following maximization problem:

max
b∈[S,B]

{C = E[τb] + E[

∫ Yτ [b,S]

0

dtΘ(Yτ [b, S]− t]} . (7)

The first phase’s duration corresponds to the first passage time from B to b,
and the second phase is the first passage time from b to S.

Denote by µi the mean intensity of the power consumption per time unit at
phase i, i = 1, 2 (i.e. 1/µi is the mean consumption per time unit) and αi its
variance, representing diffusion parameters.

The densities of the duration of the phases are

f1(t) = γB,b(t) =
B − b√
2Πα1t3

exp(− (B − b− µ1t)
2

2α1t
)
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Fig. 2. The two phases of the UAV misssion: in the first phase we assume that en-
ergy is used for flying, for ground communications and data acquisition. The second
phase focuses on the landing phase, including any indispensable data acquision and
communications for the return to the landing base.

f2(t) = γb,S(t) =
b− S√
2Πα2t3

exp(− (b− S − µ2t)
2

2α2t
)

and the mean time of the first phase is

E1 =

∫ ∞
0

tf1(t)dt =
(B − b)
µ1

.

The reward function C becomes

C = E1 +

∫ ∞
0

yf2(y)

∫ y

0

Θ(y − t)dt dy (8)

and we are looking for b, which maximises

C =
(B − b)
µ1

+

∫ ∞
0

y
b− S√
2Πα2y3

exp(− (B − S − µ2y)2

2α2y
)∫ y

0

Θ(y − t)dt dy. (9)

In the numerical examples below we assume exponential and linear Θ function

Θ(y − t) = e−a(y−t), (10)

or Θ(y − t) =

{
1− a(y − t) for y ≤ 1/a− t
0 for y ≥ 1/a− t; (11)

Θ(y − t) = 0 means that information older than 1/a is useless.
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4 Numerical example

We assume that the battery capacity is B = 50 energy units, safety margin is S =
5 energy units, and µ1 = 0.2, µ2 takes several values µ2 = 0.05, 0.1, 0.12, 0.15,
and α1 = α2 = 1.

A few numerical results giving C(b) for various parameters are displayed in
Figs. 3 - 9. In general, they demonstrate the sensibility of C(b) on its parameters
and demonstrate the important differences introduced by the deterioration func-
tion type. In some cases, the maximum of C(b) is inside the interval [0, B − S],
sometimes the function is monotonic, and the maximum is on the edge of the
interval. Maximum of C(b) at b = 50 means that only the second phase is rec-
ommended; maximum at b = 5 means we should have only the first phase. It
depends on the ratio of the speed of energy consumption in both phases and
the function lowering the value of delayed results. A few numerical results giv-
ing C(b) for various parameters are displayed in Figs. 3 - 9. In general, they
demonstrate the sensibility of C(b) on its parameters and demonstrate the no-
table differences introduced by the deterioration function type. In some cases,
the maximum of C(b) is inside the interval [0, B − S], sometimes the function is
monotonic, and the maximum is on the edge of the interval. Maximum of C(b)
at b = 50 means that only the second phase is recommended; maximum at b = 5
means we should have only the first phase. It depends on the ratio of the speed
of energy consumption in both phases and the function lowering the value of
delayed results. We see it in a more general way in Fig. 10 where the values of
b giving the maximum of C are plotted as the function of µ1/µ2 (µ1 = 0.2).

5 Conclusions

The duration of a done’s mission depends on the amount of energy required to
perform some manoeuvering actions (takeoff, level flight, hovering, and landing)
[3] and the energy required to power the ICT modules in the drone. The energy
required to drive the drone depends on the manoeuvering action taken, the
drone’s speed, payload, and the wind. Although the amount of energy required
to drive the drone is often far greater than the energy required to power the
ICT modules, the influence of ICT energy consumption on the duration of the
drone’s mission could become significant (especially for drones that draw small
amount of energy for flight but perform complex ICT functionalities). Also, cyber
security attacks designed to increase the amount of transmission or computations
executed by the drone and deplete its battery faster could rapidly deplete the
energy stored in the battery.

Since for some set of parameters, the reward function c(b) has a maximum for
b ∈ [0, B−S], the by devising strategies to reduce the energy consumption, when
the energy in the battery reaches a define threshold level b, increases the chances
that it will complete its mission and land safely. Therefore, the decision point
to transition from the normal phase to the energy saving phase to be chosen in
such as way as to minimise the energy consumption and maximise the battery
lifetime.



Drone Battery Optimization 9

Acknowledgements

The work presented in this paper was partially supported by the Research
and Innovation project:“Security by Design IoT Development and Certificate
Framework with Frontend Access Control (IOTAC) ,” that is funded by the Eu-
ropean Commission under the H2020-SU-ICT-2018-2020/H2020-ICT-2019 Pro-
gram through Grant Agreement 952684.

References

1. Abdelrahman, O., Gelenbe, E.: A diffusion model for energy harvesting sensor
nodes. In: Proc. of 24th IEEE International Symposium on Modeling, Analysis
and Simulation of Computer and Telecommunication Systems (MASCOTS). pp.
154–158. IEEE (2016)

2. Abdelrahman, O.H., Gelenbe, E.: Packet delay and energy consumption in non-
homogeneous networks. The Computer Journal 55(8), 950–964 (2012)

3. Abeywickrama, H.V., Jayawickrama, B.A., He, Y., Dutkiewicz, E.: Comprehensive
energy consumption model for unmanned aerial vehicles, based on empirical studies
of battery performance. IEEE Access 6, 58383–58394 (2018)

4. Arabi, S., Sabir, E., Elbiaze, H., Sadik, M.: Data gathering and energy transfer
dilemma in uav-assisted flying access network for iot. Sensors 18(1519), 1–20 (2018)

5. Baek, D., Chen, Y., Poncino, M.: Battery-aware energy model of drone delivery
tasks. In: Proceedings of the International Symposium on Low Power Electronics
and Design. pp. 1–6. ACM (2018). https://doi.org/10.1145/3218603.3218614

6. Cai, L.X., Poor, H.V., Liu, Y., Luan, T.H., Shen, X., Mark, J.W.: Dimension-
ing network deployment and resource management in green mesh networks. IEEE
Wireless Communications (October), 58–65 (2011)

7. Chen, Y., Baek, D., Bocca, A., Macii, A., Macii, E., Poncino, M.: A case for a
battery-aware model of drone energy consumption. In: Proceedings of the 2018
IEEE International Telecommunications Energy Conference (INTELEC). pp. 1–8.
IEEE (2018). https://doi.org/10.1109/INTLEC.2018.8612333

8. Cox, R.P., Miller, H.D.: The Theory of Stochastic Processes. Chapman and Hall,
London, UK (1965)

9. Cramer, C.E., Gelenbe, E.: Video quality and traffic qos in learning-based subsam-
pled and receiver-interpolated video sequences. IEEE Journal on Selected Areas in
Communications 18(2), 150–167 (2000)

10. Cuypere, E.D., Turck, K.D., Fiems, D.: A queueing model of an energy harvesting
sensor node with data buffering. Telecommun Syst 67, 281–295 (2018)

11. Euchi, J.: Do drones have a realistic place in a pandemic fight for delivering medical
supplies in healthcare systems problems? (in press). Chinese Journal of Aeronautics
(2020)

12. Gelenbe, E.: Probabilistic models of computer systems, Part II: Diffusion approxi-
mations, waiting times and batch arrivals. Acta Informatica 12(4), 285–303 (1979)

13. Gelenbe, E.: A diffusion model for packet travel time in a random
multihop medium. ACM Trans. Sen. Netw. 3(2), 10–es (Jun 2007).
https://doi.org/10.1145/1240226.1240230, https://doi.org/10.1145/1240226.

1240230

14. Gelenbe, E.: Search in unknown random environments. Physical Review E 82(6),
061112 (2010)



10 T. Czachórski et al.
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Fig. 3. The reward function C(b) defined by Eq. (9) and to be maximized; b is the en-
ergy level switching the performance of UAV from normal mode to energy saving mode,
for exponential function Θ defining the decrease with time of the value of previously
gathered data, see Eq.(10), with parameters µ2 = 0.1, a ∈ [1.8, 1.9]
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Fig. 4. The reward function C(b) defined by Eq. (9) and to be maximized; b is the en-
ergy level switching the performance of UAV from normal mode to energy saving mode,
for exponential function Θ defining the decrease with time of the value of previously
gathered data, see Eq.(10), with parameters µ2 = 0.1, a ∈ [1.0, 1.1]



Drone Battery Optimization 13

10 20 30 40 50
b

195

200

205

210

215

220

225
C(
b)

a=1.80
a=1.82
a=1.84
a=1.86
a=1.88
a=1.90

Fig. 5. The reward function C(b) defined by Eq. (9) and to be maximized; b is the en-
ergy level switching the performance of UAV from normal mode to energy saving mode,
for exponential function Θ defining the decrease with time of the value of previously
gathered data, see Eq.(10), with parameters µ2 = 0.12, a ∈ [1.8, 1.9]
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Fig. 6. The reward function C(b) defined by Eq. (9) and to be maximized; b is the en-
ergy level switching the performance of UAV from normal mode to energy saving mode,
for exponential function Θ defining the decrease with time of the value of previously
gathered data, see Eq.(10), with parameters µ2 = 0.15, a ∈ [1.326, 1.336]
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Fig. 7. The reward function C(b) defined by Eq. (9) and to be maximized; b is the en-
ergy level switching the performance of UAV from normal mode to energy saving mode,
for exponential function Θ defining the decrease with time of the value of previously
gathered data, see Eq.(10), with parameters µ2 = 0.05, a ∈ [1.8, 1.9]
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Fig. 8. The reward function C(b) defined by Eq. (9) and to be maximized; b is the
energy level switching the performance of UAV from normal mode to energy saving
mode, for linear function Θ defining the decrease with time of the value of previously
gathered data, see Eq.(11), with parameters µ2 = 0.10, a = 0.01, 0.1, 1000
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Fig. 9. The reward function C(b) defined by Eq. (9) and to be maximized; b is the
energy level switching the performance of UAV from normal mode to energy saving
mode, for linear function Θ defining the decrease with time of the value of previously
gathered data, see Eq.(11), with parameters µ2 = 0.10, a ∈ [0.6, 0.9].
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Fig. 10. The value of b, i.e. the energy level switching the performance of UAV from
normal mode to energy saving mode, maximizing the reward function C(b) defined by
Eq. (9) plotted as a function of µ1/µ2, where µ1 is the speed of energy consumption
in normal mode and µ2 is the speed of energy consumption in energy saving mode, for
fixed µ1 = 0.2.


