Available online at www.sciencedirect.com

ScienceDirect Procedia

Computer Science

CrossMark

Procedia Computer Science 270 (2025) 397406

www.elsevier.com/locate/procedia

29th International Conference on Knowledge-Based and Intelligent Information & Engineering
Systems (KES 2025)

An Analysis and Implementation of the Switching Sequence Table
Method

Piotr Czekalski®*, Mirostaw Borowiecki®, Bolestaw Pochopien?, Godlove Suila Kuaban®

4 Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Technology, Akademicka 16, 44-100, Gliwice, Poland
bInstitute of Theoretical and Applied Informatics, Polish Academy of Sciences, Baltycka 5, 44-100, Gliwice, Poland

Abstract

This paper details the algorithm implementation of the Switching Sequence Table method in asynchronous sequential circuit
Boolean switching system design. The algorithm is theoretically analysed in terms of its computational complexity and validated
through actual experiments. It discusses the multidimensional problem of various parameters and their impact on performance. It
then presents analytical evidence that reducing this multidimensional problem to a standard, one-dimensional problem is feasible.
The authors consider method challenges when implementing computing modules for the Switching Sequence Table method.

© 2025 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0)
Peer-review under responsibility of the scientific committee of the KES International.

Keywords: circuit design; automation control; logic circuit; asynchronous state machine; asynchronous system design; finite state machine

1. Introduction

The analysis and design of sequential circuits or systems is an essential but challenging part of courses such as
Logic Systems Design, Digital Electronics and Theory of Logic Circuit, which are part of the Electrical and Elec-
tronics Engineering, Computer Engineering, Telecommunication Engineering, and Control Engineering academic
curricula. A sequential logic circuit is one in which the outputs at any instant are a function of both the present inputs
and the previous outputs [1]. Since sequential logic circuits must record the previous output state, they are composed
of combinational logic blocks (made up of logic gates) and memory blocks (made up of flip flops) [2]. Therefore,
a sequential logic circuit is a logic circuit with storage or "memory” [3]. The use of video games [4] and software
packages in teaching digital circuit design is already a popular approach, widely adopted in Science, Technology,
Engineering, Mathematics, and Arts (STEMA) disciplines.

Asynchronous digital systems are devices with wired logic, presenting elementary memory capabilities and per-
forming a fixed algorithm, usually quite limited, but still more advanced than combinational digital circuits. It is

* Corresponding author. Tel.: +48-32-237-2577.
E-mail address: piotr.czekalski@polsl.pl

1877-0509 © 2025 The Authors. Published by Elsevier B.V.

This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0)
Peer-review under responsibility of the scientific committee of the KES International.
10.1016/j.procs.2025.09.158

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2025.09.158&domain=pdf

398 Piotr Czekalski et al. / Procedia Computer Science 270 (2025) 397-406

impossible to describe their working cycle with a timing or state transition diagram. The simplicity of such systems
is essential for critical industrial applications when microprocessor-based systems are considered unreliable. Those
systems originating from the 1950s are still widely used.

The authors in [5] demonstrated a project-based learning approach in which they organised graduate students to use
an open-source platform to discuss and solve practical Integrated Circuit (IC) design problems in groups. The authors
in [6] implemented a web-based software package that uses Huffman’s algorithm to design and analyse asynchronous
sequential logic circuits.

This paper presents a software implementation of the Switching System Table (SST) method, a tool for designing
asynchronous digital systems using finite-state machines.

2. Asynchronous System Design and SST Method
2.1. SST Explained

The SST method was presented in detail in [7] and extended even more in [8][9][10][11][12][13][14] but is not
very popular in the English language literature, so here we present essential concepts. A brief introduction to the
SST method is also given in [15], where the author presents an approach towards self-checking, error-proof digital,
asynchronous system design. A high-level algorithm is presented in Fig. 1.

Create primary SST

Split into sections

Calculate NSUs,
mark repeatings and
contradictions

No Introduce additional

> Is it solvable?

signal(s) Q

Get resulting
equations in
canonical, from ODV
and Q

Fig. 1: SST algorithm flowchart

Solved

2.1.1. Primary SST
SST is a tabular representation of the timing diagram explicitly described by the switching sequence of the input
and output signals. It can also be presented as a switching sequence or switching formula. In asynchronous finite state
machines, only one signal can change at a time: the principle of the logical neighbourhood of the signal changes is
strong. Switching sequence formula grammar has been presented in [6], and a sample sequence is present in Fig. 1.
In the primary SST, a row represents each input and output signal, and each row is assigned a unique value - an
exponent of 2. The footer row contains the Numerical State of the Unit (NSU), a binary hash function that represents
the current machine’s internal state. The timing diagram illustrates a planar projection of the device’s looped work
cycle. SST can virtually start at any temporal location within the timing diagram. The most left Tact of all signals
should be the same as the most right one to make a constant loop. The working cycle begins with the leftmost data
column and ends when the loop closes. The following description references the Input Data Vector as ﬁ)/ and the
Output Data Vector as m A vector of internal states is referenced as _Q) ﬁ)/ changes drive internal machine state
— — —_— — —
that, in the case of the SST, is represented by ODV and eventually . NSU is calculated using /DV, ODV and Q

vectors. For the primary SST, the following is true: la| =0.

2.1.2. Solvable vs Unsolvable SST

The first step is to evaluate whether any of the NSUs are repeating, and if so, whether the repetition is contradictory
or non-contradictory. The contradiction appears when the signals composing 0DV or _Q> present a different state for
the same NSU value. In such a case, SST is unsolvable. To make it solvable, it is necessary to introduce additional
signals into the _Q) vector, then control them appropriately to compose a closed loop of the working cycle and, this
way, modify the binary mask to let NSU values present different (non-repeating) or non-contradictory repeating NSUs.

Piotr Czekalski et al. / Procedia Computer Science 270 (2025) 397-406 399

ﬁ
Introducing new digital signal(s) into the table requires splitting the table to introduce extra columns where Q signals
are switched on and off.

2.1.3. SST Split Point Rules for the Unsolvable Case
Placing the split points is meaningful and should be done using the following rules. Assuming a split point splits
SST into the two sections @ and 3, right after the Tact S, the following rules are valid:

e Split points should be introduced to split the regions with contradictory NSUs, so single sections & and 8 cannot
contain contradictory NSUs.

You can reuse sections alternatively if it solves the contradiction problem, e.g., @, 8, then @ and 3, again.

Split points cannot be located right after the contradictory state (NSU) column.

It is safe to set the split point after the column with non-repeating NSU.

Split points between two sections a and 3, cannot be set after the Tact S contains non-contradictory repeating
of the Tact that finishes section 3 or is present in any location in the section a.

— The only exception is that one can be forced to split the SST immediately after the Tact S due to the
first rule. In such a case, it is necessary to introduce as many splits between sections a and S as there are
Tacts S repeating non-contradictory so that sections will be alternated. Everywhere there is a Tact S, there
should be an ending of the section a and the beginning of the section .

SST should be solvable once this process is completed and NSUs are recalculated in consideration of the introduction

of _Q> If it remains unsolvable, then one of the rules has been broken, and the process should be rejected and repeated.

2.1.4. Regions and Their Coding
Once the table has been split into two or more regions, some regions may alternate, while others need unique
coding. In the case, |Q| > 1, nearby regions should be coded using logically binary neighbour values of the Q

2.2. Multidimensionality in SST

A problem that is to be solved with the SST method is given with the following dimensions: number of Input
Signals 'IﬁV’, number of Output Signals ‘OﬁV‘, number of Tacts n (discrete steps), complexity: a relation between
switching signals, specific for the problem. When evaluating the algorithm’s performance, it is essential to relate it to
one dimension, namely, the best. In the SST method, it is possible to find upper and lower bounds for the problem
complexity, thereby reducing it to a one-dimensional problem, as presented in Section 3.1.

2.3. Sample SST

The following section presents a sample problem and its solution using the SST method, illustrating the steps
involved. The timing diagram is in Fig. ref timingdiagram1 and the corresponding Primary SST in Table 1. Switching
Y, and Y, to high defines their “on-cycle” marked with arrows, and it is Tact 2 through 4 for Y| and Tact 8 through
10 for Y, respectively. Analysing “on-cycle” for both output signals, one can find that for Tacts 2 and 8, there are
contradictory repeatings of the NSU value (in both equals 3) because it represents a different internal state of the
system: in Tact 2, Y; is in its “on-cycle”, and Y is in its "off-cycle”. In contrast, in Tact 8, it is the opposite. For
this reason, it is necessary to split the table and introduce an additional binary internal signal, g. The division points
introduced in the Primary SST were set after Tact 5 and after Tact 11, as present in the table 2. It inducts the insertion
of two additional Tacts that control switching on and off of the extra, internal binary signal ¢ in Tacts 5* and 11°.

The division (split) points introduced in the Primary SST were set after the Tact 5 and Tact 11, as present in the
table 2. It introduces the insertion of two additional Tacts that control the switching on and off of the internal, binary
signal ¢ in Tacts 5° and 11°, respectively. It makes SST solvable, so there are no contradictory or non-contradictory
NSUs. Note, Q signal is included in contradiction evaluation along with oDV.

SST method final solution describing internal state equations in a previous-step-next-step form, one can obtain quickly

400 Piotr Czekalski et al. / Procedia Computer Science 270 (2025) 397-406

Work Cycle
—

. W L
oy ‘
o UL

. v, 1L
oDV ' !
vl L

Xo+x1+Y1+xX1-X2-Y1-X2+x1+Y2+X1-%2- Y-
Fig. 2: Sample timing diagram and correlated switching sequence

Table 1: Primary SST
‘Work Cycle

xp |1 + - + -
X2 |2 + - +

Y, |4 + -

Y: |8 +

NSU 012(3,|7]|6[4]0|2][32/11{10|8(0

Table 2: SST with borders and additional state signal ¢

WcI)rk Cycle .
Tact 0/1/2|3|4|5!5°|6|7|8|9|10/11/11{0
xp | 1f- + - + -
X2 | 2 + - + -
Y, | 4 +
Y2 | 8- + -
q + -
NSU 012|3|7|6|4120(16(18|19|27|26|24}8 |0

via juxtaposing “on-cycle” and “off-cycle” NSUs in a canonical decimal form, for signals 0 and ODV, as on (1).
Values are presented in the original order to facilitate easy reference to the SST (Table 2).

Z (3’7’6a4)x1x2Y1 Yoq
[T (0.2.20,16,18,1927,2624.8). .,

y, [T (19272620
[T (023,7,6420,16,188), ..

>, (7,6,4,20,16,18,19,27,26))WY1
[T 0.23248), v,

Yaq

ey

Y2q

Yaq

2.4. SST vs Huffman

The SST method presents a one-step approach to obtaining a solvable solution (SST). The resulting state equations
are obtained immediately for a selected class of problems without contradictions in the NSU. It is fixed to the structure;
however, the output signals originate directly from the flip-flops’ outputs, which constitute the device’s memory block.

On the other hand, Huffman’s method allows for the design of either Moore’s or Mealy’s structures [6], which may
1

Piotr Czekalski et al. / Procedia Computer Science 270 (2025) 397-406 401

benefit from simpler memory block constructions.

d . P-r
Tr)=(r=D#.t(r=r)= D (r—i)=

i=1

2

3. The SST Algorithm and Challenges to Its Implementation

So far, there has been no software implementation of the SST method that is limitless in terms of the dimensions
mentioned in Section 2.2. On the other hand, it is common to evaluate an algorithm’s complexity in one dimension of

the problem. It raises the question of correlation of upper and lower bounds among |15V‘, '05V| and n.

3.1. Reducing SST Problem Dimensionality

SST complexity generally relates to the number of changes and contradictory Tacts. The lower bound for the
number of Tacts is limited by the total number of inputs and outputs, as each signal needs to change at least twice:
2%n > |15V‘ + ‘05V'. There is no upper bound, as an asynchronous sequential machine can be virtually infinitely
complex. The primary SST structure also impacts algorithm complexity. When contradictory Tacts are located not so
close to one another, it is easy to find split points, as they can be set close to the contradictory ones, which is best in
non-repeating NSUs. The region merging process will not be time-consuming, and merging will occur only minimally.
So, the lower bound is the case when there is just one contradictory pair, as in the example presented in this paper
(Table 1). The upper bound of the complexity appears when there are many contradictory Tacts, and they are nested,
one inside the other, e.g., in the following sequence: a;...b;...c1...c3...b3...a>. The maximum number of contradictory
Tacts is less than half of the total number of Tacts n. The non-equality arises from the fact that even the most complex
systems contain at least a couple of non-repeating Tacts; thus, these represent non-contradictory NSUs. The upper
limit of the number of regions appearing after insertion of the split points is related to the number of contradictions,
thus by the total number of Tacts n. The regions merging procedure takes longer if there are a complex number of split
points; therefore, it is indirectly related to the number of contradictory states and can be upper-bounded by n. Regions
coding to ensure logical neighbourhood can require the introduction of additional Tacts and eventually additional
signals to the vector 0 to handle non-logically neighbour transitions through the split point location of the neighbour
regions. The worst-case scenario occurs when the region is near another region (alternating in the table). There is no
direct relation to the n, but the number of regions cannot exceed the number of Tacts n. It does not describe explicit
relations, however. To summarise, all steps of the SST solving process can be directly or indirectly (approximately)
related to the total number of Tacts n.

3.2. Analytical Approach to the Computational Complexity

As presented in chapter 1, the solving process comprises several steps of complexity concerning 7.
Building primary SST, given the switching formula, involves the following steps to be evaluated:

e Use of the RegEx (\p{L}\d*[-\+])+ formula to decode IDV and ODV signals is (according to the [16] and
[17]) of the linear complexity against the string length. In the case of the SST, the string length is limited by
half of the total number of Tacts because each signal must be switched on and off. This step is of the linear
complexity against n: ®;(n). Even if the RegEx formula contains an optional quantifier, it assumes exclusive
tokens, reducing the back-reference problem to the marginal.

e Extraction of the unique IDV and ODV signals that is simple, linear loop, against n: ®,(n)

o Sorting of the IDV and ODV signals and assigning binary masks to them. The most efficient sorting method is
of the pessimistic complexity of 03(0%) and optimistic complexity of Q3(o * log(0)), where o0 = ’15V| + |05V|.
As in the case of the asynchronous, sequential machine, the lower limit for the o is 2 (one input + one output),
and the upper limit is n/2, the sorting complexity is in between Q3(1) and O3(n?).

402

Piotr Czekalski et al. / Procedia Computer Science 270 (2025) 397-406

o Calculating of the NSUs and marking of the on-off regions is composed of the two nested iteration loops: the

first, external iterator is linear against the number of Tacts n, multiplied by the number of outputs |05V'; thus

its complexity is given by @4 (n * ’05V|). Then, the internal loop runs over oDV signals directly related to the
n, as the total number of input signals correlates with n. The complexity of this step can be estimated between
Q,(n) linear, optimistic, and O4(n?).

The final step is to mark the repeating, contradictory, and non-contradictory states. It uses grouping to group all
NSUs; groups are filtered to exclude non-repeating ones. Both actions are of linear complexity against n: @s(n).
The following requires comparing the r pairs in each of the g groups; thus, the number of comparisons needed
is given by T(r) as in formula (2). Then computational complexity is given by ®¢(g * 72). The number of groups
g can equal at most the number of Tacts n — 1 and at least (theoretically) 2. The number of groups g can vary
between a meaningless constant value and a maximum of n (when SST is solvable); thus, g is linearly related
to n. The amount of regions r is monotonically increasing with a decrease of the g, but this relation is not the
opposite. With an increasing number of regions, there is also the growth of n because of the need to introduce the
additional state signals 0, so finally, » < n. The exact relation depends on the case and complexity of the timing
diagram,; still, it can be approached with the upper bound given as linear. Finally, for solvable SSTs, number of
regions is r = 1, so optimistic computational complexity for this step is Qg(q *) = Qe(n = 1) = Qg(n) and in
pessimistic case (r — n) itis Og(g * r?) = Og(1 * r*) = O(n?).

Finally, the SST creation table step’s computational complexity, including contradictory and non-contradictory Tacts
detection, is between Q;(n) and O;(n?).

Finding borders and split points:

o Extraction of the unstable Tacts, containing contradictory NSU repeatings, uses a linear loop to iterate over all

Tacts, so its complexity is of ®7(n). The number of such Tacts is referenced as s.

Introducing borders concerning avoiding cycles uses the previous step and detects any contradictory repeating
forwards and backwards. Nearby contradictory repeating can be at a fixed distance (1 Tact away) and eventually
can be located farther away, but in any case, the distance is no further than n— 1. Thus computational complexity
is given by formula ®g(s) and limited with Qg(1) and Og(n).

The following step is a procedure that introduces borders and split points. Once an unstable, contradictory Tact
is identified in the previous activity, it is necessary to find nearby contradictory Tacts in both directions. The
complexity of this procedure is linear with respect to n. So far, the dominating operation is the one that de-
tects and extracts contradictory Tacts. Its complexity is determined by the number of contradictory repetitions
t, linearly: ®q(¢). The following activity involves a try-catch procedure to insert a split point between two con-
tradictory Tacts. Optimistic complexity relates to the scenario where there is only one contradictory repeating,
so0 it is Qg (1), and for the pessimistic case, we get Ogy(s * ?).

Considering that detecting s and ¢ is sequential, we can refer to both using a generalised, upper limit as ®,0¢.
A process of identifying split points without respect to the closed cycle, according to the rules presented in
section 2.1.3. It requires iterating over sub-vectors of NSUs located to the left and right of the considered
contradictory Tact in the SST. The length of the sub-vector is referenced as u. Checking all of those rules in the
pessimistic case yields ®;1(«?) and may need to be repeated in the worst case u times, as it involves shifts to the
proposed split point u times, so finally, we obtain a complexity of O;1(«*). In the optimistic case, sub-vectors
require just one scan, so their computational complexity is Q;;(u).

Then, we obtain Og(s * £) = Oo(s * u®). Assuming the border case is when u = n — 1 (contradiction is most
left Tact, and the limit of the sub-vector is the most-right or opposite situation), we obtain total pessimistic
complexity for this step (not including closed cycle as presented below) given by formula Oy, (n*).

Inserting borders in the closed cycle to persist in a consistent work cycle is similar to those mentioned above.
Still, its complexity is the opposite: the more complex the previous step, the simpler the following. We assume
here the same complexity, and its pessimistic bound is Oy3(n*).

Introducing additional borders to avoid contradictions when facing non-contradictory states ending sections
that appeared after splitting the Primary SST involves sorting and analysis. The sorting lower complexity bound

Piotr Czekalski et al. / Procedia Computer Science 270 (2025) 397-406 403

for split points is Q4(1) when there are just two split points (one contradictory NSU). The pessimistic case is
limited by the number of Tacts in the SST, so it is O14(n?).

e Next action is a preliminary assignment of the sections: it is linear against n concerning the number of contra-
dictions, so the lower bound for complexity is £;5(1) and upper O;5(n).
The following action checks, along with rules in subsection 2.1.3 and in detail against the last rule on split
points and repeating Tacts. This operation proposes an additional split point to ensure rules are fulfilled. It in-
volves scanning any Tact against any other Tact in the section, which has a complexity of n?. In the pessimistic
case, this operation is executed for each contradictory state within and for each section. As all those relate di-
rectly to the n, the only known pessimistic complexity approach is O4(n*). The same complexity applies to the
aforementioned last rule and its exception, so it is O16(n*).

In summary, the optimistic case is when there are no problems with split points, and insertions are done in one step,
the complexity is of €;(n), and the pessimistic case is Oy (n*).

Merging of the sections is a step in which regions are grouped to ensure |Q’ is minimised. It is necessary to check
for no contradictory NSUs inside to merge sections. As the number of Tacts is more than 2 for any reasonable
asynchronous sequential circuit, in the pessimistic case, it involves the number of checks given by the formula
T(n) = (;) = ”ZT’" The algorithm behind this step has several optimisations, e.g., it removes checks for nearby
sections; still, it does not impact the performance. So far, the only known upper bound for the complexity of this step
is Oy77(n?). An optimistic case appears when there are only two sections in the SST, so there is no possibility to merge
them; thus, optimistic complexity is given simply by Q;(1).

Once borders are set up and regions are merged, it is necessary to binary code them, to switch on and off Q digital
signals appropriately, and to ensure the logical neighbourhood of the adjacent regions. The coding algorithm utilises:
a split-sequence list (of v items), and a merged regions list (of w items). To solve this step, it is necessary to build a

graph of adjacent regions and, based on it, estimate boundaries as ‘Q_)a € [[logaw]1; [logav]]. Raw graph construction

exhibits linear complexity for v. A graph relaxation is introduced whenever a node has several neighbours that exceed
QM

the current binary coding capacity, given as 2*“l. In the optimistic case, there will be no such nodes at all. In the
worst-case scenario, it becomes the most significant factor in determining the overall computational complexity of the
step. Its process is reorganising the graph to push the node over the neighbour one unless coding capacity is suitable,
so it is linear against v. This process repeats once the node has up to w — 1 neighbours. During a single iteration, up to

QOp — 1 nodes can be reorganised (shifted), where Q; denotes the current value of |QZ|, and it grows when there is no

possibility to relax graph nodes anymore due to the lack of coding capacity. The number of iterations for a single node

is given by the formula 2, so it is linear complexity vs w. Single node relaxation in the pessimistic case is then

5|~1
given by O7(w * v). When O, needs to be increased in the case mentioned above, building a whole raw graph from
scratch and repeating the relaxation process is necessary. The maximum number of such cases is logoc — logow — 1.
This formula can be approximated with log,v as in the pessimistic case, the number of regions before merging (v)
will be of a magnitude higher than the number of merged regions w. Finally, the relaxation of the graph presents
O13(logyv = v * w?) complexity.

Binary coding requires an iterative process to visit all nodes and assign unique coding, ensuring the logical neighbour-
hood of the nearby nodes. The maximum number of iterations is then given as log,v — logow. As mentioned before,
logrv >> log,w, so that it can be estimated as log,v iterations. The graph pathfinding algorithm in this step in the
pessimistic case requires visiting xi nodes, where the upper bound of x;, = log,v — 1. Finally, the maximum number of
nodes visited during the coding process is (logzv — 1), so the pessimistic complexity is O19((logav)?). Additionally, a
few nodes can be shifted if the coding capacity is exceeded during graph browsing. This operation is linear against v;
in the worst case, it is Oo(v). To estimate which of the two O 9 and O, is dominant, a function comparison drawing
is helpful (Fig. 3 (a)). Assuming v is a reasonably large number, in theory, v — oo, a linear function brings a more
pessimistic approach. Finally, there are log,v repetitions, each containing v transitions between transition nodes with
v checks on node insertion. This process defines pessimistic complexity as O, (log,v * v*). Comparing Oy, and Oy, it
is necessary to assume a pessimistic approach when w is relatively large, and so its lower bound is w? > v, so v > w.
Finally, the computational complexity of the whole coding process is limited between the optimistic case €y (v) and

404 Piotr Czekalski et al. / Procedia Computer Science 270 (2025) 397-406

Orv(logyv * v?). As upper limit for v is n, then finally, algorithm complexity regarding # is limited in between given
by Qy(v) Ov(logan =).

50
— Oyo + measurements
= Oz 120 = =0y(1)
40 === Qy(loga(n)*n°)
100 .
30 ﬁ 80
— Q
£ 60
20
40
10
20
0 10" 10?
0 100 200 300 400 500 i .
v n (Tacts) logarithmic scale
(@ (b)

Fig. 3: (a) Linear and sq. of log2 function comparison, (b) Primary SST table building complexity, real vs theoretical

The final step in solving the SST is to introduce coding into the table that involves each NSU recalculation as new 0
signals appear in the table. This operation is as simple as browsing the table and updating NSUs, so it is linear against
n: Oy;(n). Analysing the presented SST solution steps, the total SST solving algorithm is ©(n) in the optimistic case
and O(n*) in the pessimistic one.

4. The Implementation of the SST Computing Module and Website

Implementation was done in a distributed model (frontend + backend). The backend features a switch for a rich
response tailored to educators and a minimal response (raw, numerical results) for benchmarking purposes, and is
stateless. The result is presented in canonical, decimal form. The frontend calls the Kazakov [18] logical function
minimisation service to convert the result into equations. The use of Boolean function minimisation helps transform
the outputs of the SST method, which come in a canonical, decimal form, such as those in (1), into equations. The
SST computing module requires input in the form of a switching sequence, as presented in Fig. 2. A dedicated data

generator was prepared to randomly generate a dataset of 25600 cases with variable 'IﬁV’ and n.

5. Model Verification

The following figures represent the cloud point of the averaged measurements (10 runs per sample) for a variety of
input conditions, including variable n, |15V| and |05V|. There are also theoretically inducted functions that represent
lower and upper bounds for the computational complexity of each step of the SST-solving process.

Primary SST building (I): SST construction times for 25600 samples of different numbers of n, |15V' and '05V|
(presented as related to n), are visualised in the form of cloud points in Fig. 3 (b). Theoretically, inducted lower
and upper bound complexities are present with a solid and a dashed line on the same plot. One can observe that
actual measurements confirm theoretically induced complexities, with a remark that the upper bound (pessimistic)
complexity ©;(n?) appears to be too broad; a majority of the samples exhibit a linear relation.

Split points detection (II): The computational complexity of the estimation of the borders (split points) algorithm
was estimated to be in between Oy;(n) and Q;(n*).

Representation of both functions and measurements in the form of the cloud point, as shown in Fig. 4 (a), shows that
the theoretically induced complexity bounds were acknowledged with the experimental results.

Sections merging (III): Sections (regions) merging experimental results prove that the upper and lower bounds
induced theoretically are correct for complexity. Cloud point distributes in between Oyy;(1) and Q1 (n?), as present on
the Fig. 4 (b).

405

Piotr Czekalski et al. / Procedia Computer Science 270 (2025) 397-406

time [us]

2000 B H -
- measurements 800 |.' . g\ezs)uremems
= =0u(n H = =Ou
=== Qy(n) '! === Qy(n?)
1500 H
I
H
]
'
]
H
]
H
1
.
1
H
!

time [us]

50 100 150 200
n (Tacts)

150 200 250
n (Tacts)

(b)

()
Fig. 4: (a) Split points and sections detection complexity real vs theoretical, (b) Sections merging complexity, based on the number of Tacts n

+ measurements + measurements
120 - -0u1) 5000 — -0
=== Qy(logz(n)*n%) I —--Q(n%
100 : . 4000
@ 80 &
= Z: 3000
(o]
E 60 E
2000
40
20 1000
102 50 100 150 200 250 300
n (Tacts)

10'
(b)

n (Tacts) logarithmic scale

(2)
Fig. 5: (a) Sections merging complexity based on number of Tacts n, (b) SST solving complexity (full algorithm) real vs theoretical

Coding and NSU updating (IV & V): The coding step was the most problematic regarding the theoretical in-
duction of complexity, as the relation between several regions v and the number of Tacts n was not straightforward.
For this reason, two benchmarks were performed, one against v and the other against n. It is the only step in the SST
solving benchmarking that was benchmarked twice. In the case of the v, inducted lower bound complexity as Q;y(v)
and upper pessimistic complexity given as O;y(log>(v) * V), a sparse cloud point fits the area bordered by upper and

lower bound functions. A cloud point in the case of the regions is sparse, as several areas v in the case of the majority

of SST generated with the SST generator algorithm are no more than 25. Fig. 5 (a) presents complexity concerning

the n. As one can observe, the assumed pessimistic, upper bound complexity, given by the formula Qy (logy(n) * n®),
is far too strict and too steep. Authors expect that the inducted transition from v to n is the reason for the resulting
overestimation of the pessimistic complexity induction. Still, this boundary is valid, even if too strict, compared to the

cloud point. The NSU updating process is linear concerning 7.

6. Summary
The SST algorithm has been used primarily in manual work since the 1950s, long before the advent of software

implementations of the design algorithms and the PC era. SST’s software implementation proved to be surprisingly
complex, raising numerous questions, particularly regarding the boundaries of algorithm complexity and their mea-
surement. The induction of the relation between the algorithm complexity and the number of Tact was a crucial step
towards further analysis and experiments. Overall, algorithm complexity boundaries are determined by the chunks
presented as their upper limits. Theoretically, it was inducted as O(n) for the optimistic case and Q(n*) for the pes-
simistic case. However, in Fig. 5 (b), it is observable that Q(n*) is too strict and too steep for an upper bound, still
limiting the cases. Experiments acknowledged the algorithm’s analytical complexity and demonstrated the feasibility

of dimension reduction.

406

Piotr Czekalski et al. / Procedia Computer Science 270 (2025) 397-406

Acknowledgements

This publication was supported by the Department of Computer Graphics, Vision, and Digital Systems under

the statutory research project (Rau6, 2025), Silesian University of Technology (Gliwice, Poland). It was also partially
supported by the Erasmus+ KA2 HED "IOT-OPEN.EU Reloaded” project no 2022-1-PL0O1-KA220-HED-000085090.

Appendix

Table 3: Terminology and abbreviations.

Term / Abbreviation — Description

Primary SST A tabular representation of the switching sequence, without any additional signals, can be either solvable or non-solvable.
DV Input Data Vector: state of all digital inputs of the system

oDV Output Data Vector: state of all digital outputs of the system

_Q) Additional Signals Vector: state of all internal signals, added during the solving process of the SST

NSU Numerical State of the Unit: a hash function (binary mask) representing the current state of the system

Tact A single column in the SST that corresponds to the current state of the system (including state of the DV , ODV and —Q>)

Contradictory Tacts A pair of Tacts that have the same NSU value, but represent different states (different values of ODV and —Q))

References

(1]
(2]
(3]
(4]
(5]
(6]
(7]
(8]

(9]
[10]

(11]

[12]
[13]

[14]
[15]
[16]
[17]

[18]

A. Saha and N. Manna, Sequential Logic circuits. Hingham, Massachusetts: Infinity Science Press LLC, 2007.

A. K. Singh, M. Tiwari, and A. Prakash, Synchronous(Clocked) Sequential Circuits. New Delhi: New Age International Limited, 2006.

G. H. Mealy, “A method for synthesizing sequential circuits,” The Bell System Technical Journal, pp. 1045-1079, 1955.

M. Oren, S. Pedersen, K. L, and Butler-Purry, “Teaching digital circuit design with a 3-d video game: The impact of using in-game tools on
students’ performance,” IEEE Transactions on Education, vol. 64, no. 1, pp. 24-31, 2021.

X. Yang, “An approach of project-based learning: Bridging the gap between academia and industry needs in teaching integrated circuit design
course,” IEEE Transactions on Education, vol. 64, no. 4, pp. 337-344, 2021.

P. Czekalski, K. Tokarz, and B. Pochopien, “A modern approach to the asynchronous sequential circuit synthesis,” Theoretical
and Applied Informatics, vol. vol. 26, no. No 1-2, pp. 25-37, 2014. [Online]. Available: http://journals.pan.pl/Content/118515/PDF/
AModernApproachtotheAsynchronousSequential Circuit.pdf

J. Siwisiski, Uktady przetgczajgce w automatyce. WNT, 1980.

U. Stariczyk, K. Cyran, and B. Pochopien, Theory of Logic Circuits Volume 2 - Circuit Design and Analysis. Gliwice: Wydawnictwo
Politechniki Slaskiej, 2007.

H. Matysiak and Et Al., Teoria automatéw cyfrowych. Laboratorium. ~ Gliwice: Wydawnictwo Politechniki Slaskiej, 2002.

H. Kamionka-Mikuta, “Optymalny sposéb wprowadzania elementéw dodatkowych do nierozwiazalne;j tablicy kolejnosci taczen.”
Automatyki i Telemechaniki, vol. XXII, no. 4, pp. 41-53, 1977.

H. Kamionka-Mikuta, “Algorytm wyznaczania miejsc zmian elementéw dodatkowych w tablicy kolejnosci taczen,”
Teoretycznej i Stosowanej, vol. 8, no. 3-4, pp. 26-38, 1997.

H. Kamionka-Mikuta, H. Malysiak, and B. Pochopien, Uktady cyfrowe. Teoria i przyktady. Gliwice: PKIJS, 2004.
H. Kamionka-Mikuta, H. Matysiak, and B. Pochopien, Teoria uktadow cyfrowych, T. I. Uktady kombinacyjne. ~ Wydawnictwo Politechniki
Slaskiej, 2015.

H. Kamionka-Mikuta, H. and Matysiak and B. Pochopiefi, Teoria uktadow cyfrowych. T. II. Uktady sekwencyjne. Gliwice: Wydawnictwo
Politechniki Slaskiej, 2018.

H. Malysiak, “The synthesis of asynchronous sequential error detection circuits with the switching sequence table method,” Archiwum Infor-
matyki Teoretycznej i Stosowanej, vol. T. 10, z. 1-2, pp. 25-33, 1998.

Microsoft, “MSDN - Backtracking in Regular Expressions,” 2021. [Online]. Available: https://docs.microsoft.com/en-us/dotnet/standard/
base-types/backtracking-in-regular-expressions

S. Fenner, D. Padé, and T. Thierauf, “The complexity of regex crosswords,” Information and Computation, p. 104777, 2021. [Online].
Available: https://www.sciencedirect.com/science/article/pii/S0890540121000924

W. D. Kazakov, “Minimization of logical functions of a large number of variables,” Automation and Telemechanics, vol. 23, no. 9, pp. 1237—
1242, 1962.

Archiwum

Archiwum Informatyki

