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Abstract

Botnet attacks are a major threat to networked systems because of their ability to turn the network nodes that
they compromise into additional attackers, leading to the spread of high volume attacks over long periods. The
detection of such Botnets is complicated by the fact that multiple network IP addresses will be simultaneously
compromised, so that Collective Classification of compromised nodes, in addition to the already available
traditional methods that focus on individual nodes, can be useful. Thus this work introduces a collective Bot-
net attack classification technique that operates on traffic from a n-node IP network, with a novel Associated
Random Neural Network (ARNN) that identifies the nodes which are compromised. The ARNN is a recurrent
architecture that incorporates two mutually associated, interconnected and architecturally identical n-neuron
random neural networks, that act simultneously as mutual critics to reach the decision regarding which of
n nodes have been compromised. A novel gradient learning descent algorithm is presented for the ARNN,
and is shown to operate effectively both with conventional off-line training from prior data, and with on-line
incremental training without prior off-line learning. Real data from a 107 node packet network is used with
over 700, 000 packets to evaluate the ARNN, showing that it provides accurate predictions. Comparisons with
other well-known state of the art methods using the same learning and testing datasets, show that the ARNN
offers significantly better performance.

Keywords: Collective Classification, Botnet Attack Detection, Associated Random Neural Networks, The
Internet, Nodes Compromised by Botnets, Random Neural Networks, ARNN Learning

1. Introduction

Many classification problems, such as identifying
a given individual’s face in a large dataset of face
images of people [1], associate a binary label to data
items [2]. This is also the usual case for network
attack detection from traffic data [3] that attemps to
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determine whether a given network node has been
compromised by an attack [4]. Such problems are of-
ten solved with Machine Learning (ML) algorithms
that learn off-line from one or more datasets that con-
tain the ground-truth data. The trained ML algorithm
can then be tested on datasets that have not been used
for learning, and then used online with previously
unseen or new data. Typically, the online usage of
such attack detection algorithms is carried out “one
node at a time”, i.e. as an individual classification
problem for a specific node that may be concerned
by possible attacks [5, 6].

When we need to classify each individual node
in a set V = {v1, ... , vn} of interconnected nodes in a
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network as being “compromised” or uncompromised
(i.e., “safe”) we obviously face with a Binary Indi-
vidual Classification Problem for each of the n nodes.
However, when the attacking entity is a Botnet which
induces a compromised node to attack several other
nodes with which it is able to directly communicate,
then we are faced with a Collective Binary Classi-
fication Problem where the classification of the dis-
tinct nodes is correlated, even though we cannot be
sure that a compromised node has sufficient band-
width or processing capacity to actually compromise
other nodes.

Indeed let A = [Ai j]n×n be the (deterministic) ad-
jacency matrix where Ai j = 1 indicates that node vi

has opened a connection to node v j and therefore can
send packet traffic to it, while Ai j = 0 indicates that
node vi is unable to send packets to node v j. Then
during a Botnet attack, nodes that can receive traffic
from compromised nodes are themselves likely to
become compromised, and to become in turn attack-
ers against other nodes, so that one needs to classify
nodes by taking account both the local atack traffic
at each node, and their patterns of communication
between nodes.

Collective (also known as “relational”) classifica-
tion problems have been widely studied [7, 8] using
a variety of techniques linked to ML. As indicated in
the literature [9], collective classification may use a
collection of local conditional classifiers which clas-
sify an individual’s label conditionally on the label
value of others, and then fuses the overall sets of
outputs, or may try to solves the problem either as
a global optimization or a global relaxation problem
[10, 11], with the global approach being often com-
putationally more costly.

Botnet attack detection has been discussed in nu-
merous papers, mainly using single node attack de-
tection techniques [12, 13, 14] which can identify in-
dividually comprimised nodes, except for some stud-
ies that analyze relations between nodes to detect the
existence or spread of a Botnet [15, 16, 17].

Thus in this paper we address the Collective
Classification problem of detecting all the nodes in
a given network which have been compromised by
a Botnet. In particular, we introduce a ML method
that combines supervised learning by a novel
Random Neural Network [18] architecture – which

we call the Associated Random Neural Network
(ARNN) – that learns from a sample taken from
the traffic flowing among a set of network nodes,
to classify them as being either compromised by a
Botnet, or as non-compromised.

The Random Neural Network is a bio-inspired
spiking Neural Network that has a convenient math-
ematical solution, and has been applied by numerous
authors, including [19, 20, 21, 22, 23, 24, 25, 26, 27,
28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39], in
diverse problems that can be addressed with ML such
as video compression, tumor recognition from MRI
images, video quality evaluation, smart building cli-
mate management, enhanced reality, voice quality
evaluation over the internet, wireless channel mod-
ulation, climate control in buildings, the detection of
network viruses and other cyberattacks.

In the case of Botnet detection, the ARNN
is trained off-line with data that is certified as
containing Botnet attacks, and with data that is
attack free, and the trained ARNN is then used
online to monitor a network’s traffic to collectively
classfy which nodes – if any – are compromised by
a Botnet.

In the sequel, Section 2 surveys previous
research on Botnet attacks. In Section 3 the
proposed ARNN is described; to improve readability
its gradient learning algorithm is detailed separately
in Appendix A.

Section 4 presents the experimental work based
on a large MIRAI Botnet dataset involving 107
network nodes and over 760, 000 packets [40] that
is used for training and evaluating the proposed
method. The evaluation of the ARNN using this
dataset is detailed in Section 5, where we have also
compared our results with other well known ML
methods. Finally, conclusions and suggestions for
further work are presented in Section 6.

2. Recent Work on Botnet Attack Detection

In networked systems the cost of not meeting se-
curity requirements can be very high [41, 42, 43],
hence much effort has been devoted to developing
techniques that detect attacks against network com-
ponents such as hosts, servers, routers, switches, IoT
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devices, mobile devices and various network appli-
cations.

Botnet attacks are particularly harmful, since
they induce their victims to become sources of
further attacks against third parties [44, 45, 46].
Recent Botnet reports include the 2016 MIRAI
attack [47], and the MERIS type attacks from 2021
and 2022 that can generate some 46 million requests
per second, lasting more than 60 minutes, exploiting
over 5, 000 source IP addresses as Bots from over
130 countries [48, 49], which is a similar rate of
requests as all the Wikimedia daily requests made in
ten seconds. Another MERIS attack generated 17.2
million requests per second against a commercial
web site, and such attacks have been observed to
target some 50 web sites per day, with over 100
Distributed Denial of Service (DDoS) attacks, of
which one third appear to occur in China, and 13%
in the USA, involving a number of Bots sometimes
ranging between 30, 000 up to 250, 000.

Botnet attack detection techniques typically
examine incoming traffic streams and identify
sub-streams that are benign or “normal”, and those
that may contain attacks [50, 51, 52], and often
classify attacks into “types” [53] based on signatures
[54, 55] that exploit prior knowledge about attack
patterns. In addition, false alarms should also be
minimized so that useful network traffic is not
eliminated by mistake. However, such methods
can also be overwhelmed by attack generators [56]
that have been designed to adaptively modify their
behaviour.

Defense techniques for Botnets based on the
smart location of counter-attacks by “white hat”
worm launchers have also been suggested [57, 58],
while refined deep learning (DL) techniques have
been investigated to recognize constantly evolving
Botnet traffic [59], and transfer learning can improve
detection accuracy, without concatenating large
datasets having different characteristics [60].

Recent work has also created a taxonomy of
Botnet communication patterns including encryption
and hiding [61] with some authors examining how
Internet Service Providers (ISP) can participate
collectively to mitigate their effect [62]. Other work
suggests that traditional Botnet detection techniques
in the Internet are not well adapted to emerging

applications such as the IoT [63], some studies
have addressed Botnet apps in specific operating
system contexts such as Android [64] or Botnet
detection for specific applications such as Peer to
Peer Systems (P2P) [65], or Vehicular Networks for
which specific detection and protection mechanisms
are suggested [66].

Some recent research has focused on the manner
in which Botnet variability can be reflected in intru-
sion detection software that is designed for a given
host [67]. Universal sets of features that may be ap-
plicable to attack detection [68] have also been sug-
gested, and detection techniques for specific types
of Botnets such as the ones based on the Domain
Generation Algorithm [69] have been proposed.

Most of the previous literature on Botnets, as
well as our recent work, has focused on single node
detection with off-line learning. We developed
detection techniques for Distributed Denial of
Service (DDoS) attacks using gradient descent
learning with the RNN [4, 70], because Botnets
often use DDoS as the means of bringing down their
victims. The system-level remedial actions that
should be taken after an attack is detected [71] were
also analyzed. To avoid learning all possible types
of attack patterns, an auto-associative approach
based on Deep Learning of ”normal“ patterns with
a dense multi-layer RNN [72] was developed to
detect malicious attacks by identifying deviations
from normal traffic [73, 74, 75]. It was also shown
that a single trained auto-associative dense RNN
can provide detection of multiple types of attacks
(i.e. not just Botnets) [76], and that learning can be
partially conducted on-line, with less need for long
and computationally costly off-line training [6].

2.1. Approach Developed in this Paper
While it is possible to accurately detect malicious

attacks by processing traffic at a given node, it is
difficult to certify that the detected attack is indeed a
Botnet by observing a single node since Botnets are
based on the propagation of attack patterns through
multiple nodes. Furthermore, many attack detectors
detect anomalies in the incoming traffic rather that
pointing to a specific attack [76]. Thus the present
paper develops a Collective Classification approach
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to secifically address the Botnet detection problem
in the following manner:

1. A finite set of n interconnected network IP (In-
ternet Protocol) addresses is considered,

2. Some of these addresses are equipped with
a Local Attack Detector (LAD), so that a
local evaluation is available at some of the
nodes about whether they are being attacked.
Note that the fact that a node is attacked
does not necessarily imply that it has been
compromised,

3. A specific neural network architecture, the
Associated RNN (ARNN) with 2n neurons,
is designed to deduce which (if any) of
the IP addresses have been compromised
by Botnet(s), using the available decisions
from the LADs regarding individual nodes.
The ARNN is trained, using the algorithm
detailed in Appendix A, on a small subset of
data taken from a large open access Botnet
dataset [40] containing over 760, 000 packets
exchanged among 107 IP (Internet Protocol)
addresses.

4. Then using the remaining large dataset (not
used for training) we determine which of the
107 IP addresses have been compromised
and become Botnet attackers, resulting in a
high level of accuracy regarding which IP
addresses are compromised.

5. Two other well established ML methods are
also used to identify which of the 107 nodes
have been compromised. The results show that
the ARNN provides significantly better accu-
racy concerning both True Positives and True
Negatives.

3. The ARNN Decision System

The decision system presented in this paper, the
“self-critical” ARNN with 2n neurons, is shown
schematically in Figure 1. The ARNN carries out
a Collective Classification of the compromised
nodes (if any) for a n-node IP network denoted
V = {v1, ... , vn}. For each network node vi, the
ARNN has two neurons Xi and Yi that represent
opposite views. Xi indicates that vi is compromised,

Figure 1: A schematic diagram of the 2n-neuron ARNN
that carries out a Collective Classification of the compro-
mised nodes (if any) for a n-node IoT network denoted V =

{v1, ... , vn}. The ARNN has two neurons Xi and Yi that
represent opposite views for each network node vi: Xi indi-
cates that vi is compromised, while Yi indicates that vi is not
compromised. The corresponding numerical decision variables
are Qi, qi ∈ [0, 1], where Qi is the probability that Xi is
excited and qi is the probability that Yi is excited. Xi has
an excitatory connection W+

i j to each other neuron X j and an
inhibitory connection W−i j to all other Y j neurons, and Yi has
an excitatory connection w+

i j to each other neuron Y j and an
inhibitory connection w−i j to all other X j neurons. A neuron
does not excite or inhibit its own self. Thus inside the ARNN,
the neurons of type X excite other neurons of type X and
inhibit all neurons of type Y , and vice-versa for the neurons
of type Y . The ARNN is “self-critical” in the sense that
neurons of type X try to supress the neurons of type Y , and
vice-versa. Λi represents the output from the LAD (local
attack detector) at node vi stating that vi has been compromised
while λi represents the LAD output at node vi stating that it
has not been compromised. Λi, λi act as an excitatory and
inhibitory external input, respectively, for Xi, while they act as
an inhibitory, excitatory input for Yi.

while Yi indicates that vi is not compromised. Their
corresponding numerical decision variables are
Qi, qi ∈ [0, 1], where Qi is the probability that Xi is
excited and qi is the probability that Yi is excited.
Xi has an excitatory connection W+

i j to every other
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neuron X j and an inhibitory connection W−
i j to all Y j

neurons, and Yi has an excitatory connection w+
i j to

every other neuron Y j and an inhibitory connection
w−i j to all X j neurons. None of the neuron can
directly excite or inhibit themselves. Thus inside the
ARNN, the neurons of type X excite other neurons
of type X and inhibit all neurons of type Y , and
vice-versa for the neurons of type Y . The ARNN is
“self-critical” in the sense that neurons of type X
try to supress the neurons of type Y , and vice-versa.
Λi, is a non-negative real number that represents
the output from the LAD (local attack detector) at
vi stating that vi has been compromised while λi

represents the LAD output at node vi stating that it
has not been compromised. Λi, λi can be chosen
from the corresponding probabilities outputted
from the LADs acting as excitatory and inhibitory
external input, respectively, for each Xi, while they
have the opposite effect as inhibitory and excitatory
input for Yi, respectively.

The two neurons Xi and Yi have internal states
Ki(t) ≥ 0 and ki(t) ≥ 0, respectively. If its internal
state Ki(t) is strictly positive, then the RNN neuron
Xi will fire spikes at exponentially distributed
successive intervals, sending excitatory and/or
inhibitory spikes at rates W+

i j, W−
i j ≥ 0 to the other

neurons in the ARNN. Similarly when ki(t) > 0
neuron Yi will fire spikes at rates and w+

i j, w−i j ≥ 0 for
Yi, respectively, to the other neurons X j and Y j in the
ARNN. These firing rates are the “weights” that are
learned with the training dataset using the algorithm
described in Appendix A.

When any of the neurons {Xi, Yi, i = 1, ... n}
receives an excitatory spike either from its external
input or from another neuron, say at time t, its inter-
nal state will increase by 1, i.e. Ki(t+) = Ki(t) + 1 or
ki(t+) = ki(t) + 1. Similarly if a neuron receives an
inhibitory spike then its internal state decreases by 1
provided it was previously at a positive state value,
and its state does not change if it was previously at
the zero value, i.e. Ki(t+) = max[0,Ki(t) − 1] or
ki(t+) = max[0, ki(t) − 1]. Also when a neuron fires,
its internal state drops by 1, i.e. Ki(t+) = Ki(t) − 1 or
ki(t+) = ki(t) − 1; note that a neuron can only fire if
its state was previously positive.

We thus define the probability that these 2n neu-

rons are “excited” or firing by:

For Xi : Qi = lim
t→∞

Prob[Ki(t) > 0], (1)

For Yi : qi = lim
t→∞

Prob[ki(t) > 0], (2)

and Qi is the variable that “advocates” that node i is
compromised, while the role of qi is to advocate the
opposite.

Consider the following system of 2n equations
for Qi, qi, obtained from the RNN equations [77]:

Qi =
Λi +

∑n
j=1 W+

jiQ j

λi +
∑n

j=1[W+
i j + W−

i j] +
∑n

j=1 w−jiq j
, (3)

qi =
λi +

∑n
j=1 w+

jiq j

Λi +
∑n

j=1[w+
i j + w−i j] +

∑n
j=1 W−

jiQ j
,

where
W+

ii = W−
ii = w+

ii = w−ii = 0. (4)

Let K(t) = (K1(t), ... ,Kn(t)) and k(t) =

(k1(t), ... , kn(t)), and define the vectors of
non-negative integers H = (H1, ... ,Hn) and
h = (h1, ... , hn). From [77], we know that if the
solution to the equations (3) satisfy 0 ≤ Qi, qi < 1
for 1 ≤ i ≤ n, then the joint stationary distribution of
the ARNN’s state is:

lim
t→∞

Prob[K(t) = H, k(t) = h ] (5)

=

n∏
i=1

QHi
i (1 − Qi).q

hi
i (1 − qi) .

Note: From (5) we can see that if Qi > qi then:

lim
t→∞

Prob[Ki(t) > ki(t)] =
Qi(1 − qi)
qi(1 − Qi)

> 1. (6)

To simplify the learning algorithm, we restrict the
weights in the following manner:

W = W+
i j + W−

i j = w+
i j + w−i j, i, j ∈ {1, .. n}, i , j, (7)

where W > 0 is a constant representing the total
firing or spiking rate any neuron Xi or Yi towatds
other neurons. This restriction also avoids having
weights which take very large values. We can write
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the 2n RNN equations (3) as:

Qi =
Λi +

∑n
j=1 W+

jiQ j

λi + (n − 1)W +
∑n

j=1 w−jiq j
, (8)

qi =
Λi +

∑n
j=1 w+

jiq j

Λi + (n − 1)W +
∑n

j=1 W−
jiQ j

.

On the other hand, the learning algorithm detailed in
Appendix A computes the values of W+

i j, w+
i j for all

the neuron pairs i, j, i , j so as to minimize an error
based cost function E using an appropriate training
dataset such as Kitsune [78, 40].

4. Network Learning and Accuracy of Botnet At-
tack Prediction

The data we use concerns the MIRAI Botnet At-
tack [79]. documented in the Kitsune dataset [78, 40]
which contains a total of 764, 137 individual packets.
The dataset contains 107 network nodes identified by
IP addresses, and a given node may be both a source
node for some packets, and a destination for other
packets.

This publicly available dataset, which is already
partially processed (by the providers of the dataset)
contains the ground-truth that the providers held, re-
garding the packets which are Botnet attack pack-
ets, and those which are not attack packets. Thus
each packet is labeled as either an “attack” (a = 1)
or a “normal” packet (a = 0), so that the Kitsune
dataset already contains the “ground truth”. Since
the dataset is quite large, some parts of the data may
be used for training the attack detection algorithms,
while other parts may be used for evaluating the ef-
fectiveness of them.

The data items in this dataset are the individual
packets, where each packet can be denoted as
pk(t, s, d, a), where:

• t is a time-stamp indicating when the packet is
sent,

• s, d are the source and destination nodes of the
packet,

• a is the binary variable with a = 1 for a packet
that has been identified as an attack packet, and
a = 0 for a packet that has been identfied as a
benign non-attack packet.

It is interesting to note that this dataset is time vary-
ing. The obvious reason is that in the course of a
Botnet attack the number of nodes that are compro-
mised increases with the number of attacks which
occur, and the number of attack packets obviously
also increases as the number of compromised nodes
increases. The Kitsune dataset does not incorporate
the consequences of attack detection. Indeed if an
attack is detected and the compromised nodes are
progressively blacklisted, then the number of attack
packets and the number of nodes that are compro-
mised, may eventually decrease, but this is not incor-
porated in the Kitsune dataset.

Thus, since this data is based on an attack that
is going unchecked, the initial part of the data con-
tains hardly any attack packets, while the latter part
contains many more attack packets, as would be ex-
pected. Whether a given node is compromised or
not also depends on the amount of traffic it receives
from compromised nodes, as this traffic may contain
attack packets capable of compromising the destina-
tion node. Thus detecting whether a network node is
compromised or not, does not only depend on its own
behaviour, i.e. on whether it sends attack packets,
but also on whether it has received traffic from other
compromised nodes.

4.1. Processing the MIRAI Botnet Data
These 764, 137 packets in [40] cover a consec-

utive time period of roughly 7137 seconds (approx-
imately 2 hours). Thus we aggregate the data in a
more compact form by grouping packets into suc-
cessive time 10 second time slots whose length is
denoted by τ. The choice of τ = 10 secs is based on
the need to have a significant number of ≈ 713 time
slots, and to have a statistically significant number of
packets in each slot. Since we have 107 nodes, the
average number of packets per node in each slot is
also approximately 10.

The packets within each successive slot are thus
grouped into “buckets”, where Bl denotes the l − th
bucket, i.e. the set of packets whose time stamp lies
between (l − 1)τ and lτ seconds:

Bl = {pk(t, s, d, a), (l − 1)τ ≤ t < lτ}, τ = 10 secs.

Let S l(s) denote the set of packets that have been
transmitted by node s until the end of the l − th time
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slot:

S l(s) = {pk(t, s, d, a), ∀d, ∀a, 0 ≤ t < lτ}, (9)

and, let Rl(d) denote the set of packets that have been
received by node d in the same time frame:

Rl(d) = {pk(t, s, d, a), ∀s, ∀a, 0 ≤ t < lτ} . (10)

Then Al
d is the attack ratio which represents the ratio

of attack packets, among all packets received by node
d at the end of l − th slot and is computed as

I f |Rl(d)| > 0 :

Al
d =
|{pk(t, s, d, 1), ∀s, 0 ≤ t < lτ}|

|Rl(d)|
, (11)

Else Al
d = 0,

while Kl
s is the proportion of compromised packets

which is the ratio of attack packets sent by node s at
the end of the same slot, given by:

I f |S l(s)| > 0 :

Kl
s =
|{pk(t, s, d, 1), ∀d, 0 ≤ t < lτ}|

|S l(s)|
, (12)

Else Kl
s = 0.

Since any node i may be a source or destination, or
both a source and destination, of packets, Al

i and Kl
i

are, respectively, the input and output ground truth
data regarding which nodes are attacked, and which
nodes are compromised at the end of l − th time slot.

In addition, for each node i, we define the binary
variable regarding the ground truth, denoted by Gl

i
as:

Gl
i = 1

[
Kl

i > Θ
]
, (13)

where 1 [L] = 1 if L is true and 0 otherwise, where
Θ ∈ [0, 1] is a threshold. Thus, at the end of the l− th
slot, if Gl

i = 1 the ground truth indicates that node
i has been compromised. If Gl

i = 0 then node i is
considered not to be compromised.

4.2. The ARNN Error Functio E
Let us call ”TrainData” the subset of time slots

used for Training the ARNN. The manner in which
this subset is selected from the MIRAI dataset is de-
tailed below. Since we wish to predict whether each
of the n nodes has been compromised given the data

about attacks, the error function to be minimized by
the learning algorithm takes the form:

E =
1
2

∑
l∈TrainData

n∑
i=1

[(
Ql

i(A
l
i) − Kl

i
)2

+
(
ql

i(1 − Al
i) − (1 − Kl

i)
)2]
, (14)

where the functions Ql
i(A

l
i) and ql

i(1 − Al
i) are com-

puted by the ARNN using equation (8) as follows:

Ql
i(A

l
i) =

Al
i +

∑n
j=1 W+

jiQ
l
j(A

l
i)

(1 − Al
i) + (n − 1)W +

∑n
j=1 w−jiq

l
j(1 − Al

i)
,

ql
i(1 − Al

i) =

(1 − Al
i) +

∑n
j=1 w+

jiq
l
j(1 − Al

i)

Al
i + (n − 1)W +

∑n
j=1 W−

jiQ
l
j(A

l
i)
.

For each node i, we define the binary decision
of the output of the ARNN, denoted by the binary
variable Zi as

Zl
i = 1

[
Ll

i =
Ql

i(1 − ql
i)

ql
i(1 − Ql

i)
> γ

]
, (15)

where γ ∈ [0,∞] is a “decision threshold”. Thus, at
l − th slot, if Zl

i = 1 the ARNN indicates that node i
has been compromised, while if Zl

i = 0 then ARNN
considers that node i is not compromised.

Then, we perform two distinct experiments:

4.2.1. Experiment I: Offline Training of ARNN
To construct a balanced training dataset

TrainData for the ARNN, the sequence of slots
was scanned chronologically from the beginning
of the whole MIRAI dataset until the first slot was
found that contained some nodes that had been
compromised. Specifically, this was in l∗ − th slot
with l∗ = 445 in the MIRAI dataset.

Then, the training set TrainData with a total of
25 time slots was constructed as follows:

TrainData =

{(Al
i,K

l
i), l = l∗ − 12, ..., l∗ + 12; i = 1, ..., n},

of which the first 12 have very few attack packets,
while the following 13 all contain a significant num-
ber of attack packets.
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The test set, denoted by TestData, is composed
of all the remaining time slots which have not used
for training the ARNN:

TestData =

{(Al
i,K

l
i), l = {1, ..., l∗ − 13} ∪ {l∗ + 13, ..., 713};

i = 1, ..., n},

4.2.2. Experiment II: Online (Incremental) Training
of ARNN

In this part, ARNN’s training took place online,
along with testing, which represents the case where
there is no available training set offline. To this end,
it was used for prediction on every slot l and also
if mod(l, 6) = 0 it was trained at the end of slot l.
That is, we perform testing for 10 second slots and
training for 1 minute slots.

Accordingly, on each “training slot” l for which
mod(l, 6) = 0, the training set TrainData for incre-
mental learning was constructed as follows:

TrainData = {(Al′
i ,K

l′
i ), l′ = l − 5, ..., l; i = 1, ..., n}.

Recall that TrainData is updated for each l such that
mod(l, 6) = 0, so that the ARNN’s weights (W+

i j and
w+

i j) are updated based on TrainData at the end of
slot l, without reinitializing the weights.

4.3. Other Machine Learning Models Used for
Comparison

For both Experiments I and II, the performance of
the ARNN is also compared with those obtained with
two well-known ML models: the Multi-Layer Per-
ceptron (MLP) and the Long-Short Term Memory
(LSTM) neural network. We now briefly present the
specific architectures of these models which we use
during our experimental work, and Figure 2 displays
the inputs and outputs which are common to the ML
models.

Then, based on these input-output sets, each ML
model is used as follows:

• MLP, which is a feedforward
(fully-connected) neural network, is
comprised of three hidden layers and an
output layer, where there are n neurons at each
layer. A sigmoidal activation function is used
for each neuron in the network.

Figure 2: High-level architecture that shows the inputs and
outputs at each slot l for the ML techniques that are used in the
comparison with the ARNN, where K̂l

i denotes the predicted
compromised ratio of IP Address i at slot l by any considered
ML model.

• LSTM, which is a recurrent neural network, is
comprised of an lstm layer, two hidden layers
and an output layer, where there are n lstm
units or neurons at each layer. A sigmoidal
activation function is used for each neuron in
the network.

5. Experimental Results

We now evaluate the performance of the ARNN
model and compare it with the performance of some
existing techniques for Experiment I and Experiment
II, respectively. Note that we set the learning rate
η = 0.1 in the algorithm of Appendix A.

5.1. Experiment I - Offline Training of the ARNN
We set Θ = 0.3 and 0.96 ≤ γ ≤ 1, and

summarize the statistics of Accuracy, True Negative
Rate (TNR) and True Positive Rate (TNR)
performances of ARNN, which are presented in
detail in Figures 4, 5, and 6, respectively. Figure 3
displays a box-plot that shows the statistics over all
the IP Addresses. These results show that ARNN
achieves a high performance with very few outliers
in regards of Accuracy, TNR, and TPR. The median
accuracy is about 92% while the first quartile is at
87%; that is, accuracy is above 87% for 75% of IP
addresses. The median of TNR is almost 100%; that
is, there are almost no false alarms (TNR= 100%)
for more than 50% of IP addresses. Also, the median
of TPR equals 100% and the first quartile is about
62%. Thus the TPR equals 100% for more than 50%
of IP addresses while it is lower than 62% for only
less than 25% of addresses.

Figure 4 displays the average decision accuracy
for each IP Address i ∈ {1, . . . , 107}. The results
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Figure 3: Box-plots of the Accuracy, TNR and TPR perfor-
mance of ARNN over IP Addresses, where each of box-plot
shows the calculated statistics (e.g. median) based on the results
presented in Figures 4, 5, and 6, respectively

Figure 4: Evaluation of the average accuracy over all packets of
each IP Address i ∈ {1, . . . , 107} in TestData. The accuracy is
computed by comparing the binary decision in the ground truth
Gl

i and the binary decision of ARNN Zl
i .

Figure 5: Evaluation of the average percentage TNR over all
packets of each IP Address i ∈ {1, . . . , 107} in TestData. For
each i, TNR is computed by comparing Gl

i and Zl
i for the values

of l where Gl
i = 0.

in this figure show that the accuracy of ARNN is
above 95% for 50% of the IP Addresses while it is
between 62% and 80% for only 20% of addresses
and does not decrease below 62%. Next, Figure 5

Figure 6: Evaluation of the average percentage TPR over all
packets of each IP Address i ∈ {1, . . . , 107} in TestData. For
each i, TPR is computed by comparing Gl

i and Zl
i for the values

of l where Gl
i = 1. Note that if Gl

i = 0 for an IP Address i
for any l in TestData (that is, the ground truth indicates that
IP Address i has not been compromised within the observation
period of the dataset), TPR does not exist for i. Accordingly, in
the considered dataset TPR exists for 39 IP Address.

presents average percentage TNR of ARNN for each
IP Address. The results in this figure show that TNR
is above 95% for 59% of all IP Addresses, and it is
between 62% and 80% for 15% of addresses. Lastly,
Figure 6 displays the percentage average TPR for 39
IP Addresses for which are considered compromised
at least once in the ground truth. The results in this
figure show that TPR is greater than 95% for 64%
of IP addresses while it is above 90% for more than
74% of the addresses.

5.2. Online (Incremental) Training of the ARNN
Having set Θ = 0.3 and 0.96 ≤ γ ≤ 1, we obtain

the Accuracy, TNR, and TPR of ARNN with online
training shown in Figure 10 in the form of box-plots.
In this figure, we see that median accuracy equals
92% while the first quartile equals 87%. That is,
the accuracy is above 87% for 75% of all IP Ad-
dresses. The TNR is above 99% for at least 50%
of IP Addresses. The median TPR equals 100%; that
is, at least 50% (exactly 62%) of IP Addresses are
100% accurately identified as compromised. When
the results in Experiment II in Figure 7 are compared
with those of Experiment I of Figure 3, we see that
TPR increases slightly with online training and TNR
remains almost the same. In addition, recall that
online training is simpler since it does not require
data collection, as offline training does.

Figure 8 presents the average accuracy of ARNN
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Figure 7: Box-plots of the Accuracy, TNR and TPR perfor-
mance of ARNN over all IP Addresses, where each box-plot
shows the calculated statistics (e.g. median) based on the results
presented in Figures 8, 9, and 10, respectively

for each IP Address i is displayed. The results in this
figure show that the accuracy of ARNN is above 95%
for 50% of IP Addresses while it is between 62%
and 80% for only 20% of addresses and does not
decrease below 62%. Next, we present the average
percentage TNR in Figure 9, and show that the TNR
is above 95% for 59% of IP Addresses. Moreover,
Figure 10 displays the average percentage TPR for
individual IP Addresses, where for IP Address i, TPR
is presented only if Gl

i = 1 for at least a single value
of l. The results in this figure show that percentage
TPR is greater than 95% for 72% of IP Addresses,
while TPR under offline training is shown (in Fig. 6)
to be above 95% for 64% of IP Addresses. Hence,
one may observe that ARNN achieves significantly
higher TPR when it is trained online.

Figure 8: Evaluation of the average accuracy over all packets
of each IP Address i ∈ {1, . . . , 107}. The accuracy is computed
by comparing the binary decision in the ground truth Gl

i and the
binary decision of ARNN Zl

i .

Figure 9: Evaluation of the average percentage TNR over all
packets of each IP Address i ∈ {1, . . . , 107}. For each i, TNR
is computed by comparing Gl

i and Zl
i for the values of l where

Gl
i = 0.

Figure 10: Evaluation of the average percentage TPR over all
packets of each IP Address i ∈ {1, . . . , 107} in TestData. For
each i, TPR is computed by comparing Gl

i and Zl
i for the values

of l where Gl
i = 1. Note that if Gl

i = 0 for an IP Address
i for any l (that is, the ground truth indicates that IP Address
i has not been compromised within the observation period of
the dataset), TPR does not exist for i. Accordingly, in the
considered dataset TPR exists for 39 IP Address.

5.3. Performance Comparison
We now compare the performance of ARNN with

that of MLP and LSTM neural networks with respect
to the mean of each Accuracy, TNR, TPR, and F1
Score. The traditional F-measure or F1 score is com-
puted as

F1 = 2
Precision.Recall

Precision + Recall
=

T P
T P + 1

2 (FP + FN)
,

(16)
First, Figure 11 presents the performance

comparison of neural network models for
Experiment I (offline training), where the
results show that the ARNN model significantly
outperforms all of the other techniques with respect
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to all Accuracy, F1 Score, TNR, and TPR. In
addition, we also see that LSTM is more successful
than MLP for identifying uncompromised nodes
(Figure 11 (bottom left)) while MLP identifies
the compromised nodes more successfully than
LSTM (Figure 11 (bottom right)). However, ARNN
outperforms LSTM by 24% with respect to TNR
and MLP by 13% with respect to TPR.

Then, in Figure 12, the comparison of the neural
network models for Experiment II (online training)
with respect to the mean of each Accuracy, F1 Score,
TNR and TPR is presented. The results in this figure
show that ARNN significantly outperforms both
MLP and LSTM with respect to any measure by
at least 27%. Moreover, we see that although the
overall performances of both MLP and LSTM have
been significantly decreased under online training
compared with offline training, the performance of
ARNN is almost the same under both online and
offline training.

5.4. Training and Execution Times
Finally, in Table 1, we present the average train-

ing and execution time. Note that these results are
collected on a workstation with 32 Gb RAM and
an AMD 3.7 GHz (Ryzen 7 3700X) processor. The
second row of this table displays the average training
time that has been spent for a single data sample in
a single training step. Thus, during the discussion of
the results on training time, we shall calculate the to-
tal training time during Experiment I and that for one
training window during Experiment II. One should
note that both the number of inputs and the number
of outputs of ARNN are twice those of MLP and
LSTM. One should also note that the implementation
of ARNN can be optimized to achieve lower training
and execution time, and both MLP and LSTM have
been implemented by using Keras library in Python.

Table 1: Average Training Time per Sample per Step and
Average Execution Time per Sample of ARNN, MLP and
LSTM

ARNN MLP LSTM
Training (s) 40.02 3.82 × 10−4 0.01

Execution (ms) 8.4 0.17 0.78

During Experiment I, ARNN, MLP and LSTM

have been trained on 25 samples for 20 epochs, 1000
epochs and 1000 epochs, respectively. Accordingly,
the total training time of these models are 40.02 ×
25× 20 = 20010 s, 3.82× 10−4 × 25× 1000 = 9.55 s,
and 0.01 × 25 × 1000 = 250 s, respectively. We
see that the training time of ARNN is much higher
than those of the other models. However, ARNN
can be selected as identification method while the
training of all models in Experiment I is performed
offline and ARNN achieves significantly higher ac-
curacy than MLP and LSTM.

During Experiment II, all three models have been
trained online on 1 minute windows (6 samples) for
3 epochs, 100 epochs and 100 epochs respectively.
Accordingly, the total training time of these models
for each window are 40.02×6×3 = 720.36 s, 3.82×
10−4 × 6 × 100 = 0.23 s, and 0.01 × 6 × 100 =

6 s, respectively. Although the training time results
show that MLP and LSTM are suitable for training
once in 1 minute, the performance of either MLP or
LSTM has shown not to be acceptable for practical
usage. On the other hand, ARNN with its current
implementation achieves high accuracy but can be
trained once in 720.36 seconds (≈12 minutes) on 1
minute of data.

Furthermore, the third row of this table displays
the average execution time that has been spent to
make a prediction for a single sample. The results
in this row show that the execution time of ARNN
is one order of magnitude higher than the execution
times of MLP and LSTM.

6. Conclusions

In a network of IP addresses, when n individual
node is attacked by a Botnet and becomes compro-
mised, it can then compromise other network nodes
and turn them into attackers. Thus attacks may prop-
agate across the system and affect other nodes and IP
addresses. There is a large prior literature regarding
Botnet attacks, but most of the work has addressed
attacks against a specific network node, while the
collective detection of Botnet attacks has received
less attention.

Thus in this paper we have developed a ML
based decision method, that identifies all the nodes
of a given interconnected set of nodes, that are
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Figure 11: Performance comparison between ARNN, MLP and LSTM for Experiment I (where each model is trained offline) with
respect to (top left) Accuracy, (top right) F1 Score, (bottom left) percentage TNR, and (bottom right) percentage TPR

Figure 12: Performance comparison between ARNN, MLP and LSTM for Experiment II (where each model is trained online) with
respect to (top left) Accuracy, (top right) F1 Score, (bottom left) percentage TNR, and (bottom right) percentage TPR

compromised by a Botnet attack. The approach is
based on designing an Associated Random Neural

Network that incorporates two connected and
recurrent Random Neural Networks (RNN), where
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each RNN offers a contradictory recommendation
regarding whether any one of the IP addresses or
network nodes in the system are compromised. The
final decision is taken by the ARNN based on which
of the two recommendations for each of the nodes
appears to be stronger. We have also developed a
gradient based learning algorithm for the ARNN,
which learns based on linear-algebraic operations on
the network weights. If the system is composed of
n IP addresses or nodes, then the resulting learning
algorithm is of time complexity O(n3) since all
computations are based on the inversion of n × n
matrices.

In this paper, the ARNN and its learning algo-
rithm have been described and tested on real Botnet
data involving some 760, 000 packets. The exper-
imental results show that the ARNN provides very
accurate predictions of the order of 92% for a 107
node network. For comparison purposes, we have
also implemented and tested two well known ML
approaches for the same training and testing datasets,
showing that the ARNN results provide significantly
much better accuracy.

In future work, we plan to develop a
generalization of the ARNN for multiple valued
binary collective decision making and classification
in other significant areas with datasets that contain
inter-related or inter-dependent data items, such as
social networks and the analysis of epidemics.

Appendix A. Appendix: ARNN Learning Algo-
rithm

In this Appendix, we focus on the ARNN’s
learning algorithm, recalling that the ARNN is a
specific ML structure based on the Random Neural
Network (RNN), which has been proven to be
an effective approximator in the sense of [80] for
continuous and bounded functions [81]. It was
generalized to G-Networks in the framework of
queueing theory [82, 83, 84]. Gradient learning for
the RNN was initially designed for both feedforward
and recurrent (feedback) RNNs [77], and other
RNN learning algorithms have also been proposed
[37, 85, 72].

Prior to running the learning algorithm, the
ARNN parameters are set to “neutral” values

which express the fact that initially the ARNN does
not know whether any of the network nodes are
compromised. To this effect, we:

• Initialize all the weights between Xi and Yi to
zero: W+

ii = w+
ii = W−

ii = w−ii = 0.

• Set W+
i j = W−

i j = w+
i j = w−i j = 0.5W for i ,

j, and choose Qi = qi = 0.5 to represent the
perfect ignorance of the ARNN.

• Set the external inputs of the ARNN to Λi =

λi = L(n − 1), L > 0, so that the external
excitatory and inhibitory inputs are all initially
set to an identical value.

• Keep W constant in the learning procedure,
and only learn W+

i j, w+
i j for each i , j.

• Accordingly (8) becomes:

qi = Qi = 0.5 (A.1)

=
L(n − 1) + 0.25(n − 1)W

L(n − 1) + (n − 1)W + 0.25(n − 1)W
,

or 0.5 =
L + 0.25W

L + W + 0.25W
,

yielding L = 0.75W . (A.2)

• Taking W = 1 and L = 0.75, all the neuron
states are initialized with the values Qi = qi =

0.5, i = 1, ... , n.

Now for any given value of the data, we use gra-
dient descent to update the ARNN weights so as to
search for a local minimum of the error E in equation
(14). We drop the notation regarding the l − th data
item for simplicity, and compute E’s derivative with
respect to each of the ARNN weights:

EU,V ≡
∂E

∂W+
U,V

=

n∑
i=1

[ (Qi − Ki)QU,V
i + (qi − 1 + Ki)qU,V

i ], (A.3)

Eu,v ≡
∂E
∂w+

u,v

=

n∑
i=1

[ (Qi − Ki)Qu,v
i + (qi − 1 + Ki)qu,v

i ], (A.4)

13



where the derivatives of the ARNN state values are
denoted:

QU,V
i =

∂Qi

∂W+
U,V
, Qu,v

i =
∂Qi

∂w+
u,v
,

qU,V
i =

∂qi

∂W+
U,V
, qu,v

i =
∂qi

∂w+
u,v
.

We can then use the expressions (A.3) and (A.4) to
update the ARNN weights iteratively for successive
values of d = 1, ... , |TrainData|, with the Gradient
Descent Rule with some η > 0:

W+
new,U,V ← W+

U,V − ηEU,V |(Vd ,vd),

w+
new,U,V ← w+

u,v − ηEu,v|(Vd ,vd). (A.5)

Appendix A.1. Derivatives of the ARNN State Prob-
abilities

Now consider the ARNN with generic inputs Λ =

(Λ1, ... Λn) and λ = (λ1, ... , λn). In order to obtain
the derivatives needed for the gradient descent ex-
pression (A.5), we use (8) to write:

QU,V
i =

QU

DV
1[i = V] +

n∑
j=1

W+
ji

Di
QU,V

j

−

n∑
j=1

Qi[W − w+
ji]

Di
qU,V

j , (A.6)

qU,V
i =

n∑
j=1

w+
ji

di
qU,V

j −

n∑
j=1

qi[W −W+
ji]

di
QU,V

j

+
qU

dV
1[i = V], (A.7)

where Di and di are the denominators of Qi and qi

respectively, in (8):

Di = Λi +

n∑
j=1, j,i

W +

n∑
j=1, j,i

[W − w+
ji] .q j, (A.8)

di = λi +

n∑
j=1, j,i

W +

n∑
j=1, j,i

[W −W+
ji] .Q j.

Define the vectors Q = (Q1, ... ,Qn) and
q = (q1, ... , qn) and the corresponding vectors
of derivatives QU,V = (QU,V

1 , ... ,QU,V
n ) and

qU,V = (qU,V
1 , ... , qU,V

n ). Similarly we define the n × n

matrices:

B+ = {
W+

i j

D j
}, C = {

Q j[W − w+
i j]

D j
}, (A.9)

F+ = {
w+

i j

d j
}, G = {

q j[W −W+
i j]

d j
}.

We use the vector δV whose elements are zero every-
where, except in position V where the value is 1, and
write (A.6) and (A.7) in vector form:

QU,V = B+QU,V −CqU,V + δV .
QU

DV
,

qU,V = F+qU,V −GQU,V +
qU

dV
δV ,

= [−GQU,V +
qU

dV
δV][I − F+]−1, (A.10)

which yields:

QU,V = B+QU,V+[CGQU,V−
qU

dV
CδV][1−F+]−1+δV .

QU

DV
,

and hence:

QU,V = {−
qU

dV
CδV[I − F+]−1 +

QU

DV
δV}.

.{I − B+ −CG[I − F+]−1}−1 (A.11)

Also define the matrices:

B+
∗ = {

w+
i j

d j
}, C∗ = {

q j[W −W+
i j]

d j
}, (A.12)

F+
∗ = {

W+
i j

D j
}, G∗ = {

Q j[W − w+
i j]

D j
}.

Since QU,V and qu,v are symmetric with respect to
each other, as are Qu,v and qU,V , we also obtain:

qu,v = {−
Qu

Dv
C∗δv[I − F+

∗ ]−1 +
qu

dv
δv}.

.{I − B+
∗ −C∗G∗[I − F+

∗ ]−1}−1, (A.13)

and

Qu,v = {−G∗qu,v +
Qu

Dv
δv}[I − F+

∗ ]−1 . (A.14)

This completes the computation of all the needed
derivatives of the ARNN state probability vectors Q
and q.
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