
Dynamic Automatic Forecaster Selection via Artificial Neural Network
Based Emulation to Enable Massive Access for the Internet of Things

Mert Nakıp∗,a, Erdem Çakanb, Volkan Rodoplub, Cüneyt Güzelişb

aInstitute of Theoretical and Applied Informatics, Polish Academy of Sciences (PAN), Gliwice, Poland
bDepartment of Electrical and Electronics Engineering, Yaşar University, İzmir, Turkey

Abstract

The Massive Access Problem of the Internet of Things (IoT) occurs at the uplink Medium Access Control
(MAC) layer when a massive number of IoT devices seek to transfer their data to an IoT gateway. Although
recently proposed predictive access solutions that schedule the uplink traffic based on forecasts of IoT device
traffic achieve high network performance, these solutions depend heavily on the performance of forecasters.
Hence, the design and selection of forecasting schemes are key to enabling massive access for such predictive
access solutions. To this end, in this paper, first, we develop a framework that emulates the relationship
between the IoT device class composition in the coverage area of an IoT gateway and the resulting network
performance by virtue of an Artificial Neural Network (ANN). Second, based on this framework, we develop
the Dynamic Automatic Forecaster Selection (DAFS) method, which selects the best-performing forecasting
scheme for predictive access, in particular for Joint Forecasting-Scheduling (JFS), in a manner that adapts
dynamically to a changing number of IoT devices in each device class in the coverage area. We evaluate
the performance of DAFS via simulations and show that our method is able to achieve at least 80% of
the best performance that can be attained for both throughput and energy consumption. Furthermore, we
demonstrate that DAFS is robust with respect to the selection of architectural parameters and has a reasonable
computation time for real-time IoT applications. These results imply that DAFS holds the potential for
practical implementation at IoT gateways in order to enable massive access under a dynamically changing
composition of IoT devices.

Keywords: Internet of Things (IoT), massive access, forecasting, artificial neural network (ANN), Medium
Access Control (MAC) layer, predictive network, joint forecasting-scheduling

1. Introduction

The smart cities of the near future will consist of
a plethora of wireless sensor devices, such as smart

?Preprint published at JNCA with DOI:
https://doi.org/10.1016/j.jnca.2022.103360
??This work has been supported by TÜBİTAK (Scientific

and Technological Research Council of Turkey) under the 1001
program grant no. 118E277.

∗Corresponding author
Email addresses: mnakip@iitis.pl (Mert Nakıp∗),

cakanerdem5@gmail.com (Erdem Çakan),
volkan.rodoplu@yasar.edu.tr (Volkan Rodoplu),
cuneyt.guzelis@yasar.edu.tr (Cüneyt Güzeliş)

lampposts, smart garbage bins as well as a swarm of
vehicles that carry Global Positioning System (GPS)
devices for fleet management applications [1]. These
devices are expected to be connected to the Internet
in order to enable to a wide range of services to the
inhabitants of smart cities. The Internet of Things
(IoT) refers to the collection of these new devices,
most of which operate without human intervention
[2]. The next-generation Internet must support tens
of thousands of such IoT devices in the coverage area
of a single base station or IoT Gateway. The problem
of providing wireless access to such a massive num-
ber of devices is referred to as the Massive Access

Preprint submitted to JNCA March 25, 2022

Problem.
The majority of the past approaches [3, 4, 5, 6, 7,

8] to the Massive Access Problem have centered on
alleviating collisions on the Physical Random Access
Channel (PRACH) in cellular systems [2]. The key
assumption behind these past approaches is that each
IoT device generates traffic that is modeled by “ran-
dom arrivals”. Since traffic generation is assumed
to occur at random times in random amounts, al-
most all of the past access schemes merely react to
the current traffic demand that occurs on the net-
work. As such, they fall under the class of “reactive
protocols”. While such a model based on random
arrivals may be suitable for the traditional Internet
traffic that is comprised of Human-to-Human (H2H),
Human-to-Machine (H2M) and Machine-to-Human
(M2H) traffic classes, it is not necessarily suitable
for Machine-to-Machine (M2M) traffic.

Recent works [9, 10] have demonstrated that the
M2M traffic generated by individual IoT devices can
be predicted by using machine learning algorithms.
Furthermore, based on this predictability, a novel
method called “Joint Forecasting-Scheduling
(JFS)” was developed in [11]. In JFS, in contrast
with reactive protocols, an IoT Gateway forecasts
the future traffic of individual IoT devices in
its coverage area and allocates Medium Access
Control (MAC)-layer resources to these devices in
advance based on traffic forecasts in a collision-free
manner. In [12] and [13], it was demonstrated that
JFS achieves a superior performance in network
throughput as well as transmit energy consumption
compared with benchmark reactive protocols.

In [9], IoT devices were classified into four
classes with respect to their traffic generation
patterns: A Fixed-Bit Periodic (FBP) device
generates a constant number of bits at regular
intervals. A Fixed-Bit Aperiodic (FBA) device
generates a constant number of bits at irregular
intervals. A Variable-Bit Periodic (VBP) device
generates a variable number of bits at regular
intervals. Finally, a Variable-Bit Aperiodic (VBA)
device generates a variable number of bits at
irregular intervals.

In References [11, 12, 13, 14, 15], the
performance of JFS was demonstrated only for
those cases in which either the percentage of IoT

devices from each device class was identical or
all of the devices in the network were from the
same device class. However, in actual networks,
the number of IoT devices from each device class
typically changes dynamically especially due to
the presence of mobile IoT devices (e.g. as in fleet
management applications) that roam into and out
of the coverage area. Hence, a novel approach is
required that addresses a dynamically changing
number of devices in each class in the coverage area
of an IoT gateway and optimizes the performance of
JFS with respect to the current composition of these
device classes.

The first contribution of this paper is the design of
such a method, which we call “Dynamic Automatic
Forecaster Selection (DAFS)”. We demonstrate that
this method can be executed in real time and scales
well with a growing number of IoT devices. In ad-
dition, the ability to adapt fast to dynamic network
conditions by automatically switching the forecast-
ing scheme used is a significant step towards perfor-
mance provisioning for IoT in wireless networks in
the near future.

The second contribution of this paper is the de-
velopment of a novel methodology for DAFS. In our
methodology, for the forecasting schemes, an Arti-
ficial Neural Network (ANN) emulates the relation
between the vector comprised of the number of IoT
devices in each device class and the resulting net-
work performance. After the training of this ANN
has been completed, the ANN outputs the forecaster
that is estimated to have the best performance out
of all of the forecasting schemes examined for each
IoT device class composition. We quantify the per-
formance of our DAFS method by comparing the
actual network performance obtained under the fore-
caster selected by DAFS versus the forecaster that, in
fact, produces the best network performance. In our
demonstrations, on average, DAFS is able to achieve
a network throughput performance and energy con-
sumption performance that is 80% of the best perfor-
mance that can be achieved. We note that although
the performance of DAFS is evaluated for JFS, it can
be used for the selection of the best performing fore-
casting scheme in any predictive solution technique
for Massive Access Problem.

The rest of this paper is organized as follows: In

2

Section 2, we describe the relationship of this work
to the existing work in this area. In Section 3, we
state the assumptions that underlie our work. In Sec-
tion 4, we review the basic JFS system. In Section 5,
we present the design of the DAFS method. In Sec-
tion 6, we evaluate the performance of DAFS. In
Section 7, we present our conclusions.

2. Relationship to The State of The Art

In this section, we describe the relationship be-
tween our work and the state of the art in three cate-
gories: (1) We compare our work against the works
that develop meta-MAC protocols which select, re-
configure or generate MAC protocols and do not uti-
lize machine learning techniques. (2) We compare
our work against meta-MAC protocols, which are
designed by using machine learning algorithms. (3)
We present the differences between our work and the
past articles that focus on the massive access problem
(including the works based on JFS).

First, we compare our work against those works,
which develop meta-MAC protocols that do not
utilize machine learning methods. Reference [16]
creates a meta-MAC layer to switch automatically
between the existing MAC-layer protocols (such
as slotted ALOHA and Time-Division Multiple
Access (TDMA)). Reference [17] develops a MAC
design framework to compose a MAC protocol
based on functions that are defined with respect to
the requirements of the application. Reference [18]
develops a hybrid protocol for which the running
mode is adaptively switched between Carrier-Sense
Multiple Access (CSMA) and TDMA for mobile ad
hoc networks. In addition, Reference [19] presents
adaptive MAC protocol which switches between
CSMA and TDMA for the cognitive radio (CR)
networks. Reference [20] presented a technique to
identify the MAC protocol which is considered as a
parameter in CR and to choose the best coexisting
CR access schemes based on this identification.
Reference [21] develops a MAC framework that
switches between Carrier Sense Multiple Access
(CSMA) and TDMA for Unmanned Aerial Vehicle
(UAV) in ad hoc networks. Reference [22] switches
between MAC protocols (e.g. CSMA/CA and
TDMA) adaptive to the changes in the network

conditions.
Reference [23] develops a Randomized

Weighted Majority (RWM) meta-MAC protocol
that dynamically optimizes the parameters of the
MAC protocol without any advance knowledge
on network conditions. Reference [24] develops
a framework, which is called MultiMAC, that
adaptively reconfigure MAC layer properties. In
addition, Reference [25] automatically generates
MAC protocols via an optimization program based
on symbolic Monte Carlo simulation for multiple
neighborhoods under dynamic topologies and
dynamic traffic conditions. All of the references
in this category aim to either generate a protocol
or switch between existing protocols. In contrast,
our DAFS method dynamically switches among
the existing forecasting schemes (Multi-Layer
Perceptron (MLP), Long-Short Term Memory
(LSTM), and Autoregressive Integrated Moving
Average (ARIMA)) for JFS by estimating the
performance of the protocol under each forecasting
scheme via machine learning.

Second, we present the comparison of our
work with the works in the second category that
develop meta-MAC protocols based on machine
learning algorithms. Reference [26] uses machine
learning methods (such as Naive Bayes and Random
Forest) in order to select an adaptive MAC-layer
protocol between CSMA and TDMA based on the
traffic packet information (e.g. packet length and
inter-arrival time). Reference [27] uses a Support
Vector Machine (SVM) to switch between TDMA,
CSMA with Collision Avoidance (CSMA/CA),
pure ALOHA, and slotted ALOHA protocols for
Cognitive Radio (CR) networks. Reference [28]
presents the Organic Network Control (ONC)
architecture, which is based on evolutionary
algorithms and adapts the parameters of the protocol
towards the changes in the network conditions.

Reference [29] develops a meta-MAC protocol
that learns the expected performance of the MAC
protocols (e. g. ALOHA and TDMA) in order to
emulate the behavior of each protocol and switch
between these protocols. Reference [30] develops
a protocol that switches between CSMA/CA and
TDMA via an SVM-based algorithm for a changing
traffic load. In addition, for CR networks in order to

3

select between TDMA, CSMA/CA, pure ALOHA,
and slotted ALOHA, Reference [31] uses SVM,
Reference [32] uses Convolutional Neural Network
(CNN) with spectrogram, and Reference [33] uses
LSTM. The works in this category use machine
learning-based algorithms to adaptively switch
between existing MAC protocols or reconfigure the
parameters of a protocol. In contrast, our DAFS
method, which is based on ANN, selects the best
forecaster specifically for JFS by estimating the
performance of JFS under each forecaster for the
dynamically changing IoT network conditions.

Third, we compare our work with the recent
articles that focus on the predictive solutions for
massive access problem including the ones based on
JFS. While the existing reactive network protocols
are breaking down most of the time including when
a massive number of devices requests wireless
access[34, 35, 36], the recent works [37, 38, 39, 40,
41, 42, 43, 44, 45, 46, 47, 11, 12, 13, 14, 15] aim to
develop proactive solutions in which the network
traffic is predicted to enable grant free medium
access. In Reference [37], a subset of packets is
dropped considering the predicted impact of each
packet on the latency and the network performance.
For delay-critical applications in industrial wireless
networks, Reference [38] has scheduled uplink
access of IoT devices predicting the activity of those.
Recently, Reference [39] has recently developed
a predictive network architecture in which they
predict total network traffic analyzing the causal
relationship between the occurrences of special
events and the triggered traffic variations. Reference
[40] performed diffusion analysis and developed
quasi-deterministic packet transmission policy to
mitigate the massive access in IoT networks.

A recent trend of research has focused on a
proactive solution technique, called Fast Uplink
Grant (FUG) which schedules the uplink grants
for traffic packets based on the advance knowledge
on the network traffic [41, 42, 43]. To develop
enhanced FUG algorithms, Reference [44] modeled
IoT packet tranmissions using binary Markovian
process, and Reference [45] predicted IoT network
traffic using SVM and LSTM. Moreover, Reference
[46] used Nonlinear autoregressive exogenous
(NARX) neural network to predict IoT network

traffic while Reference [47] performed comparative
study of machine learning models (e.g. Random
Forest, Decision Tree and k-Nearest Neighbor) and
deep neural network to classify the category of The
Onion Router (Tor) network traffic.

Furthermore, Reference [11] proposes JFS,
which performs resource allocation in advance
based on the forecasting of the traffic generation
pattern of individual IoT devices; scheduling is
performed via a heuristic only for the single-channel
case. Although we consider the JFS as one of
the main use cases of the DAFS method and use
it to evaluate DAFS in this paper, DAFS is a
method that selects the best forecasting scheme
dynamically by estimating the overall network
performance under each forecaster candidate. Thus,
DAFS is eligible to be used under any network
paradigm (not only JFS) that utilizes forecasting.
Reference [12] develops a multiscale algorithm,
which allows JFS to operate over much longer
scheduling windows than [11] does for a massive
number of devices. Reference [13] extends JFS to
the multi-channel case. Reference [14] develops
an Application Specific Error Function (ASEF),
which measures the effects of the forecasting error
on network performance in JFS. Reference [15]
develops a queueing theory based technique for a
scheduling heuristic and evaluates the performance
of this heuristic for JFS. Compared with all of these
previous works, our DAFS method is a meta-level
framework that selects the best forecasting scheme
for JFS by emulating the relationship between the
composition of the number of IoT devices in each
class and the resulting network performance.

3. Assumptions

Throughout this work, we assume that a single
IoT Gateway, denoted by G, runs JFS for all IoT
devices in its coverage area, which is denoted by
CG. The set of IoT devices, which is denoted by N ,
is assumed to be variable1 in this work. Each IoT
device (which will be called “device” for short) that
falls in CG at any given time is assumed to have a di-
rect wireless link to G at that time. Furthermore, we

1This reflects the fact that the set of devices in the coverage
area may change dynamically in an actual network.

4

Table 1: List of mathematical symbols in order of appearance

Symbol Definition
G Single IoT Gateway
CG Coverage area of Gateway G
N Total number of devices in CG

N Set of N IoT devices
∆i Delay constraint for device i
NFBP Number of IoT devices that fall in FBP class
NVBP Number of IoT devices that fall in VBP class
NFBA Number of IoT devices that fall in FBA class
NVBA Number of IoT devices that fall in VBA class
N Vector of number of IoT devices in each class
ηARIMA Throughput performance of the JFS system under ARIMA forecaster
ηLSTM Throughput performance of the JFS system under LSTM forecaster
ηMLP Throughput performance of the JFS system under MLP forecaster
EARIMA Energy consumption of the JFS system under ARIMA forecaster
ELSTM Energy consumption of the JFS system under LSTM forecaster
EMLP Energy consumption of the JFS system under MLP forecaster
si

p Time index, relative to the current time, that corresponds to the pth feature of the
traffic generation pattern of device i

Fi Set of indices of all selected features
{xi[m − si

p]}p∈{1,...,|Fi |} Collection of the past traffic generation pattern of device i over the selected features
at current slot m

Ki Number of forecasting steps for device i
{x̂i[m + k]}k∈{1,...,Ki} Collection of the future traffic generation pattern over the forecasting steps at current

slot m
S Binary schedule matrix
Nv Realization of N for sample v
ηv Corresponding η vector that is collected via JFS system for sample v

Ñ A 4-partition of 10
X Any network performance metric used in the JFS
fX Custom error metric to measure the performance of DAFS
Xbest The best network performance metric that is achieved by JFS system over all

forecasting schemes
Xworst The worst network performance metric that is achieved by JFS system over all

forecasting schemes
XDAFS Network performance metric that is achieved by the JFS system under DAFS
E Number of layers in the Network Performance Estimator of DAFS
he Number of neurons at each layer e ∈ {1, . . . , E}

5

assume that whenever a device falls in CG, it remains
associated with G (regardless of whether it generates
traffic to be sent to G at that instance) until the device
exits CG.

We adopt the same assumptions on
delay-constrained IoT applications as in [11] and
[12]. In particular, we assume that a single IoT
application is run at each device, which generates
traffic to be delivered to G within a delay constraint,
which is denoted by ∆i for device i. Based on
the forecast of the future traffic of each device,
JFS schedules the future bursts of traffic that are
generated by the devices in CG at that time over a
scheduling window. We define “throughput” as the
ratio of the number of bits in successfully delivered
bursts to the total number of bits of traffic offered
by N over a scheduling window. We assume that
an IoT device consumes 1 unit of energy for data
transmission to an IoT gateway in a single slot.2 We
define E as the average transmit energy consumed
across all IoT devices in the coverage area per
successfully delivered bit.

Throughout this work, we shall let NFBP, NVBP,
NFBA, NVBA denote the number of IoT devices, re-
spectively, in the FBP, VBP, FBA and VBA device
classes in CG at any given time. We let the vector
N ≡ [NFBP,NVBP,NFBA,NVBA].3 Let N denote the
total number of devices in CG. (That is, N = |N|.)
Then, N = NFBP + NVBP + NFBA + NVBA. We also
let ηARIMA, ηLSTM, ηMLP denote the throughput per-
formance of JFS under the ARIMA, LSTM and MLP
forecasters, respectively. Furthermore, we define the
vector η ≡ [ηARIMA, ηLSTM, ηMLP]. Similarly, EARIMA,
ELS T M, EMLP denotes the energy consumption of JFS
under the ARIMA, LSTM and MLP forecasters, and
E ≡ [EARIMA,ELSTM,EMLP].

4. Review of Joint Forecasting-Scheduling (JFS)

In this section, we review JFS, which was de-
veloped in [11]. In Fig. 1, we present the structure

2This is an approximation that does not take into account the
fact that each IoT device in the coverage area may see a distinct
path loss to the IoT gateway.

3The reason that we do not use a time index t is that our
DAFS method will select a forecaster based on N at any given
time; that is, the selection of the forecaster is performed based
directly on N in a time-invariant fashion.

of JFS, which consists of the Bank of Forecasters
and a Scheduler. In the Bank of Forecasters, there
is one forecaster for each device i, which is shown
as Forecasteri in Fig. 1, where the Forecasteri is the
forecaster that estimates the future traffic generation
of device i.

Figure 1: JFS architecture, as developed in [11]

For each device i, the input of Forecasteri is the
collection of the past traffic generation pattern of
that device, denoted by {xi[m − si

p]}p∈{1,...,|Fi |}, where
si

p is the time index, relative to the current time m,
that corresponds to the pth feature of the traffic
generation pattern of device i, and Fi is the set of
indices of all selected features of device i.4 The
output of Forecasteri is the future traffic generation
pattern, {x̂i[m + k]}k∈{1,...,Ki}, where Ki is the number
of steps ahead for forecasting the traffic of device i.

As shown in Fig. 1, after the future traffic
patterns of all of the devices in the coverage area
have been forecast, those forecasts are passed to the
Scheduler. The Scheduler in JFS generates a binary
schedule matrix S, whose entry (j,m) equals 1 if the
MAC-layer slot m is allocated for burst j and equals
0 otherwise.

5. Design of The Dynamic, Automatic Forecaster
Selection (DAFS) Method

In this section, we describe the DAFS method,
which enables the automatic selection of the
best-performing forecasting scheme for JFS for a

4The selection of important features is performed in order
to improve the performance of the forecaster. We use the same
set of selected features as in [11].

6

Figure 2: The architecture for the Forecaster of device i under DAFS for JFS has been drawn for the particular network performance
metric, throughput denoted by η, as an example.

dynamically changing number of devices in each
device class.

In Fig. 2, we present the architecture for
our DAFS. As shown in this figure, DAFS is
comprised of the Network Performance Estimator
and the Forecasting Scheme Selection. The
latter is comprised of the argmax block as well
as the Selection block which selects among the
ARIMA, LSTM, and MLP schemes in the forecaster
(which are taken, in this paper, as examples of the
forecasting schemes that can be utilized). The reason
that the ARIMA, LSTM, and MLP are selected as
the forecasting scheme candidates is to represent
statistics-based forecasters with ARIMA, recurrent
forecasters with LSTM, and feedforward multi-layer
networks including deep neural networks with
MLP. Also, note that in Fig. 2, in order to simplify
the description of the methodology of DAFS, we
show the design of DAFS for throughput; however,
it might be easily used for any other network
performance metric by replacing throughput with
that metric in the Network Performance Estimator
block.

5.1. Network Performance Estimation Based on Em-
ulation of JFS by ANN

First, we describe the operation of the Network
Performance Estimator in the design of the DAFS
method in Fig. 2. The Network Performance Esti-
mator aims to compute the value of the network per-
formance metric. This value is subsequently used by
DAFS in the selection of the best-performing fore-
casting scheme for the Bank of Forecasters in Fig. 1
for each composition of the number of IoT devices
in each IoT device class.

The network performance metrics can be
computed in a brute force manner by executing the
complete JFS system under each forecasting scheme
as well as the calculation of the resulting network
performance. However, there are two reasons that
the brute force computation cannot be used in
practice for the selection of the forecasting scheme:
1) The forecasts produced by the forecasting scheme
in the Bank of Forecasters are required during
the execution of JFS, but the best-performing
forecasting scheme is not known in advance. Thus,
JFS must be executed for all available forecasting
schemes (ARIMA, LSTM and MLP in this paper)
in order to select the scheme that achieves the best

7

network performance in this case. That is, this
brute force method does not allow DAFS to select
the forecasting scheme before the execution of JFS
for all forecasting schemes. 2) The execution time
of JFS has been demonstrated to increase linearly
with the number of devices in the coverage area
of the IoT gateway [11]. Thus, the execution of
JFS to select a forecasting scheme for the networks
with a massive number of devices will require
unacceptably high computation time.

5.1.1. Emulating the Computation of Network
Performance of JFS under Each Forecasting
Scheme

Figure 3: The system to be emulated, which computes the
network performance metrics for each forecasting scheme,
illustrated for the case of throughput η.

We now describe how to emulate the computation
of the network performance metric of JFS, which
is presented in Fig. 3. The network performance
metric should be calculated based on the schedule
matrix which is computed by JFS. Therefore, in or-
der to compute this metric under each of the ARIMA,
LSTM, and MLP forecasting schemes, JFS must be
executed under each of these schemes as well as un-
der perfect forecasts. However, since the execution
of JFS under four different forecasting schemes is
computationally intensive, we shall emulate the sys-
tem which is comprised of four parallel JFS systems5

and the Network Performance Metric Calculator.

5There is one JFS system under each of ARIMA, LSTM
and MLP forecasting; there is a fourth JFS system under perfect
forecasts.

Via the emulation of this system, the vector of
network performance metrics, in this case η, will be
computed. As shown in Fig. 3, during execution, the
input is the collection of the past traffic generation
patterns of IoT devices {xi[m − si

p]}p∈{1,...,|Fi |}

i∈N for JFS
under each forecasting scheme, and the input is the
accumulated future traffic {xi[m + k]}k∈{1,...,Ki}

i∈N (which
is available only after the traffic generation patterns
have been realized) for JFS under perfect forecasts.

The future traffic is not accessible to calculate the
network performance under perfect forecasts since it
has not yet been realized.

In addition, the results of the works [11, 12] have
shown that network performance depends highly on
the total number of IoT devices as well as the per-
centage of devices that fall in each class. Thus, tak-
ing into account this fact, the network performance
emulator could be designed to have the number of
devices of each class type as an input and the design
should be irrespective of the network setup. Conse-
quently, we develop an emulation by DAFS that will
compute the network performance metrics based on
N, namely the vector of the instantaneous number of
IoT devices in each device class in the coverage area
of G.

5.1.2. Emulation of the Relationship Between De-
vice Class Composition and Network Perfor-
mance

The Network Performance Estimator of DAFS in
Fig. 2 estimates the network performance vector. For
simplicity, we shall take throughput as the network
performance metric in order to describe the ANN.
The elements of the vector η̂ are η̂ARIMA, η̂LSTM and
η̂MLP. Recall that the elements of the vector N are
NFBP,NVBP,NFBA and NVBA. The Network Perfor-
mance Estimator forms a relation between N and η̂.
In order to emulate this relation, we use an ANN as
the Network Performance Estimator of DAFS, where
the input of the ANN is N, and the output is η̂.

In this work, we use an MLP model for this
ANN, which we train by using the backpropagation
algorithm for the input-output pairs (Nv, ηv), where
at each sample v, Nv denotes the realization of N,
and ηv denotes the corresponding η vector that

8

is collected via JFS.6 Once the MLP has been
trained, we use the resulting MLP for the Network
Performance Estimator of DAFS in Fig. 2 in order
to estimate η̂ for any given network that contains at
that instance the number of IoT devices in each IoT
device class given by the vector N.

5.1.3. Caveats in Using an ANN for Emulation
There are certain caveats in using an ANN, in

particular an MLP, in learning the above relation.
First, in training the MLP, it is entirely possible
that the weights of the MLP converge to a local
optimum in the training process. However, we note
that if there is a sufficiently simple relationship
between N and the network performance metrics,
the probability that training converges to a local
(rather than global) optimum is reduced. Second,
we note that N gives only partial information on
the network state: For example, the actual traffic
generation patterns of all of the devices in CG across
all time would give a full description of the traffic
offered.

The reason that we choose to input only N into
the ANN, rather than actual traffic generation pat-
terns of IoT devices, is that we would like the results
to generalize to the case where new devices, whose
traffic generation patterns the network has not seen,
constitute the set of IoT devices in the network. In
those cases, it is essential that the forecaster selection
be made dynamically and automatically without any
reliance on the actual traffic generation patterns of
individual IoT devices. That is, by relinquishing full
knowledge on the actual traffic generation patterns
that lead to network performance, our DAFS gains
the ability to generalize to new scenarios that involve
IoT devices that the network has not seen. (This
generalization ability shall be demonstrated in Sec-
tion 6.2.)

5.2. Forecasting Scheme Selection
For each scheduling window of JFS, as soon as

the Network Performance Estimator has formed its
estimate, the Forecasting Scheme Selection block
selects the best forecasting scheme in the forecaster
of device i based on η̂, which is estimated by the

6The collection of the dataset is described in Section 6.1.1.

trained MLP in the Network Performance Estimator.
As shown in Fig. 2, the Forecasting Scheme
Selection is comprised of the argmax operator
as well as the block that selects among ARIMA,
LSTM, and MLP. The Forecasting Scheme Selection
of DAFS returns the index of the scheme that
achieves the highest η̂, i.e. the forecasting scheme
that is estimated to achieve the highest throughput
for the current N. After DAFS returns the best
forecasting scheme, it switches the forecaster of
device i to that scheme. That is, in Forecasteri, the
forecasting scheme, which is selected by DAFS, is
used for computing {x̂i[m + k]}k∈{1,...,Ki}.

6. Results

6.1. Methodology
6.1.1. Data Collection Methodology

We now describe how we collected the dataset
that we have used for our results on DAFS. First, we
let the total number of devices N be a multiple of
10. Then, we consider all of the 4-partitions7 of 10.
We denote each such a 4-partition of 10 by Ñ, and
we set N = (N/10)Ñ. Then, for each N , in order to
compute the value of η, we invoke JFS under each of
the ARIMA, LSTM and MLP forecasting schemes
for 10 randomly selected scheduling windows and
take the average over these windows. For the traffic
generation pattern of individual IoT devices, we use
the publicly available IoT traffic dataset [48].

6.1.2. Performance Evaluation Metric for DAFS
In order to measure the performance of DAFS,

instead of using the existing error metrics in the
machine learning literature (such as r2, Mean Square
Error (MSE), symmetric Mean Absolute Percentage
Error (sMAPE)), we define an error metric, which
measures how far the performance of JFS under
DAFS is from the best achievable performance.

We shall let X denote a network performance
metric (such as throughput η or energy consumption
E). Furthermore, let Xbest denote the best network
performance metric that is achieved by JFS over
all forecasting schemes where X can be replaced

7A k-partition of a positive integer n is a vector of k positive
integers that sum up to n.

9

with any network performance metric used in the
JFS. Moreover, let Xworst denote the worst network
performance metric that is achieved by JFS over all
forecasting schemes. In addition, let XDAFS denote
the network performance metric that is achieved by
JFS under DAFS.

We denote this error metric by fX and define it as

fX ≡
∣∣∣∣∣XDAFS − Xworst

Xbest − Xworst

∣∣∣∣∣ δXbest,Xworst (1)

Above, δΨ is defined to be 1 if Ψ is a true state-
ment and is 0 otherwise. Accordingly, the range of
fX is [0, 1], where 0 represents the minimum and 1
represents the maximum error that can be achieved
by DAFS.

6.1.3. Cross-Validation
In order to evaluate the performance of

DAFS, we use 10-fold cross-validation, which we
implement by using the scikit-learn library [49] in
Python.8 For each test, we measure the error metric
for throughput, namely fη, which is calculated as in
(1).

6.1.4. Parameter Tuning of the Network
Performance Estimator Implemented as MLP

In this paper, we design the MLP in which the
architectural parameters are the number of layers E,
the number of neurons he at each layer e and the
activation function at each neuron. For throughput,
in order to achieve the best performance of DAFS
where the Network Performance Estimator is imple-
mented as an MLP, we select the best architectural
parameters as follows:

Step 1: We generate 100 MLP architectures for
each of which we set the architectural parameters as
follows: First, we set E = 5, where the fifth layer
is the output layer for which h5 = 3, i.e. the total
number of available forecasting schemes. The acti-
vation function of each neuron at e = 5 is set to the
sigmoid function9. The activation function of each
neuron at each hidden layer e ∈ {1, 2, 3, 4} is set to the

8The 10-fold cross-validation method first splits the dataset
into 10 parts where for each fold of this method, we train the
DAFS on 90% of the dataset and test it on the remaining 10%.

9Since throughput takes values in [0, 1], the sigmoid activa-
tion function is suitable.

tangent hyperbolic function. Furthermore, we select
the value of he for each layer e ∈ {1, 2, 3, 4} randomly
in the range [2, 150] at increments of 2.

Step 2: For each run, for each fold of the
cross-validation, we split the dataset in Section 6.1.1
into the training and the test set such that 90% of
the samples are used in training and the remaining
10% in testing and the data samples for each set
are randomly selected without replacement. Then,
we train each of 100 MLP architectures in DAFS
using the training set. By using each trained MLP,
we measure the performance of DAFS with respect
to fη on the test set.

Step 3: Over 100 MLP architectures, we select
the architecture that achieves the best performance,
which is closest to 0 for the error metric fη for
throughput.

6.2. Performance Evaluation of DAFS
6.2.1. Performance of JFS under DAFS

We now present the performance of the JFS sys-
tem under the DAFS method. It should be noted
that the outputs of DAFS provide the throughput es-
timates for each of the forecasting schemes under
examination; however, each output is computed un-
der the assumption that a single forecasting scheme
is used across all devices irrespective of the device
class. (In this case, a single forecasting scheme is
used not only for the execution but also for the train-
ing of DAFS.)

First, we examine the performance of JFS under
DAFS with respect to the error metric fη. In Fig. 4,
we present the box plot of the cross-validation error
with respect to the metric fη for JFS under DAFS. For
a fixed N, the performance variation in the box plot
occurs due to the folds of cross-validation, where the
red line corresponds to the median. In this figure,
we see that although the median of the error metric
fη increases slightly with the number of devices, it
remains below 0.2 for all values of N; that is, more
than 80% of the gap between ηworst and ηbest has been
closed by DAFS. In addition, our results show that
the maximum fη over all folds of cross-validation
across all N is approximately 0.23 (which occurs at
N = 800). This indicates that JFS achieves at least
77% of its highest possible throughput under DAFS
even when outliers are present.

10

Figure 4: Box plot of the error in fη for the throughput estimation performance of DAFS under 10-fold cross-validation as a function
of the number of devices N in the coverage area.

Figure 5: Box plot of the error in fE for the energy consumption estimation performance of DAFS under 10-fold cross-validation
as a function of the number of devices N in the coverage area.

Second, in Fig. 5, we present the cross-validation
of the error of JFS under DAFS in energy consump-
tion, denoted by fE, for the best MLP architecture. In
this figure, we see that the median of fE is under 0.2
and the maximum of fE is under 0.40 for all values of
N. We also see that the median of fE is around 0.18
for N = 10, and decreases slowly up to N = 500.
Between N = 500 and N = 1000, the median of
the error is almost constant with fluctuations which
are caused by the randomness in the dataset as well
as cross-validation. In addition, we see a trend in
the standard deviation that is similar to that of the
median, which decreases up to N = 500 and re-

mains almost constant for N ≥ 500. Our results in
Fig. 5 collectively show that the DAFS method suc-
cessfully selects the best-performing forecaster with
a relatively small error.

In conclusion, the results on throughput in Fig. 4
and energy consumption in Fig. 5 show that for all
values of N, 10 ≤ N ≤ 1000, the median of each of
fη and fE is less than 0.2; hence, JFS almost achieves
the best performance by selecting the forecaster via
DAFS.

These results also indicate that η̂ and Ê (which
are estimated by the Network Performance Estimator
in DAFS) are close to η and E, respectively, since the

11

error in the estimaiton of each of η and E signifi-
cantly affects the selection of the forecaster and thus
the performance of JFS under DAFS.

6.2.2. Performance of the Network Performance Es-
timator in DAFS

We aim to examine the performance of MLP
when it is used as the Network Performance
Estimator of DAFS in order to estimate η. To this
end, in this section, we present the results on an
experiment in which the number of devices in the
Aperiodic (FBA and VBA) classes increases. We
set NFBA = NVBA and NFBP = NVBP. Furthermore,
we increase (NFBA + NVBA)/N, while the value of N
remains constant. Then, we present the comparison
between the actual performance of the JFS under
the LSTM, ARIMA and MLP forecasters and the
estimate obtained by the Network Performance
Estimator of DAFS.

(a) Actual throughput

(b) Estimated throughput

Figure 6: (a) Throughput of JFS, η, under the LSTM, ARIMA
and MLP forecasters, and (b) estimated throughput, η̂, via the
Network Performance Estimator of DAFS for N = 800 devices.

Fig. 6 shows the actual throughput η and the esti-
mated throughput η̂ for N = 800 for our experiment.

Since the standard deviation and the maximum error
of DAFS are shown to be the highest for 800 devices
in Fig. 4, we shall analyze the throughput estimation
performance of the Network Performance Estimator
of DAFS for N = 800.

When we examine our results in Fig. 6(a) and
Fig. 6(b), we see that the estimation of the throughput
in Fig. 6(b) is highly accurate based on the actual
throughput in Fig. 6(a). For example, the results in
Fig. 6(b) show that the Network Performance Esti-
mator in DAFS successfully captures the sharp de-
crease of the actual throughput in Fig. 6(a) at the
point where the percentage of the number of devices
in each of the Aperiodic classes equals 40%. In ad-
dition, the Network Performance Estimator of DAFS
estimates the accurate order of the forecasters for the
majority of the percentages except 30% and 50%. At
these two percentages, although DAFS incorrectly
estimates the order of LSTM and ARIMA, it does
not significantly affect the performance of JFS since
the throughput under LSTM is almost equal to that
under ARIMA.

Fig. 7 shows the E in Fig. 7(a) and Ê in Fig. 7(b)
for N = 10 for the experiment that we describe
above. Since the median and the standard deviation
of DAFS are the highest for 10 devices for the
CV results in Fig. 5, we compare the energy
consumption and the estimate obtained by the
Network Performance Estimator of DAFS for
N = 10. In these figures, our results show that the
estimations produced by the Network Performance
Estimator of DAFS are considerably successful
in terms of both the order of the forecasters and
the magnitude of energy consumption. Although
DAFS successfully captures the sharp increase at
40%, it incorrectly estimates the order of MLP
and the ARIMA for percentages greater than 40%,
where MLP achieves the minimum E. However, in
Fig. 7(a), we see that selecting ARIMA instead of
MLP does not affect the energy consumption of the
system significantly because the value of EARIMA

is close to that of EMLP. In addition, selecting
either ARIMA or MLP performs much better than
selecting LSTM.

12

(a) Actual energy consumption

(b) Estimated energy consumption

Figure 7: (a) Energy consumption of JFS, E, under the LSTM,
ARIMA and MLP forecasters, and (b) estimated energy con-
sumption, Ê, via the Network Performance Estimator of DAFS
for N = 10 devices.

6.2.3. Generalization Ability of DAFS with Respect
to the Architectural Parameters of the
Network Performance Estimator

We now present the generalization ability of
the DAFS method for JFS against the selection
of the architectural parameters of the Network
Performance Estimator for which we used MLP.
We analyze how DAFS performs under randomly
selected architectural parameters of MLP with
respect to fη. In this analysis, for each of the
randomly generated 100 MLP architectures in
Section 6.1.4, we perform 10-fold cross-validation
as described in Section 6.1.3 and take the
mean of the performance over the folds of the
cross-validation.

In Fig. 8, we present the histogram of the perfor-
mance of DAFS with respect to fη over the MLP ar-
chitectures. In this figure, we see that the mean error
over the cross-validation folds for the performance
of the DAFS method for JFS is between 0 and 0.1
over randomly created 100 MLP architectures. Thus,

the performance of DAFS on throughput is shown to
be highly robust with respect to the selection of the
architectural parameters of the Network Performance
Estimator.

Figure 8: Histogram of the cross-validation throughput perfor-
mance of DAFS over 100 randomly generated MLP architec-
tures

Figure 9: Histogram of the cross-validation performance of
DAFS on the energy consumption over 100 randomly generated
MLP architectures

In Fig. 9, we present the histogram of the per-
formance error of JFS under the DAFS method for
energy consumption as measured by fE over MLP
architectures. In this figure, we see that the mean
of the fE error over the cross-validation folds for the
performance of the DAFS method for JFS is between
0.05 and 0.2 over randomly created 100 MLP archi-
tectures. The results in Fig. 9 show that the per-
formance of DAFS on energy consumption is also
highly robust with respect to the selection of the ar-
chitectural parameters of the Network Performance
Estimator.

13

6.2.4. Performance of DAFS for Class-based Fore-
caster Selection

We now evaluate the performance of the JFS sys-
tem under DAFS in the specific case in which the
forecasting scheme across the devices in each device
class is identical yet the forecasting schemes across
distinct device classes may be different. Recall that
DAFS has been trained for the case in which JFS uses
a single forecasting scheme across all devices irre-
spective of the class. By presenting this comparison,
we aim to show how a single (trained) DAFS can be
used for the selection of distinct forecasting schemes
across the device classes.

We use the same DAFS trained for the case
of a single forecasting scheme, as explained in
Section 6.1.1. Then we execute DAFS in order
to emulate the performance of JFS for a varying
number of devices in each device class. We shall let
“·” denote the dot product of two vectors. In order
to execute DAFS for each device class, we feed N ·
v (in the place of N) into the Network Performance
Estimator, where v denotes a four-element vector
such that the value of each element of this vector
equals 1 for the class under consideration and equals
0 otherwise. Then, these class-based forecasting
schemes are applied to mixtures of devices across
distinct class types.

For the performance evaluation of JFS
under DAFS, we set NFBA = NVBA =

NVBP = N/3 and NFBP = 0 for values of
N ∈ {240, 480, 720, 960, 1200}. We also compare
the throughput performance of DAFS under the
above forecaster selection against that of a static
selection of the best forecasting scheme based on an
exhaustive search over all of the forecasting schemes
under examination for each device class.

Fig. 10 presents a comparison of DAFS against
the static method for class-based estimator selection.
The results in this figure show that DAFS outper-
forms the static selection of forecasting schemes up
to N = 960. As shown in the figure, the perfor-
mance gap between DAFS and static selection de-
creases with N because DAFS is trained for the case
in which JFS uses a single forecasting scheme for the
entire bank of forecasters irrespective of the class.
Accordingly, DAFS is practical in applications by
virtue of the following facts: 1) DAFS is able to

Figure 10: Comparison of the throughput of JFS under DAFS
with that under perfect forecasts and static selection of the
forecaster

achieve a performance that is close to or better than
that achieved by static selection of the forecasting
schemes based on exhaustive search. 2) DAFS has
a high performance and robustness, as shown in Sec-
tion 6.2. 3) DAFS has low computational require-
ments.

6.3. Training and Execution Time
In this section, in order to demonstrate the poten-

tial of the DAFS method for practical applications,
we present both the training and execution times of
DAFS. We measured the execution time of the DAFS
method on the Google Colab platform in the pres-
ence of a Tensor Processing Unit (TPU) accelerator.

0 100 200 300 400 500 600 700 800 900 1000
1

1.5

2

2.5

3

3.5

Figure 11: Mean of the training time of the DAFS method with
standard deviation bars in terms of the number of devices in the
coverage area.

Fig. 11 shows the mean of the training time of
DAFS and the standard deviation of that over the
training times, each of which is measured at each
fold of the cross-validation (contains about 2200
training samples). In this figure, we see that the

14

mean training time of DAFS is around 2 seconds
for almost all instances of the number of devices.
The training time of DAFS does not significantly
change with the number of devices since the number
of training samples and the input-output sizes of the
Network Performance Estimator are constant.

0 100 200 300 400 500 600 700 800 900 1000
0.005

0.01

0.015

0.02

Figure 12: Mean of the execution time of the DAFS method per
sample with standard deviation bars in terms of the number of
devices in the coverage area.

Fig. 12 shows the mean of the execution time
of DAFS and the standard deviation of that over the
execution times, each of which is measured at each
fold of the cross-validation. In this figure, we see that
the mean of the computation time of DAFS fluctuates
around 0.009 seconds and remains almost constant
as the number of devices increases. The reason is
that the length of each of N and η, which are the
input and the output of the Network Performance
Estimator in DAFS, respectively, does not depend
on the number of devices and rather depends on the
number of device classes and that of the available
forecasting schemes. These results show that DAFS
can easily be scaled up for any number of devices
while incurring an acceptable penalty in computation
time.

7. Conclusions

We have developed a novel method called Dy-
namic, Automatic Forecaster Selection (DAFS) for
predictive solutions for the Massive Access Problem
of IoT in the case where the number of IoT devices
in the coverage area of an IoT gateway can vary dy-
namically.

The key novel idea in the design of DAFS is that
the relationship between the current composition of

the number of IoT devices in each device class and
the resulting network performance can be emulated
by an Artificial Neural Network. In this work, we
showed that a Multi-Layer Perceptron architecture
can successfully learn this relationship. Once this re-
lationship is learned, the IoT gateway can choose on
the fly which forecaster to use based on the observed
numbers of IoT device classes that currently fall in
the coverage area in order to maximize throughput.
Our results have also shown that the DAFS method
is robust with respect to the selection of the archi-
tectural parameters, which implies that DAFS can be
used in real-time applications.

We have extensively evaluated the performance
of DAFS for two main cases: 1) Only one forecasting
scheme is selected for the entire bank of forecasters,
and 2) separate forecasting schemes are selected for
the device classes.

Our results have shown that the DAFS method is
able to achieve at least 80% of the best performance
on the average of 10-fold cross-validation results for
both throughput and energy consumption.

These results indicate that the DAFS method sig-
nificantly improves the performance of JFS over the
methods that utilize a fixed forecasting scheme [11,
12, 13, 14].

We also showed that both robustness and fast
calculation of DAFS make JFS practical to use in
real-time applications, in which both static and
mobile IoT devices are dynamically connected and
disconnected from the IoT gateway. In addition,
adapting to dynamic network conditions via the
DAFS method is a significant step towards network
performance provisioning for IoT.

References

[1] C. Kuhlins, B. Rathonyi, A. Zaidi, M. Hogan, White
paper: Cellular networks for massive IoT (Jan. 2020).
URL https://www.ericsson.com/en/reports-and

-papers/white-papers/cellular-networks-for-

massive-iot--enabling-low-power-wide-area-

applications

[2] F. Ghavimi, H.-H. Chen, M2M communications in 3GPP
LTE/LTE-A networks: Architectures, service require-
ments, challenges, and applications, IEEE Communica-
tions Surveys & Tutorials 17 (2) (2015) 525–549.

[3] H. Jin, W. T. Toor, B. C. Jung, J.-B. Seo, Recursive
pseudo-Bayesian access class barring for M2M communi-

15

cations in LTE systems, IEEE Transactions on Vehicular
Technology 66 (9) (2017) 8595–8599.

[4] L. Liang, L. Xu, B. Cao, Y. Jia, A cluster-based
congestion-mitigating access scheme for massive M2M
communications in Internet of Things, IEEE Internet of
Things Journal 5 (3) (2018) 2200–2211.

[5] L. Tello-Oquendo, I. Leyva-Mayorga, V. Pla,
J. Martinez-Bauset, J.-R. Vidal, V. Casares-Giner,
L. Guijarro, Performance analysis and optimal access
class barring parameter configuration in LTE-A networks
with massive M2M traffic, IEEE Transactions on
Vehicular Technology 67 (4) (2018) 3505–3520.

[6] L. Tello-Oquendo, D. Pacheco-Paramo, V. Pla,
J. Martinez-Bauset, Reinforcement learning-based
ACB in LTE-A networks for handling massive M2M
and H2H communications, in: 2018 IEEE International
Conference on Communications (ICC), IEEE, 2018, pp.
1–7.

[7] N. Jiang, Y. Deng, A. Nallanathan, J. Yuan, A decoupled
learning strategy for massive access optimization in cel-
lular IoT networks, IEEE Journal on Selected Areas in
Communications 39 (3) (2020) 668–685.

[8] A. O. Almagrabi, R. Ali, D. Alghazzawi, A. AlBarakati,
T. Khurshaid, A Poisson process-based random access
channel for 5G and beyond networks, Mathematics 9 (5)
(2021) 508.

[9] M. Nakip, B. C. Gül, V. Rodoplu, C. Güzeliş, Compara-
tive study of forecasting schemes for IoT device traffic in
machine-to-machine communication, in: Proceedings of
the 2019 4th International Conference on Cloud Comput-
ing and Internet of Things, 2019, pp. 102–109.

[10] M. Nakip, K. Karakayali, C. Güzeliş, V. Rodoplu, An
end-to-end trainable feature selection-forecasting
architecture targeted at the Internet of Things,
IEEE Access 9 (2021) 104011–104028.
doi:10.1109/ACCESS.2021.3092228.

[11] M. Nakip, V. Rodoplu, C. Güzeliş, D. T. Eliiyi, Joint
forecasting-scheduling for the internet of things, in: 2019
IEEE Global Conference on Internet of Things (GCIoT),
IEEE, 2019, pp. 1–7.

[12] V. Rodoplu, M. Nakıp, D. T. Eliiyi, C. Güzelis, A
multi-scale algorithm for joint forecasting-scheduling
to solve the massive access problem of IoT, IEEE
Internet of Things Journal 7 (9) (2020) 8572–8589.
doi:10.1109/JIOT.2020.2992391.

[13] V. Rodoplu, M. Nakip, R. Qorbanian, D. T. Eliiyi,
Multi-channel joint forecasting-scheduling for the inter-
net of things, IEEE Access 8 (2020) 217324–217354.

[14] M. Nakip, A. Helva, C. Güzeliş, V. Rodoplu,
Subspace-based emulation of the relationship between
forecasting error and network performance in joint
forecasting-scheduling for the Internet of Things, in:
IEEE World Forum on Internet of Things (WF-IoT),
2021, pp. 247–252.

[15] M. Nakip, E. Gelenbe, Randomization of data generation
times improves performance of predictive IoT networks,

in: IEEE World Forum on Internet of Things (WF-IoT),
2021, pp. 350–355.

[16] N. Flick, D. Garlisi, V. R. Syrotiuk, I. Tinnirello, Testbed
implementation of the meta-MAC protocol, in: 2016
IEEE Conference on Computer Communications Work-
shops (INFOCOM WKSHPS), 2016, pp. 580–585.

[17] J. Ansari, X. Zhang, A. Achtzehn, M. Petrova,
P. Mähönen, A flexible MAC development framework for
cognitive radio systems, in: 2011 IEEE Wireless Commu-
nications and Networking Conference, IEEE, 2011, pp.
156–161.

[18] W. Hu, X. Li, H. Yousefi’zadeh, LA-MAC: A load
adaptive MAC protocol for manets, in: GLOBECOM
2009-2009 IEEE Global Telecommunications Confer-
ence, IEEE, 2009, pp. 1–6.

[19] K.-C. Huang, X. Jing, D. Raychaudhuri, MAC protocol
adaptation in cognitive radio networks: An experimental
study, in: 2009 Proceedings of 18th International Confer-
ence on Computer Communications and Networks, IEEE,
2009, pp. 1–6.

[20] S. Hu, Y.-D. Yao, Z. Yang, MAC protocol identifica-
tion approach for implement smart cognitive radio, in:
2012 IEEE International Conference on Communications
(ICC), IEEE, 2012, pp. 5608–5612.

[21] W. Wang, C. Dong, H. Wang, A. Jiang, Design and
implementation of adaptive MAC framework for uav ad
hoc networks, in: 2016 12th International Conference
on Mobile Ad-Hoc and Sensor Networks (MSN), IEEE,
2016, pp. 195–201.

[22] M. Sha, R. Dor, G. Hackmann, C. Lu, T.-S. Kim, T. Park,
Self-adapting MAC layer for wireless sensor networks, in:
2013 IEEE 34th Real-Time Systems Symposium, IEEE,
2013, pp. 192–201.

[23] A. Farago, A. D. Myers, V. R. Syrotiuk, G. V. Zaruba,
A new approach to MAC protocol optimization, in:
Globecom’00-IEEE. Global Telecommunications Con-
ference. Conference Record (Cat. No. 00CH37137),
Vol. 3, IEEE, 2000, pp. 1742–1746.

[24] C. Doerr, M. Neufeld, J. Fifield, T. Weingart, D. C. Sicker,
D. Grunwald, Multimac-an adaptive MAC framework for
dynamic radio networking, in: First IEEE International
Symposium on New Frontiers in Dynamic Spectrum
Access Networks, 2005. DySPAN 2005., IEEE, 2005, pp.
548–555.

[25] J. Zhen, V. Rodoplu, Automated MAC protocol gen-
eration under dynamic traffic conditions, in: 2013
IEEE Global Communications Conference (GLOBE-
COM), IEEE, 2013, pp. 152–157.

[26] M. Qiao, H. Zhao, S. Wang, J. Wei, MAC proto-
col selection based on machine learning in cognitive
radio networks, in: 2016 19th International Sympo-
sium on Wireless Personal Multimedia Communications
(WPMC), 2016, pp. 453–458.

[27] S. Hu, Y. Yao, Z. Yang, MAC protocol identification using
support vector machines for cognitive radio networks,
IEEE Wireless Communications 21 (1) (2014) 52–60.

16

[28] S. Tomforde, J. Hähner, Organic network control: turning
standard protocols into evolving systems, in: Biologically
Inspired Networking and Sensing: Algorithms and Archi-
tectures, IGI Global, 2012, pp. 11–35.

[29] I. Tinnirello, D. Garlisi, F. Giuliano, V. R. Syrotiuk,
G. Bianchi, MAC learning: Enabling automatic combina-
tion of elementary protocol components, in: Proceedings
of the Tenth ACM International Workshop on Wireless
Network Testbeds, Experimental Evaluation, and Charac-
terization, 2016, pp. 89–90.

[30] M. Qiao, H. Zhao, S. Huang, L. Zhou, S. Wang, An intel-
ligent MAC protocol selection method based on machine
learning in wireless sensor networks., KSII Transactions
on Internet & Information Systems 12 (11) (2018).

[31] S. Hu, Y.-D. Yao, Z. Yang, MAC protocol identifica-
tion using support vector machines for cognitive radio
networks, IEEE Wireless Communications 21 (1) (2014)
52–60.

[32] X. Zhang, W. Shen, J. Xu, Z. Liu, G. Ding, A MAC proto-
col identification approach based on convolutional neural
network, in: 2020 International Conference on Wireless
Communications and Signal Processing (WCSP), IEEE,
2020, pp. 534–539.

[33] H. Li, S. Peng, Z. Chen, X. Qin, MAC protocol recogni-
tion based on LSTM network in cognitive radio, Journal
of Signal Processing 35 (5) (2019) 837–842.

[34] K. Andersson, Interworking techniques and architectures
for heterogeneous wireless networks, Journal of Internet
Services and Information Security (JISIS) 2 (1/2) (2012)
22–48.

[35] Y. Wu, X. Gao, S. Zhou, W. Yang, Y. Polyanskiy,
G. Caire, Massive access for future wireless communi-
cation systems, IEEE Wireless Communications 27 (4)
(2020) 148–156.

[36] X. Chen, D. W. K. Ng, W. Yu, E. G. Larsson,
N. Al-Dhahir, R. Schober, Massive access for 5g and
beyond, IEEE Journal on Selected Areas in Communica-
tions 39 (3) (2020) 615–637.

[37] N. Khambari, B. Ghita, L. Sun, Qoe-driven video
enhancements in wireless networks through predictive
packet drops, in: 2017 IEEE 13th International Confer-
ence on Wireless and Mobile Computing, Networking and
Communications (WiMob), IEEE, 2017, pp. 355–361.

[38] M. Li, X. Guan, C. Hua, C. Chen, L. Lyu, Predictive
pre-allocation for low-latency uplink access in industrial
wireless networks, in: IEEE INFOCOM 2018-IEEE Con-
ference on Computer Communications, IEEE, 2018, pp.
306–314.

[39] J. Wen, M. Sheng, J. Li, K. Huang, Assisting intelligent
wireless networks with traffic prediction: Exploring and
exploiting predictive causality in wireless traffic, IEEE
Communications Magazine 58 (6) (2020) 26–31.

[40] E. Gelenbe, M. Nakıp, D. Marek, T. Czachorski, Dif-
fusion analysis improves scalability of IoT networks to
mitigate the massive access problem, in: 2021 29th
International Symposium on Modeling, Analysis, and

Simulation of Computer and Telecommunication Systems
(MASCOTS), IEEE, 2021, pp. 1–8.

[41] E. Soltanmohammadi, K. Ghavami, M. Naraghi-Pour, A
survey of traffic issues in machine-to-machine communi-
cations over lte, IEEE Internet of Things Journal 3 (6)
(2016) 865–884.

[42] C. Hoymann, D. Astely, M. Stattin, G. Wikstrom, J.-F.
Cheng, A. Hoglund, M. Frenne, R. Blasco, J. Huschke,
F. Gunnarsson, Lte release 14 outlook, IEEE Communi-
cations Magazine 54 (6) (2016) 44–49.

[43] S. Ali, N. Rajatheva, W. Saad, Fast uplink grant for
machine type communications: Challenges and oppor-
tunities, IEEE Communications Magazine 57 (3) (2019)
97–103.

[44] M. Shehab, A. K. Hagelskjær, A. E. Kalør, P. Popovski,
H. Alves, Traffic prediction based fast uplink grant for
massive IoT, in: 2020 IEEE 31st Annual International
Symposium on Personal, Indoor and Mobile Radio Com-
munications, IEEE, 2020, pp. 1–6.

[45] E. Eldeeb, M. Shehab, H. Alves, A learning-based fast
uplink grant for massive IoT via support vector machines
and long short-term memory, IEEE Internet of Things
Journal (2021).

[46] A. R. Abdellah, O. A. K. Mahmood, A. Paramonov,
A. Koucheryavy, IoT traffic prediction using multi-step
ahead prediction with neural network, in: 2019 11th Inter-
national Congress on Ultra Modern Telecommunications
and Control Systems and Workshops (ICUMT), IEEE,
2019, pp. 1–4.

[47] C. Johnson, B. Khadka, E. Ruiz, J. Halladay, T. Doleck,
R. B. Basnet, Application of deep learning on the char-
acterization of tor traffic using time based features., J.
Internet Serv. Inf. Secur. 11 (1) (2021) 44–63.

[48] IoT Traffic Generation Pattern Dataset (Jan 2021).
URL https://www.kaggle.com/tubitak1001118e

277/iot-traffic-generation-patterns

[49] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, et al., Scikit-learn: Machine learn-
ing in Python, the Journal of machine Learning research
12 (2011) 2825–2830.

17

