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Abstract
A problem of finding stationary states of open quantum systems is addressed.
We focus our attention on a generic type of open system: a qubit coupled
to its environment. We apply the theory of block operator matrices and find
stationary states of two-level open quantum systems under certain conditions
applied on both the qubit and the surrounding.

PACS numbers: 03.65.Yz, 03.67.−a, 02.30.Tb, 03.65.−w, 03.65.Db

1. Introduction

In quantum mechanics, the density operator ρ of a quantum system is called a stationary state
if [H, ρ] = 0, where H is a given time-independent Hamiltonian of the system. Since ρ

satisfies the Liouville–von Neumann equation i∂tρ = [H, ρ], it is clear that stationary states
are invariant with respect to the transformation ρ �→ UtρU

†
t , where Ut = exp(−iHt) is

the time evolution operator. In other words, stationary states do not change during the time
evolution.

For low-dimensional closed systems, the stationary states can be obtained relatively easily
[1, 2]. It is a common situation that a small quantum system is immersed in another, mostly
large, system called the environment [3]. Such an open system does not evolve unitarily in
time. An analysis of open quantum systems [4, 5] is much more complicated as they are a
stage of a variety of physical phenomena [6–8]. The famous decoherence process [9] may
serve as an example. In open quantum systems the character of potentially existing stationary
states is not obvious.

There are various physical problems related to the properties of open quantum systems,
which has already been addressed and intensively discussed (see e.g. [10, 11]). The existence
and properties of stationary states have significant importance in quantum information
processing and quantum theory itself; nevertheless, the procedure of deriving such states
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has not been studied in a full detail and many open questions remain, e.g.

(i) do the stationary states exist for a given open system?
(ii) what features of a given model are responsible for the existence of such states?

(iii) how such states can be constructed?

The answers to the above questions are still incomplete. For example, it is known that the
stationary states exist for completely positive (CP) [12] evolution of the open system; this fact
follows directly from Schauder’s fixed point theorem [13]. However, this is only an existential
result and so far there are no available methods to determine explicit form of stationary states.
Furthermore, the very existence of the stationary states in general case is an open problem,
e.g., in the presence of initial system–environment correlations [14].

The primary goal of the presented work is to propose a method of calculating the stationary
states in the case of two-dimensional open quantum systems. The theory of block operator
matrices [15–17] is adapted to achieve this goal. In particular, we use the Riccati operator
equation [18] to solve the eigenproblem for the total Hamiltonian. It is shown how to derive
the stationary states by using the solution of the equation.

2. Block operator matrix approach

We begin with a brief review of the block operator matrices approach to the problem of
decoherence in the case of a single qubit [19–22]. Let H be the Hamiltonian of the total
system. We will assume that it has the following form:

H = HQ ⊗ IE + IQ ⊗ HE + Hint, (1)

where HQ and HE represent the Hamiltonian of the qubit and the environment, respectively,
while Hint specifies the interaction between the systems. The Hamiltonian H acts on the
Hilbert space Htot = C

2 ⊗ HE, where HE is the Hilbert space (possibly infinite-dimensional)
related to the environment. IQ and IE are the identity operators on C

2 and HE, respectively.
Since the isomorphism C

2 ⊗ HE � HE ⊕ HE holds true, the Hamiltonian (1) admits the
block operator matrix representation [17]

H =
[
H+ V

V † H−

]
on D(H) = (D(H+) ∩ D(V †)) ⊕ (D(V ) ∩ D(H−)). (2)

All the entries of (2) are operators acting on HE. Moreover, the diagonal entries, i.e., H±
are self-adjoint. In this paper, we will focus on the case in which V is bounded; thus, V † is
bounded as well; however, no assumption on the boundedness of H± is made. Under these
circumstances we have D(H) = D(H+) ⊕ D(H−), where domains D(H±) are assumed to be
dense in HE.

The generally accepted procedure to obtain the reduced time evolution of the open system,
the so-called reduced dynamics, reads [23]

ρt = TrE
[
Ut�(ρ0)U

†
t

] ≡ Tt (ρ0). (3)

Above, ρ0 specifies the state of the open system at t = 0. The map � assigns to each initial
state ρ0 a single state �(ρ0) of the total system. The assignment map must be chosen properly
so that Tt can be well defined [24–26]. For instance, if no correlations between the systems are
initially present, then �(ρ0) = ρ0 ⊗ ω for some initial state of the environment ω. It is worth
mentioning that if the initial state cannot be factorized, the definition of � is not accessible
[27]. The unitary operator Ut = exp(−iHt) describes the time evolution of the total system.
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The map TrE denotes the so-called partial trace

TrE

[
M11 M12

M21 M22

]
=

(
TrM11 TrM12

TrM21 TrM22

)
∈ M2(C), where Mij ∈ T (HE). (4)

Tr refers to the usual trace operation on HE, T (HE) denotes the Banach space of the trace
class operator with the trace norm ‖A‖1 = Tr(

√
AA†), whereas M2(C) is the Banach space

of 2 × 2 complex matrices. Note that the partial trace is a linear operation transforming the
block operator matrices (square brackets) to the ordinary matrices (round brackets).

3. Main results

Fixed point theorems like Banach or Schauder indicate the existence of stationary states for
a given evolution Tt. However, there is no general analytical procedure to obtain the explicit
form of such states. In this section we propose a method of deriving stationary states for
two-level open quantum systems. The generalization to the higher dimensions seems to be
possible. However, we will not deal with this issue in this paper. We begin with some
definitions.

Definition 1. The density matrix ρ is said to be a stationary state if it is invariant with respect
to reduced evolution, Tt (ρ) = ρ.

Definition 2. Let X be an operator acting on the Hilbert space HE. The subset �X of
HE ⊕ HE defined as

�X :=
{[ |ψ〉

X|ψ〉
]

: |ψ〉 ∈ D(X) ⊂ HE

}
(5)

is said to be the graph of X.

The graph of a linear and closed operator is a subset of the Hilbert space, which is a
Hilbert space itself equipped with the inner product

〈�1|�2〉 = 〈ψ1|ψ2〉 + 〈φ1|φ2〉, |�i〉 =
[|ψi〉
|φi〉

]
∈ �X (i = 1, 2). (6)

〈ψ |φ〉 is an inner product on HE. It is a known fact (see lemma 5.3 in [28]) that the graph
�X is H-invariant, that is, H (�X ∩ D(H)) ⊂ �X if and only if X is a bounded solution (with
Ran(X|D(H+)) ⊂ D(H−)) of the Riccati equation

XV X + XH+ − H−X − V † = 0 on D(H+). (7)

Along with the equation above we introduce the dual Riccati equation, namely

YV †Y + YH− − H+Y − V = 0 on D(H−). (8)

It is proved in [28] that Y = −X† is a solution (with Ran(X†|D(H−)) ⊂ D(H+)) of (8) if and
only if the orthogonal complement of �X, i.e. the subspace

�⊥
X =

{[−X†|ψ〉
|ψ〉

]
: |ψ〉 ∈ D(X†) ⊂ HE

}
, (9)

is H-invariant. It is straightforward to see that a bounded operator X solves (7) if and only
if Y = −X† is a solution of (8). Therefore, �X and �⊥

X are H-invariant if and only if X is a
bounded solution of (7). In other words, �X is the reducing subspace of H if and only if X
is a bounded solution of (7). From considerations above it also follows that �X and �⊥

X are
Ut -invariant.
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Definition 3. Elements from the graph and its orthogonal complement are denoted by |Xψ 〉
and |Xψ 〉, respectively. The Riccati states are defined as ρψ = TrE(
ψ) and ρψ = TrE(
ψ),
where 
ψ := |Xψ 〉〈Xψ | and 
ψ := |Xψ 〉〈Xψ |.

The vectors |Xψ 〉 and |Xψ 〉 are not normalized with respect to the norm induced by the
inner product (6). Moreover, the states 
ψ and 
ψ are not factorizable (i.e. correlations occur),
unless X|ψ〉 ∼ |ψ〉 and X†|ψ〉 ∼ |ψ〉, respectively. However, they are Ut (·)U†

t -invariant,
which is obvious because the vectors |Xψ 〉 and |Xψ 〉 are Ut -invariant. As a consequence, the
Riccati states ρψ and ρψ are Tt-invariant, where the map Tt has been defined in (3). Therefore,
the set of all the Riccati states is invariant under the time evolution. Nevertheless, the Riccati
states are not the stationary states, in general. However, we show that the latter can be found
among the Riccati states. To be specific, we will prove the following

Theorem 1. Let X be a bounded solution of the Riccati equation (7). Then,

(i) the Riccati state ρψ is a stationary state if the vector |ψ〉 is an eigenvector of the operator
Z+ ≡ H+ + V X : D(H+) → HE,

(ii) the Riccati state ρφ is a stationary state if the vector |φ〉 is an eigenvector of the operator
Z− ≡ H− − V †X† : D(H−) → HE.

Proof. Let Z+|ψ〉 = λ|ψ〉 for λ ∈ C and |ψ〉 ∈ D(H+). From (7) we obtain that
V † + H−X = XZ+; hence, in view of (2) the last equality leads to H|Xψ 〉 = λ|Xψ 〉. Thus,
the vector state |Xψ 〉 is the eigenvector of the total Hamiltonian with the corresponding
eigenvalue λ. Since H is self-adjoint we have λ ∈ R and in consequence Ut 
ψU†

t = 
ψ ,
where �(ρψ) = 
ψ , which ultimately leads to Tt (ρψ) = ρψ .

In a comparable manner, we have H|Xφ〉 = ξ |Xφ〉 for ξ ∈ R and |φ〉 ∈ D(H−) so that
Z−|φ〉 = ξ |φ〉. Just as before Ut�(ρφ)U†

t = 
φ ; therefore, Tt (ρ
φ) = ρφ . �

At this point, some remarks, regarding the theorem given above, should be made.

Remark 1. The question whether all stationary states are Riccati states or if it is possible
that stationary states exist that are not Riccati states is still open.

Remark 2. Since the space �X is closed, we have the following decomposition
Htot = �X ⊕ �⊥

X . Thus, the total Hamiltonian is similar to certain block diagonal operator
matrix, S−1HS = Hd, where

Hd =
[
Z+ 0
0 Z−

]
with D(Z±) = D(H±) and S =

[
IE −X†

X IE

]
. (10)

This implies that σ(H) = σ(Z+) ∪ σ(Z−). Therefore, the eigenvalues of Z± are exactly the
eigenvalues of the Hamiltonian H.

Proof. Let X be a bounded solution of (7); V is assumed to be bounded as well. From the
definition of Z± we have D(Z±) = D(H±), and thus D(H) = D(Hd). Since X solves the
Riccati equation (7), it is clear that HS = SHd. To prove H ∼ Hd we will show that S is
invertible and S−1 is bounded. Indeed, S = I + X, where

X =
[

0 −X†

X 0

]
. (11)

Since X† = −X, the spectrum of X is a subset of the imaginary axis. In particular,
−1 �∈ σ(X); thus, 0 �∈ σ(S) and, hence, S has a bounded inverse. �
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Remark 3. The stationary states ρψ , ρφ indicated in theorem 1 are given by

ρψ = A

(
1 〈X〉∗ψ

〈X〉ψ ‖Xψ‖2

)
and ρφ = B

(‖X†φ‖2 −〈X〉∗φ
−〈X〉φ 1

)
, (12)

where |ψ〉 ∈ D(H+) and |φ〉 ∈ D(H−) are normalized eigenvectors of Z− and Z+, respectively.
A = Tr(ρψ), B = Tr(ρφ) are normalization constants and 〈X〉ϕ = 〈ϕ|X|ϕ〉.
Proof. Since Tr|ψ〉〈φ| = 〈φ|ψ〉, equations (12) can be obtained directly from definition (3)
and formula (4). �

4. Examples

4.1. Spin-boson model

In this subsection, we will demonstrate an application of the presented method to a non-trivial
example, namely the paradigmatic spin-boson model [29, 30]. Assume that the Hamiltonian
of the qubit (spin-half) and its environment (boson) are in the following forms:

HQ = βσz + ασx and HE = ωa†a, (13)

respectively. For the sake of simplicity, we consider the case where there is only one boson in
the bath. The interaction between the systems reads

Hint = σz ⊗ (g∗a + ga†) ≡ σz ⊗ V. (14)

In the above description, σx and σz are the standard Pauli matrices and α, β ∈ R. The creation
a† and annihilation a operators obey the canonical commutation relation (CCR) [a, a†] = I

[1]. Parameters ω > 0 and g ∈ C represent the energy of the boson and the coupling constant
between the qubit and the boson, respectively.

If α = 0 (no energy exchange between the systems), the model can be solved, i.e. the
reduced dynamics can be obtained, exactly [31, 32]. The solution describes the physical
phenomena known as the pure decoherence or dephasing [33]. On the other hand, when α �= 0
the exact solution in not known. The objective is to estimate the stationary states for the latter
case.

To proceed, we must clarify some technical aspects (e.g. domains of H±). Clearly, the
operators a and a† cannot both be bounded since the trace of their commutator does not vanish
[34]. Therefore, the CCR holds only on some dense subspace D2 of HE. Let D1 be the dense
domain of both a and a†, on which they are mutually adjoint, that is, (a†)∗ = a and a∗ = a†.
At this point, it is not obvious that the sets D1, D2, having desire properties, exist. The detailed
construction can be found in [35] and the right choice is given by

Dk =
{

|ψ〉 ∈ HE :
∞∑

n=0

nk|〈ψ |φn〉|2 < ∞
}

, k = 1, 2. (15)

On D1 the creation and annihilation operators can be defined explicitly as (see also [36–38])

a|φ〉 =
∞∑

n=1

√
n〈φn|φ〉|φn−1〉, a†|φ〉 =

∞∑
n=0

√
n + 1〈φn|φ〉|φn+1〉, |φ〉 ∈ D1. (16)

{|φn〉}∞n=0 is an orthonormal basis in HE . From (16) it follows that a†|φn〉 = √
n + 1|φn+1〉

and a|φn〉 = √
n|φn−1〉, which in most books on quantum mechanics is a definition of the

creation and annihilation operators. However, the operators defined in such a way are not
closed; nevertheless, they are closable and their closures are given by (16).
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Since a is closed, HE is a positive self-adjoint operator and D2 ⊂ D1 is a core of a (see,
e.g., theorem 4.2.1 in [39]). Henceforward, we assume that the basis {|φn〉}∞n=0 is composed
with the eigenvectors of HE. In this case we have

HE|φ〉 =
∞∑

n=0

ωn〈φn|φ〉|φn〉, |φ〉 ∈ D2. (17)

By choosing a suitable coupling constant g, it is possible to make H± = HE ± V self-adjoint
on D± := D1 ∩ D2 = D2. To see this, let us first note that (g∗a + ga†)∗ ⊃ g∗a + ga†; thus,
V is Hermitian (symmetric). Since HE is self-adjoint and V Hermitian, it is sufficient to show
that V is relatively bounded with respect to HE (HE-bounded) and has HE-bound less than 1.
A fundamental result of perturbation theory, known as the Kato–Rellich theorem [34], assures
self-adjointness of H± in this case.

Recall that B is A-bounded if (i) D(A) ⊂ D(B) and (ii) ‖B|φ〉‖2 � a‖A|φ〉‖2 + b‖|φ〉‖2

for all |φ〉 ∈ D(A) and some nonnegative constants a, b. The infimum of all a for which
a corresponding b exists such that the last inequality holds is called the A-bound of B.
Note that sometimes it is convenient to replace the condition (ii) by the equivalent one:
‖B|φ〉‖ � a‖A|φ〉‖ + b‖|φ〉‖.

It is not difficult to see that if two operators B1 and B2 are bounded with respect to the
same operator A and their relative bound are less than b1 and b2, respectively, then a1B1 +a2B2

is also A-bounded and its relative bounded is less than |a1|b1 + |a2|b2 (see lemma 6.1 in [40]).
In other words, the set of all A-bounded operators form a linear space. Therefore, to see that V
is HE-bounded it is sufficient to prove that both a and a† are HE-bounded. To finish this, note

‖a|φ〉‖2 =
∞∑

n=1

n|〈φn−1|φ〉|2 =
∞∑

n=0

(n + 1)|〈φn|φ〉|2

�
∞∑

n=0

n2|〈φn|φ〉|2 +
∞∑

n=0

|〈φn|φ〉|2 = ω−1‖HE |φ〉‖2 + ‖|φ〉‖2. (18)

In comparable manner one can also verify that ‖a†|φ〉‖2 � ω−1‖HE |φ〉‖2. Since HE-bound
of both a and a† is less than 1, the HE-bound of V is also less than 1 for |g| < 1/2.

The block operator matrix representation of the spin-boson Hamiltonian reads

H =
[
H+ α

α H−

]
, where H± = HE ± V and D(H) = D2 ⊕ D2; (19)

the quantity α is understood as αIE. For the sake of simplicity we have set β = 0; the example
remains non-trivial because [HQ ⊗ IE, Hint] �= 0. The corresponding Riccati equation takes
the form

αX2 + XH+ − H−X − α = 0 on D2. (20)

In order to solve this equation we define an operator P as

P |ψ〉 =
∞∑

n=0

eiπn〈φn|ψ〉|φn〉, |ψ〉 ∈ HE. (21)

Directly from (21) we have P = P ∗ and P 2 = IE; thus, P is both self-adjoint and unitary.
Formally, P can be written as P = exp(iπ

ω
HE); however, unlike HE, P is everywhere defined.

The Hellinger–Toeplitz theorem guarantees that P is bounded, which can also be seen directly.
Indeed, from unitarity we obtain ‖Pψ‖ = ‖ψ‖, for |ψ〉 ∈ HE; hence, ‖P ‖ = 1. P is, in fact,

6
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the bosonic parity operator [41]. We will show that X = P solves (20). Since P 2 = IE it is
sufficient to show that

PH− − H+P = 0 or equivalently PH±P = H∓ on D2. (22)

In order to prove (22) let us first note that P |ψ〉 ∈ D2 for |ψ〉 ∈ D2, which means
Ran(P |D2) ⊂ D2. This follows from |eiπn| = 1. Furthermore, PHEP = HE and
PV P = −V . The first equality is obvious, while the second one follows from PaP = −a

and Pa†P = −a†. As a result we obtain (22).
The stationary states in this example can be written as

ρ± = 1

2

(
1 r±

r∗
± 1

)
, where r± = ±〈ψ±|P |ψ±〉, (23)

and |ψ±〉 are normalized eigenvectors of Z± = H± ± αP . Unfortunately, the solution of this
eigenproblem is not known for α �= 0. However, one can determine certain bounds on r±
using properties of P and ρ±. First, r± are real numbers because P is self-adjoint. From the
non-negativity of ρ± we obtain that r± ∈ [−1, 1].

Equation (23) provides an estimate of the stationary state of the qubit immersed in the
bosonic bath. This result has been obtained without any approximations. Of course, r± can
be computed approximately with the use of known methods. It is important to stress that to
obtain the exact reduced dynamics for the model in question one needs to resolve an eigenvalue
problem for Z±.

4.2. Commuting environment

In the second example we consider the Hamiltonian in the following form:

H = ασx ⊗ IE + IQ ⊗ H0 + σz ⊗ H1, α �= 0. (24)

Here we assume that the linear operators H0 and H1 are bounded and commute. Moreover,
we impose restriction to the spectra of H0 and H1, i.e. σ(H0), σ(H1) are discrete and non-
degenerated. The Hamiltonian (24) describes a qubit in contact with an environment and in
the presence of the magnetic field �B = Bêx , where B ∼ α. Examples of such systems occur
in the literature, e.g. [42–44]. The block operator matrix representation of (24) is given by
(19) with H± = H0 ± H1 and D(H) = HE ⊕ HE. The corresponding Riccati equation reads
(20).

Using the fact that H0 and H1 commute, so they have a common set of eigenvectors, we
write

H0|φn〉 = λn|φn〉 and H1|φn〉 = ξn|φn〉, (25)

where λn ∈ σ(H0), ξn ∈ σ(H1) and 〈φn|φm〉 = δnm for n,m ∈ N. The Riccati equation has a
positive and self-adjoint solution X = f (H1), where the function f is given by

f (x) =
√

x2 + α2 − x

α
for x ∈ σ(H1). (26)

Unlike the spin-boson model, in this case the eigenproblem for Z± can be readily solved.
Indeed, we have

Z±|φn〉 = [λn ± ξnf (ξn)] |φn〉. (27)

According to remark 3 we obtain

ρ+
n = Cn

(
1 f (ξn)

f (ξn)
∗ |f (ξn)|2

)
and ρ−

n = Cn

(|f (ξn)|2 −f (ξn)
∗

−f (ξn) 1

)
, (28)

where Cn = (1 + |f (ξn)|2)−1. In this case there are no initial correlations between the systems
because X|φn〉 ∼ |φn〉. We wish to emphasize that there may exist other solutions of the
Riccati equation. For an explicit example see [21].

7
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4.3. Sylvester equation

In the case V = 0, the Hamiltonian (2) is already in a block diagonal form. One can note that
the Riccati equation simplifies to the Sylvester equation:

XH+ − H−X = 0 on D(H+). (29)

There exists at least one solution, namely X = 0. The corresponding stationary states are
given by the projections P0 = diag(0, 1) = |0〉〈0| and P1 = diag(1, 0) = |1〉〈1|.

4.4. All unbounded entries

In the last example, we consider an interesting example in which all the entries of H are
unbounded, but still the solution of the Riccati equation exists as a bounded operator. To see
this, let us choose H± = H0 with the domain D(H0) and let us assume that V is self-adjoint
with the domain D(V ). Then, the Riccati equation

XV X + XH0 − H0X − V = 0 on D(H0) ∩ D(V ) (30)

has at least two bounded solutions, X± = ±I. The stationary states read

ρ± = 1

2

(
1 ±1

±1 1

)
. (31)

An example in which all the entries of a block operator matrix are bounded and the solution
of the Riccati equation is unbounded has been provided in [15].

5. Summary

In this paper we have proposed a method of calculating the stationary states for two-level
open quantum systems. We have used the theory of block operator matrices; in particular,
we have related the solution of the algebraic Riccati equation to stationary states. In the
presented method, the stationary states are generated from the stationary states of the total
system by tracing out the environment. Our investigation includes the case when the initial
system–environment correlations occur. In fact, this case is embedded in the method since the
eigenstates of the total Hamiltonian are entanglement.

Finally, we want to stress that the method cannot be used when the total Hamiltonian
is not known. Such a situation arises, e.g., when the details of the interaction between the
systems are not accessible. We hope that despite aforementioned weaknesses, the results of
the paper may serve as a starting point for further investigations.
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[39] Blank J, Exner P and Havliček M 2008 Hilbert Space Operators in Quantum Physics (Springer Science+Business

Media B.V)
[40] Teschl G 2009 Mathematical Method in Quantum Mechanics with Application to the Schrödinger Operator

(Providence, RI: American Mathematical Society)

9

http://dx.doi.org/10.1103/RevModPhys.59.1
http://dx.doi.org/10.1103/PhysRevA.77.042316
http://dx.doi.org/10.1007/s11128-010-0178-x
http://dx.doi.org/10.1103/PhysRevA.79.012104
http://dx.doi.org/10.1103/RevModPhys.75.715
http://dx.doi.org/10.1103/PhysRevA.77.062303
http://dx.doi.org/10.1103/PhysRevA.82.012341
http://dx.doi.org/10.1063/1.522979
http://dx.doi.org/10.1103/PhysRevLett.77.3272
http://www.ams.org/mathscinet-getitem?mr=1991541
http://www.mathjournals.org/jot/1998-039-002/1998-039-002-008.html
http://dx.doi.org/10.1006/jfan.2000.3680
http://dx.doi.org/10.1063/1.3442364
http://dx.doi.org/10.1063/1.3574889
http://dx.doi.org/10.1088/1751-8113/44/19/195301
http://dx.doi.org/10.1103/PhysRevLett.73.1060
http://dx.doi.org/10.1103/PhysRevLett.75.3020
http://dx.doi.org/10.1103/PhysRevLett.75.3021
http://dx.doi.org/10.1103/PhysRevA.64.062106
http://dx.doi.org/10.1103/PhysRevA.67.029902
http://dx.doi.org/10.4153/CJM-2003-020-7
http://dx.doi.org/10.1016/0375-9601(96)00475-6
http://dx.doi.org/10.1103/PhysRevB.54.R12645
http://dx.doi.org/10.1023/B:OPSY.0000024755.58888.ac
http://dx.doi.org/10.1016/0378-4371(90)90299-8
http://dx.doi.org/10.1016/j.physe.2009.06.080
http://dx.doi.org/10.1088/0305-4470/34/48/313
http://dx.doi.org/10.1016/S0034-4877(07)80075-9
http://dx.doi.org/10.1017/S0017089502010091


J. Phys. A: Math. Theor. 44 (2011) 215306 B Gardas and Z Puchała

[41] Bender C M, Meisinger P N and Wang Q 2003 All Hermitian Hamiltonians have parity J. Phys. A: Math.
Gen. 36 1029

[42] Gardas B 2010 Exact reduced dynamics for a qubit in a precessing magnetic field and in contact with a heat
bath Phys. Rev. A 82 042115

[43] Krovi H et al 2007 Non-Markovian dynamics of a qubit coupled to an Ising spin bath Phys. Rev. A 76 052117
[44] Arshed N, Toor A H and Lidar D A 2010 Channel capacities of an exactly solvable spin-star system Phys. Rev.

A 81 062353

10

http://dx.doi.org/10.1088/0305-4470/36/4/312
http://dx.doi.org/10.1103/PhysRevA.82.042115
http://dx.doi.org/10.1103/PhysRevA.76.052117
http://dx.doi.org/10.1103/PhysRevA.81.062353

	1. Introduction
	2. Block operator matrix approach
	3. Main results
	4. Examples
	4.1. Spin-boson model
	4.2. Commuting environment
	4.3. Sylvester equation
	4.4. All unbounded entries

	5. Summary

