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Abstract—Cloud computing has revolutionized the information
technology era. It offers high-speed computing, storage, and ICT
resources on demand. One of the significant challenges in cloud
computing is the impact of impatient users or request (task)
reneging. When a request has been compromised, missed its
execution deadline, or depends on other rejected ones, it must be
removed from the queue without being processed. The reneging
or removal of tasks from queues may trigger the reneging or
removal of other tasks that depend of them. We refer to this
reneging of requests from the load balancing or computing
queues as correlated reneging. We presented the performance
analysis of a network of queues that constitute a queueing model
of a simplified cloud computing infrastructure. We show the
relationship between the load, delay, and probability of buffer
saturation (blocking probability). It is seen that at about 80%
utilization, a small increase in utilization (due to a small increase
in the arrival rate A\ for a fixed service rate p) results in a
sharp increase in the delay experienced by the tasks, and on the
probability of task rejection or blocking.

Index Terms—Performance analysis, cloud computing, data
centre infrastructure, tasks scheduling, and tasks reneging or
dropping

I. INTRODUCTION

With the rapid advancement of cloud computing together
with other emerging technologies such as Software Defined
Networking (SDN), Network Function Virtualization (NFV),
Artificial Intelligence (AI), big data analytics, fog/edge com-
puting, and the Internet of Things (IoT), many organizations
have adopted cloud computing as an indispensable component
of their infrastructure and services. Therefore, the evaluation of
the performance of cloud computing systems is of significant
importance, and the cloud service providers (CSP) must have
deep insights into the relationship between the performance
metrics of the cloud computing system and the available
resources or design parameters in order to utilize or exploit
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their infrastructures fully while satisfying the performance
requirements of the users [1]. Therefore, Quality of Service
(QoS), security, and energy consumption are key constraints
in the design and provisioning of cloud computing services
and Infrastructure [2].

In the cloud computing paradigm, computing resources,
software applications, platforms, and infrastructure are offered
to users as a service. Instead of setting up or purchasing ICT
resources and infrastructure, the users access existing ones
offered by cloud service providers over the Internet. The users
pay for the resources or services based on the specified Service
Level Agreement (SLA) and the billing model of the service
provider. When users are no longer interested in the services,
they can terminate them. Therefore, cloud computing enables
businesses to quickly access reliable and quality ICT resources
and services on demand.

Cloud service providers often desire to size their systems
to determine the resources required to meet the service level
agreement (SLA) with their customers while minimizing re-
source and energy costs [3]. They are also interested to
understand the relationship between the design parameters and
the performance metrics. Queueing theory has been used as
an effective tool for the evaluation of the performance of
clouding computing infrastructure. Given the characteristics of
the interarrival times of tasks into the cloud computing buffers
and their service or processing times, queueing theory models
are used to estimate performance metrics of interest (delay or
blocking probability). In cloud computing, the task arrival rate
is dynamically challenging over time, and a feasible model that
captures the dynamic arrival of tasks is studied in [4].

Datacentre energy-related costs and environmental impacts
have become a subject of interest, and much research is
ongoing to find energy-aware resource management strate-



gies [5]. In order to save or reduce energy consumption, it
is desirable to drop requests that are likely to miss their
respective deadlines so that the precious resources can be
saved for requests that are likely to complete in time [6],
[7], and also to create space in the buffers to admit more
requests. The dropping of requests before they are serviced
is called the request or task reneging [8]. One of the major
challenges in cloud computing is the development of strategies
to deal with the negative effects of impatient users or request
reneging, such as poor throughput, wastage of resources, and
unpredictable workloads [9], unpredictable waiting time, and
energy wastage. The problem of tasks or request reneging in
cloud computing queues has been studied in [2], [6], [9]-
[13], but none of these studies considered the analysis of the
entire cloud infrastructure. Yu He et al. [14] investigated the
problem of maximizing the revenue of cloud service providers
in online task offloading in mobile cloud computing. Authors
in [15] investigated energy efficiency for data centers. They
accomplished improved savings than the legacy algorithm.

In IoT-based cloud computing data centers, Distributed
Denial-of-Service (DDoS) attacks constitute a severe threat
as a huge number of Internet of Things (IoT) devices can
be used to create an army of botnets to overwhelm the
cloud computing servers. This kind of cybersecurity attack is
more likely as IoT devices can easily be compromised (due
to weak security mechanisms designed to minimised energy
consumption) and used to lauch large-scale DoS attacks on
cloud or fog computing servers. One of the aims of these
attacks could be to saturate the buffers so that incoming
packets or tasks from legitimate sources will be dropped.
One mitigation approach is to use security monitoring tools
to detect and drop compromised requests or requests that are
likely to fail without being scheduled for execution. The load-
balancer can be used for attack detection by analyzing the
performance measures, and its effect is mitigated by isolating
the victim machine [16] or moving sensitive tasks and VMs
to more secure machines.

When the size of the queue of requests grows beyond a
certain threshold, queue management mechanisms may be
employed to randomly drop low-priority requests (reneging)
depending on the Service Level Agreement (SLA) between
the Cloud Service Provider (CSP) and users in order to avoid
buffer saturation which will result in consecutive dropping of
tasks or Denial of Service (DoS). Thus, when a request has
been compromised, missed its execution deadline, or depends
on other rejected ones, it must be removed from the queue
without being processed. The reneging or removal of tasks
from queues may trigger the reneging or removal of other tasks
that depend of them. We refer to this reneging of requests from
the load balancing or computing queues as correlated reneging.

In this paper, We presented the performance analysis of
a network of queues that constitute a queueing model of
a simplified cloud computing infrastructure. We show the
relationship between the load, delay, and probability of buffer
saturation (blocking probability). It is seen that at about 80%
utilization, a small increase in utilization (due to a small

increase in the arrival rate A\ for a fixed service rate ) results
in a sharp increase in the delay experienced by the tasks, and
on the probability of task rejection or blocking. We present a
simplified architectural model of a cloud computing data cen-
tre infrastructure in section II. We present a queueing-theoretic
analysis of a cloud computing infrastructure: accounting for
task reneging or dropping in section III. Section IV contains a
discussion of the performance metrics that determine the QoS
of Cloud computing services, section V contains modelling of
queues of cloud servers, and conclusion in section VI.

II. THE ARCHITECTURE OF A CLOUD COMPUTING
NETWORK INFRASTRUCTURE

A simple cloud computing infrastructure consists of a load
balancer, cloud computing physical machines, each of which
contains virtual machines running in parallel, and storage
computer systems, as shown in Figure 1. In private cloud
computing infrastructure, the data centre is usually located
closer to the users or task sources, while in the case of public
cloud infrastructure (like those owned by the prominent cloud
service providers, e.g. Amazon, Google, IBM), the data centre
is usually located a significant distance away from the users
or task sources. The tasks or requests or tasks submitted by
the users (both human users or cyber-physical systems such as
the IoT devices) at the various access networks (e.g., [oT and
wireless sensor networks, the cellular networks (3G/4G/5G),
the Internet Service Provider (ISP) access networks, enterprise
access networks) are usually transported through the internet
core network to the data centres.

The tasks created consists of packets of very small sizes.
To ensure bandwidth efficiency, efficient use of network re-
sources, and slight reduction in energy consumption due to
traffic overhead, the small electronic packets from the access
networks are aggregated to larger packets at the ingress edge
node, the larger packets are converted into optical packets and
then transmitted through the internet core network to the data
centre. At egress edge node of the internet core network the
optical packets are dissagregated and then delivered to the data
centre network [17].

The packets that constitute the cloud computing are sent
to the load balancing server. The tasks may wait at the load
balancer if there are queues of tasks at the load balancer as
the traffic at the load balancer is random. The load balabcer
then schdedule the requests to one of the processing servers.
The results from the cloud computations can be sent to the
storage devices or sent back to the users.

A Cloud computing queuing model consists of sources of
requests, queues of requests waiting to be served and servers
that perform the processing of requests as shown in Figure
1. The input sources consist of cloud computing clients that
generate requests or tasks. A cloud computing data centre
can be abstracted into a number of queueing systems which
consist of buffers and servers (scheduling server or processing
servers). Tasks that arrive when the servers are busy are stored
in the buffers and then processed later on or may be dropped
or renege. The task or task can either be rejected, wait in the
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Fig. 2. Request processing state diagram

queue, renege or scheduled for execution (running) as shown
in the request processing state diagram in Figure 2.

III. QUEUEING-THEORETIC ANALYSIS OF A CLOUD
COMPUTING INFRASTRUCTURE: ACCOUNTING FOR TASK
RENEGING OR DROPPING

It is assumed that the tasks arrive into the load balancer
queue according to a Poisson process with the mean rate A
and that the scheduling times (time required to remove a task
from the load balancer queue and schedule it to the appropriate
physical machine) are exponentially distributed with the mean
rate f15 (A < g for a stable scheduling queue). When the load
balancer buffers are full (that is, the number of tasks in the
queue is equal to the buffer size, N), tasks that arrive after
that epoch will be rejected. The effective mean arrival rate of
tasks into the buffer of the load balancer is

Aet = A(1 — Puy) (D

Where P is the probability of task rejection. Any of the tasks
admitted into the buffer of the load balancer can be dropped
from the queue at any random time, for security reasons, as an

active queue management mechanism, or because its execution
deadline has expired, when it is still waiting in the buffer.
Suppose that the average reneging rate at the load balancer
is A.;, then the mean departure rate of tasks from the load
balancer is

As =A- Ael - )\Tl 2

The load balancer assigns every task to the appropriate physi-
cal machine in such a way that some physical machines should
not be overloaded while others are idle (load balancing).
Task scheduling should also guarantee the QoS (minimise the
delay of tasks in buffers and probability of task rejection or
dropping). Suppose that the probability that a given task is
scheduled to the i processing machine is r;, then, the mean
rate at which tasks are scheduled to the i*" processing machine
is 7;As. The probabilistic task scheduling schemes considered
have been discussed in [18]. If the tasks are distributed with
equal probabilities among the various M processing machines,
then, the scheduling probability, 7; is 1/M. The authors in
[18] proposed a “sensible decision” algorithm which uses a
weighted goal function, which consists of the QoS parameters
such as the response time or the probability of task losses
(due to task rejection or due to buffer overflow or task
dropping) at each processing machine. The QoS parameters
are continuously measured, and each time the QoS parameter
of interest changes, the goal function is updated. Suppose that
for an it" processing machine, the recently measured value of
the goal function is G, then, the old value of the goal function
G; is updated as follows:

Gi < (1 =7)G; +1G 3)

where the parameter 0 < v < 1 is used to adjust the weight
given to the most recent measurement of the goal function as
compared to its previous value. Therefore, the probability of
scheduling a task to the i" processing machine is
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Fig. 3. The cloud computing queuing model

In this scheduling approach, the scheduler may tend to favour
those processing machines that provide a better QoS, and could
eventually overload them [19]. To avoid this kind of scenario,
a multi-variable goal function that takes into consideration
number of tasks in the queue, the response time and probability
of task losses due to task rejection and task dropping, is

Gi = aLy + SR; + 0p;,

a+f+0=1 5)

where L,, R; and p; are the mean queue size, the mean
response time, and the probability of task losses at the it
processing machine respectively. The parameters «, S and 6
are the relative importants of Ly;, [?; and p; respectively.

The authors in [18] demonstrated the use of an intelligent
scheduling approach, that is based on the random neural
network (RNN) with reinforcement learning (RL) concept.
For a given task, a RNN is used to determine to which
processing machine the task should be assigned in order to
ensure a better quality of service while balancing the load
among the M processing machines. In this approach, each
neuron is assigned to a unique processing machine and all
the neurons are fully connected (there are m neurons). The
“excitation probability”, ¢; (t = 1,2,--- , M) for each neuron
is calculated as discussed in [18], [19]. At each scheduling
moment, the scheduler assigns the task to the processing
machine whose neuron has the highest value of the “excitation
probability” (g;). The QoS and the load of the processing
machines are continuously being measured, and the goal func-
tion is updated. The decision threshold is determined, weights
of the neurons are updated, and the “excitation probabilities”
for the neurons are recalculated using the new weights. The
authors in [18] showed that this scheduling could be reduced
to a sensible algorithm (a probabilistic scheduling scheme),
where the scheduling probability is

qi
=i (6)
Z;\il 4qj

The component flows resulting from stochastically splitting
Poisson flows still retain the properties of Poisson flows (are
still Poisson flows). Therefore, it is assumed that the tasks

Ty =

arrive into the ' processing machine according to a Poisson
process with mean rate )\;, and is given by
M-1
Ai:Ti)\s'f'Z)\jrji; i:1,2,"',N

Jj=1

)

where r;; is the probability of moving tasks from the gth
processing server to the i*" processing server with a mean
rate of \;, provided task migration is supported. If the buffer
of the i*" processing machine is full, incoming tasks will not
be admitted, and the effective arrival rate of tasks is

Xei = Ai(1— Pny) ®)

where, Py, is the probability of task rejection at the it"

processing machine.

Each physical machine consists of a set of independent
virtual machines (VMs), {V M,V My, VM3, --- , VM.},
that are running in parallel. It is often assumed that the
processing times are exponentially distributed, each with mean
rate u; [9], [13]. However, both the Poisson arrival time
and exponentially distributed processing times assumptions
are simplifications of the reality [18], but are acceptable for
the modelling of cloud computing and web servers [20]. If
the average dropping rate of tasks from the queue at the i*"
processing machine is A,p;, then, the actual mean rate of task
at the #*" processing machine is

)\pi =X — Aei — )\rpi &)

When the tasks are processed a feedback response may be sent
to the user, the results are stored into a database or none of
these. The feedback is sent to the user through the transmission
server or system. When tasks are removed from the buffers
with being processed it degrades the quality of service and
could even results in financial loses depending on the SLA
between the service priver and users. suppose that the mean
arrival rate of tasks to the transmission server is )\;, with a
mean reneging or dropping rate of A, the effective arrival
rate is

)\f:)\t_)\t(]-_PNt)_Art (10)

where Pp; is the probability of dropping tasks when a
transmission queueing is full.



IV. PERFORMANCE METRICS THAT DETERMINES THE QOS
OF A CLOUD COMPUTING SERVICES

The QoS experienced by cloud computing users is largely
influenced by performance parameters such as delays experi-
enced by tasks when they wait in queues, the loss probability
due to task dropping reneging, and jitter experienced by tasks
that belong to multimedia services such as audio or video
streaming.

The probability that a task is lost due to reneging or task
dropping can be determined tasking into consideration the
probability of losing a task at the queue in the load balancer,
any of the processing queues, or transmission server queue.

AN (A =S N\ (A= Ay
e (5 (5 (45)

The total mean delay experienced by a task that is created
by a user and it is transported through the access network,
core network, load balancer to one of the cloud processing
servers where it is processed and no response is required to
be send back to the user after processing is

M

Rri = Rou + Rey + Ry + Z TiRpi
i=1

12)

Where R,u and R.u are the uplink response time at the access
and core networks respectively. They consist of the delays due
to packet queueing in the buffers in network equipments and
the time required to process and transmit the packets. For high
speed optical core networks, the response time R, is relatively
small. R; is the response time due to queueing and scheduling
of tasks at the load balancer and R,; is the response time
due to queueing and processing of tasks at the i processing
machine. The response experienced by a user that submits a
request or tasks and then expect to receive the results consist
of the sum of the up link and down link delays as

M
Rryi = Rau+ Rew+ Ri+ Y riRpi+ Ry + Reg + Raa (13)
i=1
Where R,q and R4 are the down link response time at the
access and core networks respectively. R; is the response time
at the trasmission server. The variation of delay causes jitter
which degrade the quality of service of multimedia traffic.

V. MODELLING OF THE CLOUD SERVER QUEUES WITH THE
POSSIBILITY OF TASK RENEGING OR DROPPING

An important approach in improving the performance and
reducing energy consumption in cloud computing is the use of
load balancing techniques. Load balancing in cloud computing
is a mechanism that detects the overloaded servers and those
that are under utilized and then striving to balance the load
among them [21]. The authors in [22], introduced an energy
aware load balancing approach in which an energy-optimal
operation regime is defined and they tried to optimize the
number of servers operating within this regime. The authors
in [23], used M/M/1/K and M/M/m/K queuing models to

estimate the QoS parameters and energy consumption of a
cloud data center that is composed of a load balancer and a
set of physical machines.

The the steady-state and transient-state analysis of the
load balancer with correlated reneging was presented in [12].
Correlated reneging implies that when a task renege or is
dropped from the queue, other tasks that depend on it are also
dropped. The steady-state and transient-state queueing models
with simple reneging were studied in [13], and were later
extended to consider correlated reneging of tasks in [2]. The
focus of this paper is to present a queueing network analysis
of a cloud computing infrastructure.

The results presented in this paper are based on the solu-
tion of the queueing models presented in [12] and [2]. The
Chapman-Kolmogorov equations for continuous-time Markov
chains in [12], and [2] are solved using the Runge-Kutta
method to obtain the state probabilities. From the state prob-
abilities of the number of customers present in the queue,
the mean queue size and the mean delay are determined and
plotted against the load or utilisation % The probability of
rejection or blocking is the state probability Py ,(f), where
N is the buffer size (r = 1 reneging occurred in the previous
at previous transition mark; otherwise r = 0). Py ,(t) is
obtained from the solution of Chapman-Kolmogorov equations
for continuous-time Markov chains in [12] and [2].

We use the queueing models discused in [12] to study the
relationship between the load and the performance metrics at
the load balancer as shown in Figs. 4 and 5. The values of
parameters used are: Pgo(0) = 1, ¢ = 1100,£ = 0.5, pgo =
0.8, po1 = 0.2,p10 = 0.7, p11 = 0.3,t = 3, and N = 100. For
a fixed p = 1100 task per second, the variation of the delay
and probability of dropping tasking because the buffers are
full increases with the load or utilization, o = % At o = 80%
utilization, a small increase in utilization by a small increase in
the arrival rate AX will results in a large increase in the delay
and and probability of tasks rejection or blocking. At 80%
utilization, arriving tasks could be redirected to an alternative
or backup load balancer to reduce delays and task rejection or
blocking.

We use the queueing models discused in [2] to study the
relationship between the load and the performance metrics at
the cloud computing processing queue as shown in Figs. 6 and
7. The values of parameters used are: u = 60,c = 10,& =
0.3,])00 = 0.8,])01 = 0.2,[)10 = 0.77p11 = 0.3,P1)0(0) =
1, =3, and K = 50.. The relationship between the load at a
process queue is not linear like the case in the load balancer
discussed above.

VI. CONCLUSION

As a result of the stochastic nature of the arrival times of
tasks into cloud computing servers and the processing time
for each task, some tasks have to wait in buffers. Tasks could
be removed or dropped from the buffer due to the user’s im-
patience, missing execution deadline (for deadline constraint
tasks), security reasons, or an active queue management strat-
egy. We have presented the performance analysis of a network
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of queues that constitute a queueing model of a simplified
cloud computing infrastructure. We have demonstrated the
relationship between the load, delay, and probability of buffer
saturation (blocking probability). It is seen that at about 80%
utilization, a small increase in utilization (due to a small
increase in the arrival rate A\ for a fixed service rate ) results
in a sharp increase in the delay experienced by the tasks, and
on the probability of task rejection or blocking. We intend
to use queueing models with general arrival and service time
distributions, such as the diffusion approximation queueing
model models presented in [24], [25]. Diffusion approximation
enable the use of any distribution of in the interarrival time
and service times (including the use of real or measured
distributions). That is, it remove the Poison assumption that we
have considered in this paper because they differ from reality.
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