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Abstract—The Quality of Service (QoS) experienced by the
packets that constitute a cloud computing task does not only
depend on the performance of the cloud computing network
infrastructure at the data centre but also on the performance
of the access networks and the internet core networks traversed
by the packets before the task is fully submitted to the cloud
computing or processing servers for execution or processing.
Sometimes, some of the tasks that are submitted and are waiting
in queues to be processed could be removed from the queues
without being processed (task reneging or dropping). Removing
tasks from the queue could result from the user’s impatience,
missing execution deadline, security reasons, or an active queue
management strategy. The reneged or dropped tasks could be
resubmitted depending on the reason for which it was dropped.
The resubmission of tasks decreases QoS and increases the energy
consumption overhead as more energy is required to transport
the resubmitted tasks through the access, core, and data centre
networks. In this paper, we propose a multiserver queueing
model with correlated reneging and resubmission to analyse the
performance of a cloud computing server.

Index Terms—Transient-state, steady-state, performance eval-
uations, cloud computing model, correlated reneging of tasks and
resubmission

I. INTRODUCTION

Cloud computing is an emerging paradigm which enables
cloud service providers to offer computing services such
as software, platforms, infrastructure, and other computing
services to cloud computing users based on demand [1], [2].
It has significantly reduced the cost of setting-up and scaling-
up information technology (IT) infrastructure and services. It
has also emerged as the backbone of the modern economy,
and have eliminated the need to develop and deploy the
infrastructure and services from scratch. The time to set-up
the IT infrastructure and services by enterprises, especially
start-ups, have been significantly reduced. Therefore, it enables

cloud users to access various IT resources based on demand,
and with low management overhead [3]. It also reduces
security, storage, and the management cost incurred by the
end-users, and provide development environment and tools for
the application developers.

The cloud computing physical machine has been repre-
sented using queuing models in [1], [2], [4]–[8]. The authors
in [4]–[6] used the M/M/c queuing model where the first M
indicates that the inter-arrival times follow a Poisson arrival
process while the second M indicates that the service times
are exponentially distributed respectively, c is the number of
virtual machines (VMs) assumed to be running in parallel,
and the buffer size or the maximum queue size is infinite.
However, the buffer size is not infinite as memory is a limited
resource in computing systems. If there is no available space
to store arriving tasks, the tasks that arrive when the buffer is
full will be dropped, and this scenario should be considered
when designing and planning cloud computing systems. The
authors in [1], [2], [7], [8] used an M/M/c/K queuing model,
where K = N + c and N is the buffer size. They derived the
probability of task rejection or tail dropping when the buffer
is full and incoming tasks are rejected continuously.

Not all the tasks stored in buffers in cloud computing
servers are processed. After submitting a task, it could be
possible for a user to cancel the task or renege for vari-
ous reasons. A task could be dropped because its execution
deadline has been exceeded, due to security reasons or as
an active queue management strategy. The authors in [1],
[2] proposed steady-state multiserver queueing models for
the performance analysis of cloud computing servers with
task reneging or dropping of tasks from the queues. The
authors in [8] proposed queueing theory-based performance
evaluation model for cloud computing servers with reneging
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and resubmission of reneged tasks.
The resubmission of tasks that have been dropped implies

that the network must again allocate resources to transport
the packets that constitute the dropped tasks from the users’
devices through the access, core, and data centre networks and
store the tasks again in the buffers in the cloud computing
queues. Handling resubmitted tasks increases the traffic load
and resource usage, decreasing the QoS and increasing the
energy consumption in the access, core, and data centre
networks. Hence, extra energy is required to receive, store,
process, and transmit packets in network nodes. Increased
energy consumption due to the handling of resubmitted tasks
(in large scale data centres) increases the carbon emission (if
energy is generated from fossil fuels) and also increase the
operations cost for the cloud service provider.

The model proposed in the paper differ from the one
proposed in [8] in that instead of considering that the reneging
times are exponential distributed, we assume that reneging
times are correlated. Correlated reneging could be useful to
model a scenario where the reneging or dropping of a task
from the queue, could trigger the reneging or dropping of tasks
that depend on it. In this paper, we propose a multi-server
Markovian queuing model with correlated reneging of tasks
from queues in cloud computing servers and resubmission
(or feedback) and use it to study the influence of correlated
reneging, arriving traffic of tasks, and resubmission probability
on the performance parameters such as mean delay and the
blocking probability in the transient state. We also present the
steady-state performance analysis.

The rest of the paper is organised as follows: Section II
contains a description of the cloud computing model with
its corresponding queueing model with tasks reneging or
dropping, section III contains the proposed queueing model,
section IV contains some numerical examples for performance
evaluations, and section V contains the conclusion and future
works.

II. QUEUING MODEL DESCRIPTION

The tasks submitted by the users are transported over the
internet to the cloud data centres, as shown in Figure 1. When
tasks travel from the user devices, through the access networks
and the internet core networks to the cloud computing servers
where they are executed, they are delayed in queues formed
within the various network devices. However, most of the
performance evaluation studies of cloud computing services
give the impression that the tasks are submitted directly to the
cloud computing servers without any delay cost incurred as
the task travels from the user device to the cloud servers. The
delay budget can be given as

D = Dlink +Daccess +Dcore +Dcloud (1)

Where, Dlink is the delay experienced by packets that con-
stitute the tasks as they are propagated through the transmis-
sion medium (either wireless in the case of wireless access
networks or wired in the case of some access and core
networks). Also, Daccess, Dcore, and Dcloud are the mean
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Fig. 1. Cloud computing model

delays experienced by the packets that constitute the task due
to queueing and transmission in network devices at the access,
core, and data centre networks respectively.

Queueing theory has been extensively applied to evaluate
the performance of access and core networks (steady-state and
transient state analysis of the delay and packet losses) [9],
[10]. At the edge router, which acts as an interface between
the access and the core network, smaller packets from the
access networks (e.g., DSLs, Ethernet LANs, wireless LANs,
IoT and 3G/4G/5G mobile networks) are aggregated into
larger packets. The packets are converted into optical packets,
transported through the optical core networks purely in the
optical domain, and disaggregated at their destination. Packet
aggregation increases bandwidth efficiency, ensure efficient
use of network resources, and reduces energy consumption
at the access, core, and data centre networks as demonstrated
in [11]. Still, it introduces additional delays, which may be
unacceptable for real-time applications (especially IoT real-
time applications). It should be noted that with rapid advances
in broadband networks and high-speed optical internet core
networks, the delays experienced by the tasks as they travel
from the access networks to the cloud servers have been signif-
icantly reduced. However, due to the variable times required to
execute or process tasks in cloud computing servers, queues
are inevitable, and the queueing delays may sometimes be
significant.

When tasks arrive at the cloud computing data centre, they
are scheduled to the respective physical machines by the load
balancer. At the physical machine, the tasks are assigned to the
respective VMs for execution. Each physical machine contains
several VMs that processes or executes the tasks submitted by
the users and return the results, which could be sent back to the
users through the transmission servers. A simplified queuing
model representation of a cloud computing data centre with
task reneging or dropping is shown in Figure 2.

It is assumed that the interarrival times of tasks at the
task queue follows a Poisson process with parameter λ and
that the service times are exponentially distributed with
parameters µ. The mean processing rate of tasks is:

µn = { nµ, 0 ≤ n < c
cµ c ≤ n ≤ N .

The maximum number of tasks at each queue is K = N + c,



Fig. 2. Queuing model of a cloud computing data centre

where c is the number of VMs running in parallel and N
is the size of the buffer in which the tasks are stored. Any
task that is waiting in the queue can be dropped from the
queue without being processed. When a task is dropped,
other tasks that depends on it are likely to be dropped. A
task that is dropped from the queue can be resubmitted with
a probability, p1, otherwise, it is not resubmitted with a
probability of q1 = 1 − p1. Therefore, the reneging of the
tasks can take place only at the transition marks t0, t1, t2, ...
where θr = tr− tr−1, r = 1, 2, 3..., are random variables with
P [θr ≤ x] = 1− exp(−ξx); ξ ≥ 0, r = 1, 2, 3, ... That is, the
distribution of inter-transition marks is negative exponential
with parameter ξ. The reneging at two consecutive transition
marks is governed by the following transition probability
matrix:

to tr
0 1

0 p00 p01
from tr−1

1 p10 p11
where p00 + p01 = 1 and p10 + p11 = 1.

0 refers to no reneging and 1 refers to the occurrence
of reneging. Thus, the reneging at two consecutive transition
marks is correlated.

III. QUEUING MODELLING

Fig. 3. The state transition diagram of the queueing model

Let X(t), t ≥ 0 be a random process that represent the num-
ber of tasks in the queue at time t and P{X(t) = n} = Pn,r(t)
be the probability that there are n tasks in the queue at time t,
where r = 1 indicates that reneging has occurred at a previous
transition mark otherwise, no reneging has occurred. Let us
consider that the probability that at time t, there is no task
in the buffer (n=0) and that all the VMs are idle is Q0,r(t),
and also consider that the probability that at time t, there is
no task in the buffer and k (1 ≤ k ≤ c) servers are active is
Rk0,r(t). Also, suppose that the probability that at time t, the
buffer is full (n=N) is PN,r(t).
The difference-differential equations for the time-dependent
state probabilities of the number of tasks in the queue obtained
using the state transition diagram in Figure 3 are:

d

dt
Q0,0(t) = −λQ0,0(t) + µq1R

1
0,0(t) (2)

d

dt
R1

0,0(t) = −(λ+ µq1)R
1
0,0(t) + 2µq1R

2
0,0 + λQ0,0(t)

(3)
d

dt
Rk0,0(t) = −(λ+ kµq1)R

k
0,0(t) + (k + 1)µq1R

k+1
0,0

+λRk−10,0 (t), 1 < k < c (4)
d

dt
Rc0,0(t) = −(λ+ cµq1)R

c
0,0(t) + cµq1P1,0 + (5)

λRc−10,0 (t)

d

dt
P1,0(t) = −(λ+ cµq1 + ξ)P1,0(t) + cµq1P2,0(t)

+λRc0,0(t) + ξ[p00P1,0(t) + p10P1,1(t)] (6)
d

dt
Pn,0(t) = −(λ+ cµq1 + nξ)Pn,0(t) + cµq1Pn+1,0(t)

+λPn−1,0(t) + nξ[p00Pn,0(t) + p10Pn,1(t)],

1 < n < N (7)
d

dt
PN,0(t) = −(cµq1 +Nξ)PN,0(t) + λPN−1,0(t)

+Nξ[p00PN,0(t) + p10PN,1(t)] (8)
d

dt
Q0,1(t) = −λQ0,1(t) + µq1R

1
0,1(t) (9)

d

dt
R1

0,1(t) = −(λ+ µq1)R
1
0,1(t) + 2µq1R

2
0,1 + λQ0,1(t)

(10)
d

dt
Rk0,1(t) = −(λ+ kµq1)R

k
0,1(t) + (k + 1)µq1R

k+1
0,1

+λRk−10,1 (t), 1 < k < c (11)
d

dt
Rc0,1(t) = −(λ+ cµq1)R

c
0,1(t) + cµq1P1,1 + λRc−10,1 (t)

+ξ[p11P1,1(t) + p01P1,0(t)] (12)
d

dt
P1,1(t) = −(λ+ cµq1 + ξ)P1,1(t) + cµq1P2,1(t)

+λRc0,1(t) + 2ξ[p01P2,0(t) + p11P2,1(t)](13)
d

dt
Pn,1(t) = −(λ+ cµq1 + nξ)Pn,1(t) + cµq1Pn+1,1(t)

+λPn−1,1(t) + (n+ 1)ξ[p01Pn+1,0(t)

+p11Pn+1,1(t)], 1 < n < N (14)



d

dt
PN,1(t) = −(cµq1 +Nξ)PN,1(t) + λPN−1,1(t)(15)

In steady-state, the time-dependent variables of the queueing
model in equations 2-15 becomes independent of time, that is:
lim
t→∞

Q0,r(t) = Q0,r, r= 0,1, lim
t→∞

Rk0,r(t) = Rk0,r, k=1,2,..c,
r= 0,1 and lim

t→∞
Pn,r(t) = Pn,r, n=0,1,2,...N and r= 0,1.

Therefore, in steady-state, the differential equations above
becomes simple linear equations (see equations 20-31 in the
appendix-1). Detailed steady-state analysis of the presented
model can be found in the appendix-1, but it will be easier
to use standard solvers for systems of linear equations but for
systems with fewer states, the presented methods can be used.

After obtaining the steady-state probabilities using the pre-
sented steady-state analysis, we can derive some steady-state
performance evaluations parameters such as the mean number
of tasks in the queue, the average rate at which tasks are
being removed from the queue (reneging rate), the task loss
probability resulting from task rejection (tail dropping of tasks
from the queue), and the mean waiting time of tasks in the
queue. The mean number of tasks in the queue is

Lq =

N∑
n=1

nPn,0 +

N∑
n=1

nPn,1 (16)

Suppose that the tasks arrive in the queue when the buffer
in which tasks are stored is full and will be rejected with a
probility PN,r (the probabilty for the state n = N , which
can be obtained from the steady-state analysis), and that the
instantaneous rejection rate of tasks from the queue is λr =
λ(Pn,0 + Pn,1). Also, suppose that any of the n tasks in the
queue could be removed or could renege, then the average
reneging rate is

R =

N∑
n=1

nξPn,0 +

N∑
n=1

nξPn,1 (17)

The probability of losing tasks due to rejection of tasks
when the buffer is full and due to the removal of tasks from
the queue (reneging of users or task dropping) is [1], [2], [12]

pl =
λr +R

λ
(18)

We obtain the expected waiting time of tasks in the queue
using Little’s law, which is well know in queueing theory.
The steady-state waiting time of tasks in the queue is

Wq =
Lq

λ(1− Pn,0 − Pn,1)
(19)

Therefore, the design parameters such as the buffer size N ,
the processing speed of the virtual machine sµ (where s is
the mean size of tasks and µ is mean rate at which tasks are
processed), and the number of virtual machines c should be
chosen such that for a given traffic rate λ, the probability of
losing tasks and the waiting time of task in the queue should
be acceptable.

In the transient-state, it is difficult to analytically solve
the set of differential equations in section 3 (equations

(2)-(15)) above. Therefore, we use a numerical method
(Runge-Kutta method of fourth order) to obtain the transient
solution of the model. The ′′ode45′′ function of the MATLAB
software is used to solve equations (2)-(15) to obtain
the transient performance results presented in the next
section. The probability that at time t, the buffer is full
(n=N), PN,r(t), can be obtained by solving equations
(2)-(15) numerically. The average waiting queue size and
the average waiting time in transient state are given by

Lq(t) =

N∑
n=1

n[Pn,0(t) + Pn,1(t)]

Wq(t) =
Lq(t)

cµ(1−Q0,0(t)−Q0,1(t)−
∑c
k=1(R

k
0,0(t) +Rk0,1(t)))

IV. NUMERICAL EXAMPLES

For all the graphs plotted, we take the initial condition
as P1,0(0) = 1 (i.e. there is one task in the queue at time
t = 0), p00 = 0.8, p01 = 0.2, p10 = 0.7 and p11 = 0.3
(the probabilities p00, p01, p10 and p11 are choosen such that
p00 + p01 = 1 and p10 + p11 = 1 as seen in section II).

Figure 4 shows the variation of the average delay experi-
enced by tasks waiting in processing server queue with time
and a comparison between the multi-server Markovian queuing
model with feedback and correlated reneging, multi-server
Markovian queuing model with correlated reneging and multi-
server Markovian queuing model with feedback and reneging
cases. It is observed that in the transient state, the average
delay first increases and then attains the steady state after some
time. For the queuing model with feedback and correlated
reneging, the average delay is higher than the queuing model
with correlated reneging, which shows the effect of feedback
(resubmission of tasks), that is, more tasks are re-joining the
queue, and hence, the tasks wait longer in the queue. Also,
the average delay for the queuing model with feedback and
correlated reneging is higher than the queuing model with
feedback and simple reneging; however, it depends on the
correlation between the dropping instants. If the reneging time
instants have a high correlation, the dropping of tasks at one
instant may result in the dropping of tasks that depend on it in
future instants, and the queue size will reduce, leading to lower
delays. The influence of correlation reneging is illustrated in
figure 8 which shows the influence of transition marks on the
average delay. A similar behaviour can be observed for the
probability of task blocking as shown in figure 5.

Figures 6 and 7 show the influence of the average arrival
rate of tasks on the average delay and the probability of task
blocking, respectively. It can be observed that on increasing
the value of the mean arrival rate, both the average delay and
the probability of task blocking increase.
Figure 8 shows the influence of the rate of transition marks
on the average delay. It can be seen that an increase in the
rate of transition marks creates a decrease in the average
delay. The higher the transition marks, the more instances
where the reneging could occur and hence, decrease in the
queue size and delay.
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60, c = 10, q1 = 0.9, ξ = 0.3,K = 50

Figure 9 illustrates the effect of the probability of feedback
(resubmission) on average delay in the queue. It can be
seen that with an increase in the probability of feedback,
the average delay increases, which is quite obvious as
resubmissions result in larger queue sizes and hence,
increased delay.
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Fig. 7. Effect of average arrival rate on probability of task blocking. µ =
60, c = 10, q1 = 0.9, ξ = 0.3,K = 50
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V. CONCLUSIONS

We have proposed a multiserver Markovian queuing model
for the analysis of the performance of a cloud computing
processing queue with correlated reneging or dropping of tasks
from the queue. With the use of numerical examples, we
demonstrated the influence of correlated reneging of tasks, the
arriving traffic of tasks, and the probabilities of resubmission
of tasks on the mean delay and the blocking probability in the



transient state. We also presented the steady-state performance
analysis. Increasing the mean rate at which the tasks are
submitted increases the mean delay and the probability of
task blocking. Increasing the probability of task resubmission
increases the delay and the blocking probability. Without
resubmission, the delay and the probability of task blocking
are smaller than the case with resubmission. The resubmission
of tasks decreases QoS (i.e., increases delay, packet losses, and
processing overhead). It also increases the energy consumption
overhead as more energy is needed to transport the resubmitted
tasks through the access, core, and data centre networks.

Even though Markovian queueing models have been used
to evaluate the performance of cloud computing queues, they
are limited by the assumption that the interarrival times of
tasks into the queues follows a Poisson process and that
the processing times are exponentially distributed. In reality,
the tasks interarrival times and the processing times do not
fully satisfy these assumptions but could be used to simplify
the analysis. Attempts to perform steady-state and transient-
state analysis of QoS in cloud computing using queueing
models with general arrival times and general service times
of tasks into the queues was discuss in [13], [14]. As a
continuation of this work, diffusion approximation [15] to
evaluate cloud computing queueing models with task reneging
and resubmission using real traffic and realistic processing
time can be used.

Appendix-1

In steady-state, the difference equations describing the dy-
namic evolution of the queue reduces to:

0 = −λR1
0,0 + 2µq1R

2
0,0 (20)

0 = −(λ+ kµq1)R
k
0,0 + (k + 1)µq1R

k+1
0,0

+λRk−10,0 , 1 ≤ k < c (21)

0 = −(λ+ cµq1)R
c
0,0 + cµq1P1,0 + λRc−10,0 (22)

0 = −(λ+ cµq1 + ξ)P1,0 + cµq1P2,0 + λRc0,0

+ξ[p00P1,0 + p10P1,1] (23)
0 = −(λ+ cµq1 + nξ)Pn,0 + cµq1Pn+1,0 + λPn−1,0

+nξ[p00Pn,0 + p10Pn,1], 1 ≤ n < N (24)
0 = −(cµq1 +Nξ)PN,0 + λPN−1,0

+Nξ[p00PN,0 + p10PN,1] (25)
0 = −λR1

0,1 + 2µq1R
2
0,1 (26)

0 = −(λ+ kµq1)R
k
0,1 + (k + 1)µq1R

k+1
0,1

+λRk−10,1 , 1 ≤ k < c (27)

0 = −(λ+ cµq1)R
c
0,1 + cµq1P1,1 + λRc−10,1

+ξ[p11P1,1 + p01P1,0] (28)
0 = −(λ+ cµq1 + ξ)P1,1 + cµq1P2,1 + λRc0,1

+2ξ[p01P2,0 + p11P2,1] (29)
0 = −(λ+ cµq1 + nξ)Pn,1 + cµq1Pn+1,1 + λPn−1,1

+(n+ 1)ξ[p01Pn+1,0 + p11Pn+1,1(t)], 1 ≤ n < N

(30)

0 = −(cµq1 +Nξ)PN,1 + λPN−1,1 (31)

Thus, the steady-state equations for (20)-(31) can be expressed
in matrix-form as

PQ = 0. (32)

Q=


−λ A12 0 A14 0 A16 0 A18

A21 A22 A23 A24 A25 A26 A27 A28

0 A32 −(λ+cµq1+ξ+ξp00) A34 0 A36 0 A38

A41 A42 A43 A44 A45 A46 A47 A48

0 A52 0 A54 −λ A56 0 A58

A61 A62 A63 A64 A65 A66 A67 A68

0 A72 ξp10 A74 0 A76 −(λ+cµq1+ξ) A78

A81 A82 A83 A84 A85 A86 A87 A88


is a (2N + 2c) × (2N + 2c) square matrix. Below are the
each entry of the matrix Q:
A12 = ( λ 0 . . . 0 )1×c−1 ,A14 = ( 0 0 . . . 0 )1×N−1 ,

A21 =

 2µq1
0
.
.
.
0
0


c−1×1

,A23 =


0
0
.
.
.
0
λ


c−1×1

,

A16 = ( 0 0 . . .0 )1×c−1 ,A18 = ( 0 0 . . .0 )1×N−1 ,

A22 =


−(λ+2µq1) λ . . 0 0

3µq1 −(λ+3µq1) . . 0 0
0 4µq1 . . 0 0
. . . . . .
. . . . . .
. . . . λ 0
0 0 . . −(λ+(c−1)µq1) λ
0 0 . . cµq1 −(λ+cµq1)


c−1×c−1

,

A26 =


0 0 . . . 0 0
0 0 . . . 0 0
0 0 . . . 0 0
. . . . . . .
. . . . . . .
. . . . . 0 0
0 0 . . . 0 0
0 0 . . . 0 0


c−1×c−1

,A25 =


0
0
.
.
.
0
0


c−1×1

,

A27 =


0
0
.
.
.
0
0


c−1×1

,A28 =


0 0 . . . 0 0
0 0 . . . 0 0
0 0 . . . 0 0
. . . . . . .
. . . . . . .
. . . . . 0 0
0 0 . . . 0 0
0 0 . . . 0 0


c−1×N−1

,

A41 =


0
0
.
.
.
0
0


N−1×1

,A24 =


0 0 . . . 0 0
0 0 . . . 0 0
0 0 . . . 0 0
. . . . . . .
. . . . . . .
. . . . . 0 0
0 0 . . . 0 0
0 0 . . . 0 0


c−1×N−1

,

A32 = ( 0 0 . . . cµq1 )1×c−1 ,A34 = ( λ 0 . . . 0 )1×N−1 ,
A36 = ( 0 0 . . . ξp01 )1×c−1 ,

A38 = ( 0 0 . . . 0 )1×N−1 ,A45 =


0
0
.
.
.
0
0


N−1×1

,

A83 =


0
0
.
.
.
0
0


N−1×1

,A42 =


0 0 . . . 0 0
0 0 . . . 0 0
0 0 . . . 0 0
. . . . . . .
. . . . . . .
. . . . . 0 0
0 0 . . . 0 0
0 0 . . . 0 0


N−1×c−1

,

A43 =


cµq1
0
.
.
.
0
0


N−1×1

,A47 =


2ξp01

0
.
.
.
0
0


N−1×1

,

A61 =


0
0
.
.
.
0
0


c−1×1

,A46 =


0 0 . . . 0
0 0 . . . 0
0 0 . . . 0
. . . . . .
. . . . . .
. . . . . 0
0 0 . . . 0
0 0 . . . 0


N−1×c−1

,

A63 =


0
0
.
.
.
0
0


c−1×1

,A48 =


0 . . 0 0

3ξp01 . . 0 0
0 . . 0 0
. . . . .
. . . . .
. . . 0 0
0 . . 0 0
0 . . Nξp01 0


N−1×N−1

,



A52 = ( 0 0 . . . 0 )1×c−1 ,
A54 = ( 0 0 . . . 0 )1×N−1 ,
A56 = ( λ 0 . . . 0 )1×c−1 ,A58 = ( 0 0 . . . 0 )1×N−1 ,

A62 =


0 0 . . . 0 0
0 0 . . . 0 0
0 0 . . . 0 0
. . . . . . .
. . . . . . .
. . . . . 0 0
0 0 . . . 0 0
0 0 . . . 0 0


c−1×c−1

,

A64 =


0 0 . . . 0 0
0 0 . . . 0 0
0 0 . . . 0 0
. . . . . . .
. . . . . . .
. . . . . 0 0
0 0 . . . 0 0
0 0 . . . 0 0


c−1×N−1

,

A66 =


−(λ+2µq1) λ . . . 0

3µ −(λ+3µq1) . . . 0
0 4µ . . . 0
. . . . . .
. . . . . .
. . . . . 0
0 0 . . . λ
0 0 . . . −(λ+cµq1)


c−1×c−1

,

A68 =


0 0 . . . 0 0
0 0 . . . 0 0
0 0 . . . 0 0
. . . . . . .
. . . . . . .
. . . . . 0 0
0 0 . . . 0 0
0 0 . . . 0 0


c−1×N−1

,A65 =


2µq1
0
.
.
.
0
0


c−1×1

,

A67 =


0
0
.
.
.
0
λ


c−1×1

,A81 =


0
0
.
.
.
0
0


N−1×1

,

A72 = ( 0 0 . . . 0 )1×c−1 ,A74 = ( 0 0 . . . 0 )1×N−1 ,
A76 = ( 0 . . . (cµq1+ξp11) )1×c−1 ,A78 = ( λ 0 . . . 0 )1×N−1 ,

A86 =


0 0 . . . 0 0
0 0 . . . 0 0
0 0 . . . 0 0
. . . . . . .
. . . . . . .
. . . . . 0 0
0 0 . . . 0 0
0 0 . . . 0 0


N−1×c−1

,

A82 =


0 0 . . . 0 0
0 0 . . . 0 0
0 0 . . . 0 0
. . . . . . .
. . . . . . .
. . . . . 0 0
0 0 . . . 0 0
0 0 . . . 0 0


N−1×c−1

,

A85 =


0
0
.
.
.
0
0


N−1×1

,A87 =


cµq1+2ξp11

0
.
.
.
0
0


N−1×1

,

A44 =


−(λ+cµq1+2ξ+2ξp00) . . 0

cµq1 . . 0
0 . . 0
. . . .
. . . 0
0 . . λ
0 . .−(cµq1+Nξ+Nξp00)


N−1×N−1

,

A84 =


2ξp10 0 . . . 0 0

0 3ξp10 . . . 0 0
0 0 . . . 0 0
. . . . . . .
. . . . . . .
. . . . . 0 0
0 0 . . . (N−1)ξp10 0
0 0 . . . 0 Nξp10


N−1×N−1

,

A88 =


−(λ+cµq1+2ξ) λ . . . 0
(cµq1+3ξp11) −(λ+cµq1+3ξ) . . . 0

0 (cµq1+4ξp11) . . . 0
. . . . . .
. . . . . .
. . . . . 0
0 0 . . . λ
0 0 . . . −(cµq1+Nξ)


N−1×N−1

.

Where, A16,A52 and A72 are the row vectors of order c-1
with all their entries as zeros. A14,A18,A38,A54,A58, and
A74 are also the row vectors of order N-1 with all their entries
as zeros. A25,A27,A61 and A63 are the column vectors of
order c-1 with all their entries as zeros. A41,A45,A81,A83

and A85 are also column vectors of order N-1 with all their

entries as zeros. A26,A28,A24,A42,
A46,A62,A64,A68,A82 and A86 are square matrices with
all their entries as zeros.
From the equation (32) it follows that

−λR1
0,0 + R0A21 = 0 (33)

R1
0,0A12 + R0A22 + P1,0A32 = 0 (34)

R0A23 − (λ+ cµq1 + ξ + ξp00)P1,0

+P0A43 + ξp10P1,1 = 0 (35)
P1,0A34 + P0A44 + P1A84 = 0 (36)

−λR1
0,1 + R1A65 = 0 (37)

P1,0A36 +R1
0,1A56 + R1A66

+P1,1A76 = 0 (38)
P0A47 + R1A67

−P1,1(λ+ cµq1 + ξ) + P1A87 = 0 (39)
P0A48 + P1,1A78 + P1A88 = 0 (40)

From equation (33), we get

R1
0,0 =

1

λ
R0A21 (41)

Substitute R1
0,0 from (41) to (34) we get

R0 =
−λP1,0A32

A21A12 + λA22
(42)

Again putting R0 from (42) to (33), on solving we get

R1
0,0 = − P1,0A32A21

A21A12 + λA22
(43)

(36), we get

P1 = −(P0A44 + P1,0A34)A
−1
84 (44)

Substituting the value of P1 from (44) to (40), and solving
we get

P0 =
(P1,0A34A−1

84 A88 − P1,1A78)

(A48 −A44A−1
84 A88)

(45)

Putting the value of P0 and R0 from (45) and (42)
respectively in (35), and solving

P1,1 =

(
λA32A23

A21A12+λA22
+ (λ+ cµq1 + ξ + ξp00)− A34A−1

84 A88A43

A48−A44A−1
84 A88

)
P1,0

ξp10 −
(

A78A43

A48−A44A−1
84 A88

)
(46)

P1,1 = Ψ1P1,0 (47)

where,

Ψ1 =

(
λA32A23

A21A12+λA22
+(λ+cµq1+ξ+ξp00)−

A34A
−1
84 A88A43

A48−A44A
−1
84 A88

)
ξp10−

(
A78A43

A48−A44A
−1
84 A88

)
Substituting the value of P0 from (47) to (45), and



solve we get

P0 =
(A34A−1

84 A88 −Ψ1A78)P1,0

A48 −A44A−1
84 A88

(48)

where, Ψ2 =
(A34A−1

84 A88−Ψ1A78)

A48−A44A−1
84 A88

P0 = Ψ2P1,0 (49)

From (37), we get

R1
0,1 =

R1A65

λ
(50)

Putting value of R1
0,1 and P1,1 from (50) and (47) respectively

in (38), On solving

R1 =
−λ(A36 + Ψ1A76)P1,0

A65A56 + λA66
(51)

R1 = λΨ3P1,0 (52)

where, Ψ3 = − (A36+Ψ1A76)
A65A56+λA66

Putting the value of R1 from (52) in (50). We get

R1
0,1 = Ψ3A65P1,0 (53)

Substituting the value of P0 from (49) in (44). We get the
value of P1 as:

P1 = −(Ψ2A44 + A34)A
−1
84 P1,0 (54)

We can obtain the value of Q0,0 and Q0,1 by substituting the
value of R1

0,0 and R1
0,1 from (43) and (53) in (??) and (20)

respectively.

Q0,0 = − µq1A32A21P1,0

λ(A21A12 + λA22)
(55)

Q0,1 =
µq1Ψ3A65P1,0

λ
(56)

We can obtain the unknown constant P1,0 by using normaliz-
ing equations:

1∑
i=0

Q0,i +

c∑
k=1

1∑
i=0

Rk0,i +

N∑
n=1

1∑
i=0

Pn,i = Q0,0 +R1
0,0 + R0e + P1,0 + P0e

+Q0,1 +R1
0,1 + R1e + P1,1 + P1e = 1

(57)
where e is the unit column vector of dimension N.
Substituting the values of probabilities from equations (42),
(43),(47),(49),(52),(53), (54),(55) and (56) in (57), we get the
explicit expression for P1,0 as:

P1,0 =
1

[Ψ4 + Ψ5 + Ψ6e + 1 + Ψ2e + µq1Ψ3A65

λ + Ψ3A65 + λΨ3e + Ψ1 −Ψ7e]

(58)

where, Ψ4 = −µq1A32A21

λ(A21A12+λA22)
, Ψ5 = − A32A21

A21A12+λA22
,

Ψ6 = − λA32

A21A12+λA22
and Ψ7 = −(Ψ2A44 + A34)A

−1
84 .

Thus, the rest of the steady-state probabilities of the model
can be obtained explicitly using (42),(43),(47),(49),(52),(53),
(54),(55) and (56) .
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