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Abstract—The growing proliferation of Internet of Things
(IoT) devices has intensified the need for sustainable energy so-
lutions, particularly in resource-constrained deployments where
non-rechargeable batteries and supercapacitors are the primary
energy sources. Green IoT (G-IoT) frameworks address this
challenge by combining energy-saving techniques with energy
harvesting from ambient sources such as solar power. However,
the intermittent nature of renewable energy and the non-ideal
behavior of energy storage systems—such as energy leakage and
capacity degradation—complicate reliable energy provisioning.
This paper presents a novel Markovian framework for modelling
the coupled dynamics of time-varying solar energy harvesting,
time-dependent energy consumption, and state-dependent energy
leakage in G-IoT systems. Unlike traditional steady-state models,
our approach uses Discrete-Time Markov Chains (DTMCs) to
capture the stochastic variability in both energy harvesting and
consumption processes. We also introduce a refined leakage
model in which the leakage rate is dynamically dependent on
the stored energy level, enabling a more realistic characterization
of energy losses due to energy leakage. Through extensive
analytical evaluation, we examine how key parameters—such as
storage capacity, leakage rate coefficient, and energy harvesting
and consumption patterns—affect critical performance metrics,
including the mean stored energy and energy-related service
outage probability. Furthermore, we propose a parameter tuning
strategy to optimize energy reliability and storage efficiency. The
proposed model provides valuable insights for the design and
optimization of robust, energy-aware IoT systems powered by
renewable energy sources.

Index Terms—Green IoT (G-IoT), time-dependent analysis,
energy storage systems, time-varying energy consumption and
harvesting, and energy leakage
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I. INTRODUCTION

The Internet of Things (IoT) is revolutionizing modern
infrastructure across a wide range of sectors [1], including
healthcare, manufacturing, agriculture, transportation, supply
chains, security and defense, environmental monitoring, en-
ergy, and construction. With the anticipated deployment of
tens of billions of interconnected devices, 10T is poised to
become a foundational pillar of Industry 4.0, enabling en-
hanced efficiency, automation, and intelligent decision-making
across diverse domains [2]. Recent advancements in artificial
intelligence further amplify the potential of IoT by allowing
the vast volumes of data generated by these devices to be
processed and analyzed in real time, supporting automated
workflows and rapid, data-driven decision-making.

Despite the growing adoption of IoT technologies, energy
availability remains one of the most critical constraints. The
majority of IoT devices rely on non-rechargeable energy stor-
age systems, such as batteries and supercapacitors, which are
inherently limited by finite capacity and gradual performance
degradation over time [2], [3]. These systems also exhibit prac-
tical non-idealities—including energy leakage, capacity loss
due to aging, and internal charge redistribution, particularly in
supercapacitor-based designs—which collectively compromise
energy reliability and reduce operational lifespan. Therefore,
accurate evaluation and optimization of the performance of
energy storage systems require taking into account these
imperfections [4].

To address the limitations associated with powering IoT
nodes using non-rechargeable energy storage systems, Green
IoT (G-IoT) [5] strategies have been introduced. These ap-
proaches combine energy-saving techniques—such as duty cy-
cling, hardware and software optimization, and communication
overhead reduction—with the integration of energy harvesting
systems that capture energy from renewable sources like solar,
RF, thermal, or wind. The goal of G-IoT is to enhance
energy efficiency, reduce environmental impact from emissions
and electronic waste, and promote the use of sustainable
energy within IoT infrastructures. However, harvesting energy
from ambient sources poses significant challenges due to



their inherently intermittent and unpredictable nature, which
leads to fluctuations in the amount of energy that can be
harvested and stored [6]. Additionally, the energy demand
of IoT nodes is not constant; it varies depending on how
often the device transitions from low-power sleep modes to
active operation and on the specific energy-saving mechanisms
implemented—further complicating energy management in G-
IoT systems.

To analyse and optimise energy performance, a growing
number of studies [7]-[9] have proposed abstracting energy
dynamics into quantized energy packets. In this modeling
approach, the IoT system operates under a harvest-store-
consume paradigm, where discrete packets of energy arrive
stochastically from an energy harvesting (EH) module, are
stored in an energy storage system (ESS), and are later
consumed during device operations. The ESS is modeled as
a queue of energy packets, with energy packets arriving and
being consumed—analogous to the processing of data packets
in communication systems. The energy packet size can be
calibrated based on the device’s operation cycle, encompass-
ing both active and sleep phases. This abstraction enable
the analysis and evaluation of energy performance of G-IoT
energy systems without focusing on the internal complexities
of harvesters and storage systems [10].

Recent works have demonstrated that such systems can be
effectively analyzed using Generalized Queueing Networks
(G-Networks) [11], which capture both energy delivery and
consumption dynamics. This framework allows for modelling
energy arrivals as a modulated Poisson process and consump-
tion as an exponentially distributed service time, potentially
modulated by external factors such as event-driven sensing.
Compared to traditional queueing systems, where stability
requires that service rate exceeds the arrival rate, energy
harvesting systems must ensure that energy input exceeds or
matches consumption to avoid outages [12].

Alternative modelling techniques include continuous-time
stochastic models such as fluid queues [13], [14] and diffusion
approximations [2], [15]-[18]. Although these approaches
offer a fine-grained view of energy dynamics, incorporating
inefficiencies of the energy storage system, especially energy
leakage, introduces complexities into the model, as energy
leakage rates often depend on the energy content of the energy
storage system. Consequently, leakage cannot be modeled as a
static drain but must be integrated dynamically with the energy
arrival and consumption processes [12], [19]-[22].

A. Main Contributions of the Paper

In this paper, we propose a Markovian model to capture
the dynamic interactions among time-dependent solar energy
harvesting, time-varying energy consumption, and energy leak-
age processes in green IoT systems. Unlike existing models
in the literature, which often assume constant energy harvest-
ing and consumption rates under steady-state conditions, our
approach accounts for the inherent variability of real-world
environments. Specifically, both the energy delivery to the
energy storage system (ESS) and the energy consumption

processes are modeled as time-varying and are governed
by their respective Discrete-Time Markov Chains (DTMCs).
In addition, energy leakage from the ESS is modeled as a
state-dependent process, where the leakage rate varies with
the amount of stored energy, capturing non-ideal behaviors
commonly observed in practical storage technologies.

The main contributions of this paper are as follows:

1) We develop a novel analytical framework that models the
coupled dynamics of time-varying solar energy harvest-
ing, energy consumption, and state-dependent energy
leakage in green IoT systems.

2) Unlike previous studies that assume constant rates and
steady-state conditions, our model incorporates time-
varying energy harvesting and consumption behaviors,
driven by independent DTMCs. This allows for the re-
alistic representation of scenarios such as event-triggered
sensing and intermittently available solar power.

3) We enhance the classical exponential energy leakage
model by introducing state-dependent leakage dynamics,
offering a more accurate and physically meaningful
representation of energy loss in non-ideal ESSs.

4) We conduct a comprehensive analysis of how key system
parameters—such as the leakage model and coefficient,
energy delivery and consumption rates, and ESS ca-
pacity—affect critical performance metrics, including
the mean number of stored energy packets and the
probability of energy service outage due to depletion.

5) We propose a performance optimization strategy to tune
system parameters for enhanced energy reliability and
storage efficiency.

II. MARKOV-MODULATED ENERGY PACKET MODEL WITH
STATE-DEPENDENT ENERGY LEAKAGE

Consider the Green IoT node shown in Fig. 1 where the
energy harvested by the energy harvester (EH) is stored in an
energy storage system (ESS), and then drawn to power the
IoT node. Let C'z (in mWh) represent the total capacity of
the ESS, which could be a battery or a supercapacitor. The
total number of energy packets the ESS can store is:

Cg

E,’

B = (1
indicating that the ESS can hold up to B discrete energy
packets, with possible energy states {0,1,2,..., B}. Where
E, is the size of an energy packet, which is basically a pulse
of power with a finite amount of energy.

Introducing device inactivity periods improves model re-
alism compared to our earlier work [10], where energy con-
sumption—and thus the rate y—was assumed constant. In this
model, both energy harvesting \(¢) and consumption y(t) rates
are modulated by external processes represented as first-order
Markov chains.

The weather modulator, with three states (sunny, cloudy,
rainy), follows a common approach in weather modeling, as
seen in early studies such as [23] and more recent works [24],
[25]. More complex models, including higher-order Markov
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Fig. 1. Architecture of a green IoT node with erratic energy sources.

chains, can also be used [26]. At night, while the weather
modulator continues evolving, energy harvesting is inactive
(A=0).

The energy consumption modulator has two states—active
and sleep. Furthermore, the consumption rate p is state-
dependent, reflecting the impact of energy leakage based on
the current ESS content.

Under the above assumptions, the device’s energy storage
system can be modeled as an M(t)/M(n,t)/1/B queue,
where energy packets are harvested, stored, and consumed.
Queueing systems with modulated Poisson arrivals and service
rates have long been explored in contexts such as teletraffic
burstiness and self-similarity, often using ON-OFF and MMPP
models with high-dimensional modulators [27]-[30]. How-
ever, these studies primarily focused on steady-state behavior
using continuous-time modulators, while our interest lies in
the transient dynamics of energy storage systems (ESS).

Both modulators are Discrete-Time Markov Chains
(DTMCs) that update their states at specific intervals: the mod-
ulator for p(t) every At and the modulator for A(t) every nAt.
Within each At interval, model parameters remain constant
with parameters A and p, although u is state-dependent. This
results in a transient M /M (n)/1/B queue during each step.
While the time-dependent queue distribution can be computed
analytically via Laplace transforms and numerical inversion
as shown in [31], this approach is complex and error-prone.
Instead, we numerically solve model (2), using the resulting
queue state at the end of each At as the initial condition
for the next interval. Modulator state transitions are simulated
using random sampling, blending numerical integration with
stochastic simulation. The probability of having n energy
packets in ESS at time ¢, p(n,t) = Pr{N(t) = n} is
determined by equations

= = A®O)p(0,t) + pu(1,t)p(1,1),

dt
WD (7@) + . )l £) + MDhpln — 1.1
+un+1,t)p(n+1,t), n=1,...,B—1,
BB Nop(B-10) - nB.OpBY. @
The time-dependent consumption rate j(n,t) is defined as:
(n,t) = u(t) + O(n), 3)

where p(t) is the base energy consumption rate at time ¢,
which is driven by a DTMC that models the active and sleep
mode transitions of the device, and ¥(n) accounts for state-
dependent energy leakage.

In this study, three leakage models—Constant (¥(n,§) = &)
[20], Linear (¥(n,§) = n - &) [12], [32], and Exponential
@W(n,&) = € ("B —1), eg, B = 20) [33]-[35]—are
utilized to model the nature of energy leakage in energy
storage systems, such as supercapacitors or compact batteries.
The parameter (5 in the exponential leakage model moderates
the rate of exponential growth, ensuring realistic leakage
behavior—slow at low energy levels and steep under high-
energy conditions—thus improving both model fidelity and
numerical stability for supercapacitor-based systems.

III. TRANSIENT ANALYSIS OF THE MODEL

Since the mean arrival rate of energy packets to the energy
storage system (ESS), A(t), and the mean consumption rate
of energy packets, u(t), vary over time, a transient analysis is
necessary to investigate the influence of time-dependent fac-
tors such as solar energy harvesting, leakage, and consumption
rates on the energy dynamics of the IoT node. The ESS is
modeled as a finite-state Markov process, {N(t), ¢t > 0},
where the number of stored energy packets, n, evolves over
time based on arrival rates, leakage rates, and service rates.
The probability of having n stored energy packets at time ¢ is
denoted as:

p(n,t) = Pr{N(t) = n}. 4)

The evolution of stored energy packets is influenced by
three key time-dependent processes: the energy packet arrival
process, the energy packet consumption process, and the
energy leakage process. The time-varying arrival rate of energy
packets is governed by weather conditions and their durations
throughout the day, as well as the length of daytime and
nighttime. Similarly, the time-varying energy consumption rate
is dictated by the durations of sleep and active modes of the
IoT node, while the leakage rate depends on the number of
energy packets stored in the ESS at time ¢.

Consider a three-state Markov chain, Sy, 51,52, repre-
senting different weather conditions—sunny, cloudy, and
rainy—which influence the state of a solar energy harvester.
The corresponding values of A for each state are given by:

A ={Xo, A1, A2} )



The state transition matrix, W, is given by:

Poo Po1  Po2
W = |pio p11 P12 (6)
D20 P21 P22

where each element p;; represents the probability of transition-
ing from state ¢ to state j. To capture more complex weather
variations, a four-state weather model can be used, as explored
in [36]. Once the state transition matrix is defined, the Markov
chain can be used to simulate dynamic state changes over time.
The state at each time step determines the corresponding value
of \.

Similarly, the time-varying mean energy consumption rate,
wu(t), can be modeled using a Markov process by defining
the state transition matrix for the stochastic process governing
device mode transitions. If an IoT node randomly switches
between active and sleep modes, its state transitions can be
represented by a two-state Markov process with states Sy and
S1, corresponding to the active (on) and sleep (off) modes,
respectively. The mean number of energy packets consumed
during active and sleep modes are u, and pug, respectively.
The state transition matrix is given by:

S — Poo  Po1 (7)
po P11’

To solve for the transient state probabilities in the system of

differential equations above, we rewrite the system the matrix
form as follows
dp(t)

3 Qp(t), )

where: p(t) = [p(0,t),p(1,t),...,p(B,t)]T is the transient
state probability vector and the matrix Q is the transition rate
matrix (or generator matrix) that captures the rates at which
probabilities move between states. The transition rate matrix
for this system is given by:

- m 0 0

X At w0
Q|0 A A2 0

0 0 0 A —(u+ BE)

)
The general solution of the above system can be expressed
in the following form

P(t) = ¥P(0), (10)

where, P(0) is the initial probability distribution vector. If we
start with zero energy packets in the ESS, then the system
starts in state n = 0 at time ¢ = 0 with state probability
p(0,0) = 1 and all other state probabilities are zero. That is
the initial probability distribution vector is

P(0) = [1,0,0,...,0] . (11)

Also, if the energy storage system is filled to its full capacity
at time ¢ = 0 with state probability p(B,?), then the initial
probability distribution vector is

P(0) = [0,0,0,...,1]7. (12)

For any time, having the current distribution p(n.t) we may
compute the distribution of the time after which the queue
becomes empty (ESS is depleted). For this purpose we make
the state n = 0 the sink of the Markov chain, i.e. the rate
between 0 and 1 is no longer A but zero. The transition
intensity p(1,¢)u(t) gives the densituy of ending the process
at time ¢. if the initial condition is p(B,0) = 1, i.e starting
from full energy content it gives us the density of ending the
process at time t. It is only a representation of the process,
as it depends on the sequence of modulator’s changes that
happened during discharging.

The system is solved using Python libraries such as NumPy,
SymPy, and SciPy. First, we define the transition rate matrix,
W, which governs the energy harvesting process A(t) and
specify the corresponding values of \. Similarly, the transition
matrix S, which governs the switching of the device between
different energy consumption modes, is defined along with the
corresponding mean energy packet consumption rate per time
unit.

With the time-varying mean energy packet delivery rate
A(t) and the mean energy packet consumption rate p(t), we
formulate the system of equations governing the time evolution
of the number of energy packets (EPs) in the energy storage
system (ESS). The initial conditions are specified, such as
p(0,0) = 1 if the ESS is empty at ¢t = 0, or p(B,0) = 1
if the ESS initially contains B energy packets. SciPy is then
used to numerically solve the system.

To determine the distribution of transient state probabilities
P(t) in the next time interval, the transient probabilities from
the current interval serve as the initial probability distribution
vector P(0). In other words, the probability distribution of the
number of energy packets stored in the ESS at the next time
interval depends on its current distribution before any state
transition that modifies A\ and p occurs.

To track the evolution of the mean number of energy packets
in the ESS, we compute the expected value of the system at
each time step. At each time interval At, the values of A(t) and
(t) are obtained using the Markov processes presented earlier.
These computed values for each interval are then plotted using
Matplotlib. The expected number of energy packets at time ¢
is given by:

B
EIN()] = np(n,t). (13)
n=0

IV. NUMERICAL EXAMPLES

The transition probabilities of the weather states are deter-
mined by the Markov chain transition matrix:

0.7 0.2 0.1
W=103 05 02 (14)
02 03 05

The proposed weather transition matrix aims to repre-
sent simplified yet realistic dynamics of weather changes
using a discrete-time Markov chain. Each row of the matrix
corresponds to a current weather state—sunny, cloudy, or
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Fig. 2. Evolution of the mean energy level E[N(¢)] under different leak-
age models (Constant, Linear, Exponential) and fixed leakage coefficient
& = 0.01, over a time-varying arrival process A(t) influenced by weather
conditions. Also, the ESS is initially empty (i.e, p(0,0) = 1).

rainy—and contains probabilities of transitioning to each pos-
sible next state. The highest probabilities lie on the diagonal,
indicating that the current weather condition is likely to persist
(e.g., sunny remains sunny with 70% probability). This reflects
the natural tendency of weather patterns to exhibit temporal
correlation.

Transitions between different weather states are modeled
to follow typical meteorological trends. For example, sunny
weather is more likely to become cloudy than directly turn
rainy, while rainy conditions are more likely to shift to cloudy
rather than abruptly clear up. These directional preferences
lend realism to the model while maintaining computational
simplicity. Importantly, the matrix ensures that each row sums
to one, satisfying the conditions of a valid stochastic process.

This type of transition matrix is useful for simulations
involving solar energy systems, environmental modeling, or
queueing systems influenced by weather variability. While
the current matrix is heuristic, it can easily be refined using
historical weather data for specific geographic locations to
increase the fidelity of simulations. The energy delivery rates
for the various states are A\g = 10, Ay = 6, and Ay = 2.

We model the energy consumption behavior of the IoT
node using a two-state discrete-time Markov chain (DTMC),
governed by the following transition probability matrix S:

g_ [0.90 0.10] ’

0.02 0.98 (15)

where the first row corresponds to transitions from the
ON (active) state and the second row to transitions from
the OFF (sleep) state. Based on this DTMC, the steady-state
probabilities are computed as po, = 0.1667 and por = 0.8333,
indicating that the IoT node spends approximately 83.33% of
its time in sleep mode and 16.67% in active mode. This aligns
with the duty-cycling behavior typically observed in energy-
constrained IoT systems. The mean energy consumption rate
in the on or active state is ;4 = 5 energy packets per time unit,
and in the off state is 0. The capacity of the ESS is B = 200
energy packets.

Figs. 2-5 demonstrate how different leakage mod-
els—constant, linear, and exponential—affect the energy dy-
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Fig. 3. Evolution of the service outage probability, p(0, ¢) (in logscale) under
different leakage models (Constant, Linear, Exponential) and fixed leakage
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namics of an energy-harvesting IoT system under stochastic
solar input and duty-cycled operation. As expected, the con-
stant leakage model leads to the most stable energy behavior,
as the leakage rate remains constant regardless of the energy
content of the storage system. In contrast, the linear model
introduces a moderate increase in energy depletion as the
energy storage system fills, reflecting storage systems where
leakage scales proportionally with stored energy (e.g., battery
or capacitor-based storage) [12], [32]. The exponential leakage
model, however, amplifies energy loss at higher storage levels,
simulating non-linear leakage or instability in energy storage
systems such as supercapacitors where it has been shown that
energy leakage increases exponentially as its energy content
increases [33]-[35].

These leakage dynamics have a clear impact on both the
average number of stored energy packets E[N(t)] (see Figs. 2
and 4) and the probability of energy starvation p(0, t) (see figs.
3 and 5). Systems governed by exponential leakage exhibit
a sharper decline in energy availability and higher chances
of entering energy-depletion (when all the stored energy
packets are consumed) states, especially during low solar input
periods or prolonged OFF durations. Conversely, the constant
leakage model supports longer energy retention and reduces
the frequency of p(0,t) > 0, thereby ensuring more reliable
operation. These results underscore the importance of selecting
appropriate storage technologies and modeling assumptions
based on application needs, as the leakage profile critically
influences the energy sustainability and operational robustness
of IoT devices. In Figs. 2 and 3 storage system is empty at
the beginning (i.e., p(0,0) = 1) while in Figs. 4 and 5 is it
filled to its full capacity.

——r§=0.001 f10
-1€=0.005
—:s: 0.01
—1£=0.015 |g
—:gz 0.02
:ON State
—= 1Al

150

[ SRS

125

100

/

E[N()]
I,

]
e e
il i Y e

O T T Cym—.

1
25 50 B3 100
Time (t) in hours

Fig. 6. Time evolution of the expected number of stored energy packets
E[N(t)] under different leakage rates £. The solar energy harvesting rate
A(t) varies based on weather conditions (sunny, cloudy, rainy) and time of
day. Also, the ESS is initially empty (i.e, p(0,0) = 1) and linear leakage is
assumed.

Figs. 6 illustrates the dynamic behavior of an energy-
harvesting IoT system under varying energy leakage coeffi-
cient £&. As shown in Fig. 6, the expected number of stored
energy packets E[N(¢)] fluctuates in response to the time-
varying energy delivery rate A(t), which depends on weather
conditions and diurnal cycles. Lower leakage rates allow the
system to accumulate and retain more energy, especially dur-

ing prolonged sunny periods, while higher leakage rates lead to
faster depletion and reduced energy availability. Overall, the
result emphasizes the critical role of the leakage coefficient
in determining the energy sustainability and reliability of IoT
systems operating under intermittent solar energy and energy
consumption conditions. Also, it is that the ESS is initially
empty (i.e, p(0,0) = 1) and the energy leakage model is linear.
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Figs. 7 and 8 illustrate the impact of the capacity of the stor-
age system B on the performance of an energy-harvesting IoT
system operating under stochastic environmental conditions.
As shown in the plots of E[N(¢)] in Figs. 7 and 8, larger buffer
sizes allow for greater energy accumulation during periods of
solar activity, enhancing the system’s ability to endure intervals
of low or no energy delivery. In Fig. 7, the storage system is
empty at the beginning (i.e., p(0,0) = 1) while in Fig. 8, it is
filled at time ¢ = 0.

In Figs. 2-8, the relatively high value of the energy arrival
rate A\ results in a negligible probability of energy storage
system (ESS) depletion. To better illustrate the system’s be-
havior under reduced energy input conditions, Figs. 9 and
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10 introduce a scaling factor « applied to all three states
of the solar modulator, i.e., «[A1, A2, A3]. This adjustment
captures the impact of decreased solar irradiance or suboptimal
physical parameters of the solar harvesting system on the ESS
performance.

Figure 9 highlights the effect of the scaling factor o on
the energy service outage probability p(0,t), which denotes
the probability that the ESS is completely depleted at time t.
Similarly, Fig. 10 presents the probability that the stored en-
ergy falls below 25% of the total capacity B. In both scenarios,
following an initial period of uninterrupted operation enabled
by the fully charged ESS, the risk of depletion escalates more
rapidly for lower values of o)\, indicating the system’s growing
vulnerability under reduced energy harvesting rates.

This trend is further confirmed in subsequent figures in
Figs. 11 and 12, which depict the probability density function
and cumulative distribution function of the battery discharge
time—defined as the time it takes for the ESS to transition
from full capacity B to zero. As shown in Figs. 11 and 12. This
allows us to quantify the probability that the ESS will become
fully depleted due to insufficient recharging. Consequently,
these results support selecting a minimum acceptable value
of A\ to maintain a desired level of operational reliability.

V. CONCLUSION

This paper presented a comprehensive Markovian frame-
work to model the energy dynamics in Green IoT (G-IoT)
systems, incorporating the coupled effects of time-varying
solar energy harvesting, stochastic energy consumption, and
state-dependent energy leakage. By employing Discrete-Time
Markov Chains (DTMCs) to govern both the energy arrival
and consumption processes, our model captures the inherent
variability and intermittency of real-world renewable energy
sources and IoT device operations. Furthermore, by intro-
ducing a state-dependent leakage mechanism, we addressed
a critical shortcoming of existing models that overlook the
non-ideal behaviors of practical energy storage systems.

Through numerical analysis, we demonstrated how system
performance—measured in terms of mean stored energy and
energy-related service outage probability—is influenced by
storage capacity, leakage characteristics, and the dynamics
of energy harvesting and consumption processes. The results
underscore the importance of jointly modelling these processes
to evaluate and optimise energy reliability in IoT deployments.

This study provides a practical analytical framework for
researchers and system architects to assess the energy relia-
bility of Green IoT (G-IoT) systems operating under dynamic
environmental conditions. One limitation of the current model
lies in its reliance on simplifying assumptions: specifically, that
energy arrivals to the storage unit follow a Poisson process and
that energy consumption times are exponentially distributed.
While these assumptions may not fully capture the nuances
of real-world systems, they enable mathematical tractability
and yield useful insights into the transient behavior of energy
storage systems powered by fluctuating renewable energy



sources. In future research, we plan to extend this frame-
work using fluid-flow models, diffusion approximations, and
detailed simulation techniques that relax these assumptions.
We also intend to explore advanced optimisation strategies to
further enhance energy efficiency in highly constrained IoT
deployments.
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