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Abstract—Cyberattacks on the Internet of Things (IoT) can
cause major economic and physical damage, and disrupt pro-
duction lines, manufacturing processes, supply chains, impact
the physical safety of vehicles, and damage the health of human
beings. Thus we describe and evaluate a distributed and robust
attack detection and mitigation system for network environments
where communicating decision agents use Graph Neural Net-
works to provide attack alerts. We also present an attack mitiga-
tion system that uses a Reinforcement Learning driven Software
Defined Network to process the alerts generated by the attack
detection sysem, together with Quality of Service measurements,
so as to re-route sensitive traffic away from compromised network
paths using. Experimental results illustrate both the detection and
re-routing scheme.

Index Terms—IoT Security, Graph Neural Nets, Cognitive
Packet Network, Random Neural Networks, Software Defined
Networks

I. INTRODUCTION

The IoT [1] has the potential to improve the critical pro-
cesses that are at the heart of our socio-economic systems [2],
[3]. However, it creates raises risks that go way beyond the
individal technologies such as the Internet, wireless networks
and machine to machine systems [4], [5]. In addition to risks
related to system malfunctions [6], quality of service (QoS)
failures, and excessive energy consumption, the theft and
tampering of data, conventional network attacks and attacks
that deplete the energy of autonomous sensors and actuators
also need to be considered [7]–[13]. Since IoT devices can
carry out real-time measurements and controls much faster
than human reaction times, we must design IoT networks
that both detect and mitigate security risks automatically and
adaptively, while preserving Quality of Service (QoS), and
energy efficiency [6], [14]. Thus we propose an autonomic
[15] scheme offering (a) distributed attack detection based on
deep learning (DL) and graph neural networks to achieve high
detection probabilities with low false alarm rates [16], [17],
and (b) mitigation that exploits network Self-Awareness [18],
[19] centered on Software Defined Networks [20] to achieve
secure QoS based routing of traffic flows using machine
learning and adaptivity [21], [22].

Thus Section II discusses a multi-agent system (MAS) for
network attack detection, and summarizes its performance.
The overall system architecture for attack detection and mit-
igation is presented in Section III. The node attack detection
probability estimated by MAS is used to compute safer paths
in the network using reinforcement learning as described in

Sections III-A and III-B. Experimental results are presented in
Section III-C, and Section IV presents conclusions and future
work.

II. DISTRIBUTED ATTACK DETECTION

IoT systems are distributed have a heterogeneous structure
which is an additional challenge for real-time anomaly de-
tection [23], [24]. Thus the distributed MAS for detecting
attacks monitors the network traffic in a distributed manner,
and outputs to the novel routing system described in Section
III, to mitigats attacks with a SDN based routing engine. The
MAS’s mutually communicating multiple agents can improve
its robustness by incorporating redundancy in the detection
algorithm [25]. The MAS also offers scalability, since its
modularity allows new agents to be added if the IoT network
grows, and agents exchange information [26] in a structure
inspired by Graph Neural Networks [16], [17].

The structure of the IoT network is reflected by the graph
G(V,E), where V corresponds to the set of nodes of the IoT
network, and E ⊂ V × V is a set of edges which represent
the nodes which communicate (directly or indirectly) with
each other through the IoT network. The nodes can represent
sensors or actuators, edge nodes, servers or routers in the IoT
network. We associate a real-valued feature vector xi ∈ RNV

to each i ∈ V , where NV is its length. Similarly we associate
the feature NE-vector of real numbers eij ∈ RNE with each
edge (i, j) ∈ E. An example of the features for the nodes
and edges is given in Table I. Measurements that collect the
feature vector parameters are taken in the IoT network during
successive time slots [(t− 1)T, tT where T is the slot length
and t is the slot index. The slots are long enough to provide
representative data, but short enough to reflect time variations
in the system. Thus all feature vectors are also associated with
individual slots and successive values. Thus xt,ki the k − th
successive value of xi within the t− th slot, while et,kij is the
k−th successive value of eij in the t−th slot. We will denote
by etij and Xt

i , respectively, the feature vector values at the end
of the t− th slot, while e0ij and X0

i are their values when the
measurement system starts to operate and the first slot begins.
The MAS uses four Deep Neural Networks (DNNs):
• The EDNN (edge DNN) which undertakes the update:

ek+1,t
ij ← EDNN(xk,tj , xk,ti , ek,tij ) . (1)

EDNN uses an edge’s current features, and the features
of the two nodes at its edges, to update its features.



• The NDNN (node DNN) which undertakes the update:

xk+1,t
j ← NDNN(êt−1j , x̂k,tj ) , (2)

and updates a given node’s features using the average
value of the features of the nodes with which it commu-
nicates and of the related edges, with:

êt−1j =
∑

i s.t. (i,j)∈E

et−1ij

mj
, x̂k,ti =

∑
i s.t. (i,j)∈E

xk,ti

mj
, (3)

where mj = |{i s.t. (i, j) ∈ E}| is the number of
neighbours of j ∈ V , and s.t. stands for “such that”.

• The third DNN, CLN builds pk,tNi, the probability that
node i is compromised, only using its own feature vector:

pk,tNi ← CLN(xk,ti ). (4)

Finally the fourth DNN, CLNEI builds pk,tNij the probabil-
ity that i determines that its neighbour j is compromised:

pk,tNij ← CLNEI(ek,tji , e
k,t
ij , x

k,t
j ). (5)

These four networks constitute the node agent, and are dupli-
cated in each node, and can be trained off-line. They operate
in each node separately and asynchronously. Starting from
feature vectors from data gathered during the previous time
slot, they update the decision probabilities and communicate
their updated feature values and decison probabilities to their
neighbours. These computations are shown schematically in
Figures 1 and 2.

TABLE I
AN EXAMPLE OF THE NETWORK FEATURES USED FOR ANOMALY

DETECTION. IN THIS EXAMPLE THE NUMBER OF FEATURES IS NV = 5
(NODE FEATURES) AND NE = 3 (EDGE FEATURES).

# Target Feature description
1 edge/node Average number of packets sent
2 node Average number of packets received
3 edge/node Average number of bytes sent
4 node Average number of bytes received
5 edge/node Average connection duration

Fig. 1. The figure shows Edge Deep Neural Networks (EDNN) that inputs the
previous edge feature vector and adjacent node feature vectors, and updates the
its dege features, and a Node DNN (NDNN) that aggregates the information
from updated edge features, and updates the features of the node.

The mutiple iterations of these operations represented by
the integer k, allow nodes and edges to update and exchange

Fig. 2. The figure shows the operation of the Edge and Node Deep Neural
Networks (EDNN and NDNN) in the anomaly detection system that use Deep
Neural Networks implemented with Multi-Layer Perceptrons. The EDNN
takes the feature vectors of neighboring nodes and updates the edge feature
vector, while the NDNN uses the adjacent updated edge feature values and
updates the feature values of the specific node. Edge features predict anomalies
in the neighborhood, while node features detect anomalies in the specific node.

information multiple times within each time interval as shown
in Figure 2. The entire network of nodes is trained in a
supervised manner using the back-propagation algorithm with
cross-entropy as the cost function for classification.

In the system that we have described, each node agent can
perform anomaly detection not only on itself, but also with
regard to its neighbouring nodes. This redundancy improves
the algorithm’s robustness in cases where some agents may
fail, since the agents at neighbouring nodes may still detect
anomalies that occur at their neighbours. Finally, to combine
the overlapping decisions of different agents into a single
decision for each node in the IoT network, we use a simple
aggregation method, where a node is considered anomalous if
at least one agent has reported it as being anomalous. More
sophisticated aggregation schemes can be considered in future
work.

To evaluate the proposed approach, we have uses a simu-
lated infiltration attack, where the attacker tries to infiltrate
the network by scanning a range of IP addresses in order
to run services, and performs a dictionary attack in order to
find vulnerable IoT devices. The resulting Receiver Operating
Characteristic (ROC) is shown in Figure 3. The overall results
are summarized in Table II. The metrics used forthe evaluation
are the Area Under the Curve (AUC) score, the detection
accuracy, the utilized Bandwidth, and the Power consumption
[27]. For the first two metrics, which measure detection effi-
ciency, the proposed approach outperforms all other methods
we have tested for anomaly detection, achieving Area Under
the Curve (AUC) score and accuracy of 0.99, compared to
0.97 for the second (random forest) and third (decision tree)
classifiers. With respect to the last two metrics, i.e. Bandwidth
and Power consumption, the proposed decentralized approach
greatly reduces the bandwidth required for monitoring, which
in turn reduces the power that is consumed. However, the
execution time and the power consumed at each node will
determine the energy consumed by our approach, so that a



slower low power approach may consume more energy than
a very fast method that uses higher power.

TABLE II
EVALUATION OF PROPOSED APPROACH AND COMPARISON WITH OTHER
METHODS. THE PROPOSED APPROACH OUTPERFORMS OTHER METHODS

THAT WERE TESTED FOR ANOMALY DETECTION, NAMELY, RANDOM
FOREST, SUPPORT VECTOR MACHINE (SVM), DECISION TREE, AND

AUTOENCODER.

Method AUC Accuracy Bandwidth Power
Proposed 0.99 0.99 452.26 bits/s 353 W
Random Forest 0.96 0.96 33985.7 bits/s 353.01 W
SVM 0.98 0.98 33985.7 bits/s 353.01 W
Decision Tree 0.97 0.97 33985.7 bits/s 353.01 W
Autoencoder 0.69 0.70 33985.7 bits/s 353.01 W

Fig. 3. Receiver Operating Curve curve of detection scheme for the simulated
infiltration attack scenario, using several attack detection mechanisms. The
approach we propose has the highest Area Under the Curve (AUC) score.

III. SYSTEM ARCHITECTURE AND ROUTING ENGINE

The Architecture of the SerIoT system is shown in Figure
4, with interconnected smart forwarding engines (SFE) that
are connected to sfixed or mobile IoT devices, IoT gateways,
and to Cloud Servers which may also be Fog servers. SFEs
may be connected to Honeypots (H) whose role is to attract
and interpret attacks. Specific sofware at IoT devices and
gateways may be used to detect attacks [28], but here we
us the decisions provided by the distributed attack detector
of Section II. QoS, Energy and Security are monitored and
forwarded to “smart controllers and routing engines” (SRE)
which operate as OpenFlow SDN Controllers to choose paths
and download the to the SFEs [29], [30].

The SRE uses the Cognitive Packet Network (CPN) routing
algorithm [31], implemented with the Random Neural Net-
work (RNN) and Reinforcement Learning [32] which has also
attracted interest from industry [33]. It extends a standard SDN
network using the SRE, with SFEs which are extensions of
SDN forwarders, and the Monitoring and Anomaly Detection
(MAD) module which detects potential threats from data
collected by SerCPN, Active Honeypots that attract attacks,
deflect them to safe IP locations, and inform the SRE, and
local attack detectors at nodes and gateways [28].

Fig. 4. Overview of the Secure IoT network System Architecture.

Fig. 5. SFE: the SerIoT Forwarding Element.

Each SFE, shown schematically in Figure 5, switches SDN
flows according to the OpenFlow protocol. In addition to
payload traffic, SFEs also forward smart packets (SPs) which
gather security, QoS and energy usage data from the SFEs, IoT
devices and gateways. Each SFE has a Cognitive Packet Agent
(CPA) that unpacks the SP, adds its own data to the list stored
inside, packs it again and forwards it to the SFE. SPs travel
over paths, carrying information provided bythe SFEs on the
path. When a CPA recognizes that a SP has attained the end of
its path, it encapsulates it and forwards it to the corresponding
SRE, where its data is unloaded into the local Network State
Database (NetStatDB). SFEs can also forward data that is
monitored, such as packet counters or byte counters) to the
MAD at the SRE.

Each SRE is based on ONOS [34] and its software imple-
mented as an ONOS application with the three main modules
shown in Figure 6. The heart of the system is the Cognitive
Routing Module (CRM) that implements decision taken by
a RNN [35] with Reinforcement Learning for path selection
based on QoS, security or energy consumption in the network.
The MAD detects attacks at nodes using MAS of Section II.



Fig. 6. SRE: The SerIoT Controller and Routing Engine.

Other attack detection methods will also be considered in futire
work [28].

The SRE selects paths based on a Goal Function G(f, P )
which has non-negative real values and which must be min-
imized, where f denotes the packet flow to or from an IoT
device or end-user software, and P denotes a path travelled by
and the df , and the MAS in Section II provides the probability
pi that node i is under attack. For some SFE or network node
i, the Trust Level T (f, i) is non-negative number that is high
when i is not deemed secure enough to convey the flow secure
f . Also, S(f, i) is defined as the sensitivity of f to attacks at
node i.

A. Linking T (f, i) to the pi from MAS

Let A > 0 be a large positive constant used so that T (f, i)
may take values comparable to QoS values such as the delay
of links, and pi is the probability that an attack is detected at
node i by MAS. Then T (f, i) = A.(1 − pi) is the security
level of f related to node i. Let S(f, i) be the sensitivity of f
to the security of e. The Insecurity Factor I(f, i) is then used
to “separate” e and f :

I(f, i) = [S(f, i)− T (f, i)]+, (6)

where use the notation [X]+ = X if X > 0, and [X]+ = 0 if
X < 0. If we take S(f, i) = A, then I(f, i) = A.pd(i). and
we see that as pi increases, the “security cost” incurred by f
as it travels through i increases. the “Insecurity Factor” that
relates flows to paths, is:

I(f, P ) =
∑
i∈P

I(f, i). (7)

When less attention is paid to security, we may take the smaller
value I(f, P ) = maxi∈P I(f, i).

Let L(f, p) be the packet loss ratio, and D(f, P ) be the
forwarding delay for a packet of f on path P , while Ji is

the energy consumption per packet at node i. The packet
retransmissions due to packet losses [31], [36] result in:

Q(f, P ) =
D(f, P )

1− L(f, P )
, hence (8)

G(f, P ) =

{
I(f, P ), I(f, P ) ≥ θ,
Q(f, P ), ifI(f, P ) < θ,

(9)

where θ ≥ 0 is a security threshold that can be chosen
based on the importance of security considerations for this
system. G(f, i) or G(f, P ) are quantities to be minimized,
but Reinforcement Leaning (RL) requires a “reward” R(f, i)
that should be maximized, where:

R(f, i) =
1

G(f, i)
, R(f, P ) =

1

G(f, P )
. (10)

B. Reinforcement Learning

The metrics that feed into the quantity R(f, i) arecollected
via measurements, except the ones that are initially fixed,
namely θ, S(f, i) and the parameters such as α, β, γ de-
scribing the relative importance of different factors. Therefore
the RL based routing scheme to improve network security,
QoS and energy consumption, collects at each node i the
quantity G(f, i) and hence R(f, i), at successive arrivals of
a SP packet to an SDN controller. The SP will collect bring
back the relevant data for R(f, i) concerning each node i that
the SP has visited, to the SDN router that exploits the RL
algorithm to compute a “next hop” for SPs. Let the integer l
refer to the l − th value of the reward Rl(e, f) computed by
the SDN router for the node i and flow f . The RL algorithm
will first compute the quantity:

Tl = aTl−1 + (1− a)Rl, 0 ≤ a < 1, (11)

that describes the historical behaviour of the reward, and tells
how well the network has been doing. The RL algorithm will
then compute a set of RNN [35] weights as follows.

For an N node RNN, where N is the number of outgoing
links for node i, we associate with each outgoin link i a neuron
whose state is represented by the “excitation probability” qi of
the RNN. The RNN weights are real numbers W+

ij , W
−
ij ≥ 0

for i, j ∈ {1, ... , N}. From RNN theory [35] we know that:

qj =
λ+j +

∑N
l=1 qlW

+
lj

rj + λ−j +
∑N

l=1 qlW
−
lj

, (12)

where rj =
∑N

l=1[W
+
jl + W−jl ] is the “total firing rate” of

the neuron j. λ+j , λ
−
j are, respectively, the arrival rate of

excitatory and inhibitory spikes to neuron j from outside the
neuron i, which are set so that when all connection weights
are equal, then all neurons in the network have an excitation
probability of qj = 0.5.

Let k be the index of the neuron for which, after the v− 1-
th update of the RNN we have qk = max{q1, ... qN}. Also
save the current value rj ←

∑N
l=1[W

+
jl +W−jl ]. Note that the

node from which a SP entered the node where the next-hop
decision is being taken will not be used as the next-hop, so



that the decision at a given node will select one outgoing link
among N − 1. The RNN’s weights are updated as follows:

If Rl ≥ Tl−1 : ∀ j 6= k, j 6= i(Previous), i 6= k,

W+
ik ←W+

ik +Rl, W
−
ij ←W−ij +

Rl

N − 2
, (13)

If Rl < Tl−1 : ∀ j 6= k, j 6= i(Previous), i 6= k,

W−ik ←W−ik +Rl, W
+
ij ←W+

ij +
Rl

N − 2
, (14)

where we divide by N−2 since we are excluding i(Previous)
from which the SP initially arrived, also not increasing the
inhibitory weights of the winner node when Rl ≥ Tl−1, nor
increasing the excitatory weights of the loser node when Rl <
Tl−1. We then also renormalize the weights as follows:

r∗j ←
N∑
l=1

[W+
lj +W−lj ], (15)

W+
lj ←W+

lj

rj
r∗j
, W−jl ←W−jl

rj
r∗j

. (16)

Finally we calculate all the qj from equation (12), to select
the new output link for flow f at node i by selecting the new
output link k∗ with qk∗ = max{qj , j 6= i, 1 ≤ j ≤ N}.

C. Experimental Results

Experiments were run on a network with several with SFEs
composed of Linux boxes with ARMv8 processors (1,4 GHz,
4 GBit Ethernet, 2.4GHz and 5GHz 802.11b/g/n/ac WiFi
interface). They were configured to use Ethernet as the data
plane interface shown in Figure 7, and WiFi for management,
monitoring and for communications with the SRE. In the
figure s1, ... , s7 denote SFEs, h1, ... , h4 are IoT devices
each with a 633MHz MIPS processor, 100Mb/s Ethernet port,
and 2.4Mhz WiFi connection used as a management port, the
SRE is a workstation connected by WiFi to the test-bed, and
the MAD is installed on a separate workstation connected by
Ethernet port to the SRE, and by WiFi to the test-bed. The
type of experiments we run are represented by the measured
event trace shown in Figure 8.

Fig. 7. Topology of the test-bed.

In our experiments, every distinct pair of IoT devices in
{h1, ... , h4} forward 20 packets/sec or roughly 20 − 40
Kb/sec with 12 ongoing connections so that each packet rate
is compatible with IoT connections monitoring temperature or
water flow in pipes, etc. SPs are generated by every edge SFE
at 10 packets/sec. SRE management traffic includes OpenFlow
commands, link and topology discovery packets, and traffic
statistics. Management packet traffic through SFEs measured
using the Wireshark packet analyzer was four to five times
higher than SP traffic.

The experiments illustrate the system’s aptitude to be Self-
Aware and adapt, and we measure the SRE’s reaction time
to abrupt changes in the security conditions expressed by the
trust level for connections, and track changes to parameters
Rl and Tl−1 given in (11) for the Reinforcement Learning
Algorithm’s successive steps l. The SRE was programmed to
change network paths every 5 seconds, so that the experimental
results we present are limited by this constraint that has been
placed to avoid frequent changes that may increase system
overheads. The effect of changing the trust TF (., .) is shown
in Figure 8. The quantity that is plotted is the proportion of
the time it takes the SRE to respond to a large increase of
100 in the value of TF (f, i) for a node i on the path that
is currently used. We see that the reaction tie is on average
around 1 second, waitha maximum value around 2 seconds.

Fig. 8. Histogram of routing engine reaction time to a sudden substantial
change in the Trust Metric TF (., .).

IV. CONCLUSIONS AND FUTURE WORK

In this paper we have described a system that detects
node attacks in an IoT network using a deep learning based
Mulltiple Agent System, and exploits attack detection in order
to automatically mitigate the attacks by re-routing sensitive
traffic using Reinforcement Learning, while also taking into
consideration the QoS of different network paths. We have
also provided a preliminary evaluations of the performance
of both the attack detection and mitigation system. In future
research, additional measurements, fine tuning of parameters,
and experiments will be conducted to better evaluate the
interaction of QoS and security in complex adaptive IoT
networks. Using methods from diffusion processes [37], [38],
we will investigate the transients due to SDN based frequent
route updates, in response to potential attacks and changes



in QoS. We will also test locally operating anomaly and
attack detection software at nodes to reduce computation
times for anomaly detection, and improve the response of the
system to QoS and security changes, while possibly reducing
the accuracy offered by the proposed network-wide anomaly
detection scheme.
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