
1

Optimum Checkpoints for Time and Energy
Erol Gelenbe1, Miltiadis Siavvas2, Pawel Boryszko1, Joanna Domanska1

1) IITIS, Polish Academy of Sciences
ul. Baltycka 5, 44100 Gliwice, Poland

2) Information Technologies Institute, Centre for Research and Technology Hellas
6th km Harilaou-Thermi, Thessaloniki, 57001 Greece

Abstract—We consider programs running on systems where
failures can occur, and in which checkpoints are used to assure
the reliability of the programs’ execution. We consider the energy
consumption for the program’s execution, in addition to its
run time, as criteria that need to be used to minimize the
overall cost due to checkpoints. New expressions for both the
program’s run-time and the corresponding energy consumption
that include the failure probability per instruction execution,
and the overhead incurred for each checkpoint, are derived.
For programs which run indefinitely in an infinite loop, such
as certain real-time applications, a first principle based analysis
yields the checkpoint interval that minimizes a linear combination
of the average execution time of the program and of its average
energy consumption via the classical “Lambert W(.) function”.
For looping programs which run for a finite time, the optimum
checkpoint interval is obtained using a different approach. The
results are illustrated with numerical examples.

I. INTRODUCTION

Reliability is a critical aspect for long-running software
applications that perform computationally expensive tasks
[1]. In such applications, a single failure may lead to the
re-execution of a large number of operations, leading to
significant overheads in important Quality-of-Service (QoS)
parameters, including performance and energy consumption.

These overheads may have significant consequences for
time-critical software programs that have to provide their
results within a specific time frame [2], [3], [4], as well
as for energy-critical applications that have to ensure the
energy efficiency of their operation [5]. Hence, fault tolerance
mechanisms that avoid complete program re-execution in case
of failures are required.

Several such fault tolerance mechanisms exist [6], and the
Checkpoint and Restart (CR) is the most widely used. CR
periodically keeps a safe copy (or a checkpoint) of the program
execution state, and uses it to restart the program in case of a
failure.

Checkpointing schemes have also become very popular
in high performance computing systems [7], [8], [9], [10],
and they have also been impelemented in operating systems
such as Unix or Linux [11], [12], [13]. Another area where
checkpointing has proved to be important, is the consistency
of distributed systems [14], [15], [16].

This research was supported by the European Commission through the
Horizon 2020 SDK4ED Project under Grant Agreement No. 780572. The
contents of this paper represent the opinions of the authors, and do not engage
the responsibility of the European Commission.

Among the existing checkpointing strategies [6], [17], the
Application-level Checkpoint and Restart (ALCR) [18], [19]
is considered the most efficient, as it leaves a smaller mem-
ory footprint. However, it implementing checkpoints requires
significant programming knowhow and effort. Also, expertise
is needed to select both the code locations and the checkpoint
intervals. Although existing ALCR tools and libraries facilitate
the insertion of checkpoints in long-running loops [20], [21],
these tools typically do not provide a method to select the
inter-checkpoint interval, which has a key influence on the
execution time and energy consumption of the software.

Long intervals of time between checkpoints will increase the
overhead associated with system restart, while short intervals
will increase the overhead caused by the checkpoints them-
selves. Hence, the checkpoint interval must be chosen so as
to optimize important QoS parameters, including performance
and energy consumption [22], [23], [24].

Although the impact of the checkpoint interval has been
extensively studied with regard to overall system availability
and total program execution time in the case of transaction-
oriented systems [25], [26], [27], [28], [29], there has been
hardly any work on checkpoint optimization for energy con-
sumptin. There has also been little work about checkpoint
optimization for modern software applications that adopt the
ALCR mechanism to the exception of some recent papers [30],
[31].

The present paper innovates mainly by studying checkpoint
intervals in order to effect savings in the total energy consumed
by a program’s execution, in addition to the usual considera-
tion of total execution time. Indeed, increasingly over the last
decade the question of energy consumption has come to the
forefront both for Clouds and data centres [32], [33], [34], [35]
and with regard to the sustainability of hardware and software
systems in general [36], [37].

In the sequel, starting from first principles, we develop a
mathematical model to estimate the average execution time
as well as the energy consumption of a program with long
loops that operates in the presence of failures, without and
with application-level checkpointing. This model is used to
compute the checkpoint interval that minimizes the average
execution time of the program, as well as the checkpoint
interval that minimizes its energy consumption.

More importantly, it is also used to determine the checkpoint
interval that can achieve a compromise between expected
execution time and energy consumption, by minimizing a
cost function that combines these two elements. Analytical

2

expressions of the resulting optimum checkpoint interval are
obtained in terms of the well known Lambert Function. Several
numerical examples illustrate these results. We also present a
toolbox that can be used to select the checkpoint interval that
minimizes these various quantities.

II. A SINGLE LOOP ROGRAM WITH CHECKPOINTS

Consider a program P that executes yn instructions betwen
its (n−1)-th and n-th checkpoint, without counting all possible
failures and failure recoveries. Now consider the instant tn >
0 when the program creates its n − th checkpoint, and let
Yn denote the total number of instructions that the program
has executed by time tn since it started, where Yn does not
include all the repeated instructons that were executed due to
checkpoints and failure recovery, and onviously:

Yn =
n∑

i=1

yi. (1)

Let B(Yn) be the time needed to create the n−th checkpoint.
This quantity will generally depend on the total memory space
occupied by the program, which is fixed once the program is
known, but in certain cases it may depend on Yn, since the
program may generate new data as it is executing. Hence we
will write B(Yn) = B0 + B1Yn where B0 > 0 and B1 ≥ 0
are constants for the given program.

On the other hand, suppose a failure occurs after the
program has successfully executed y instructions after a check-
point. For instance suppose a failure occurs after the program
has executed Yn + y instructions. If b(Yn, y) is the time it re-
quires to restart the program from the most recent checkpoint,
when the program has successfully executed y ≤ Yn+1 − Yn
instructions after the most recent checkpoint but before the
(n+1) checkpoint, then we will take b(Yn, y) = b0+b1y where
b0 > 0 and b1 ≥ 0 are constants, so that this time depends
only on the number of instructions that have been executed by
the program since the last checkpoint was established.

In summary we are assuming that:

• The time Bc(Yn) needed to establish the n-th checkpoint
depends on the “age of the program” or the total number
of instructions Yn it has executed since the beginning, i.e.
Bc(Yn) = Bc

0 +Bc
1(Yn),

• The time bc(Yn, y) needed to recover from a failure after
the n-th checkpoint, including the time related to re-
loading system state after the failure, only depends on
y <≤ Yn+1 − Yn, the “computation time undertaken by
the program since the last checkpoint”, i.e. bc(Yn, y) ≡
bc(y) = bc0 + bc1y.

Similarly, we denote the energy consumption for creating the
n-th checkpoint to be Be(Yn), and be(y) is the energy used
to recover from a failure after a failure that occurs when the
total number of instructions executed is Yn+y leqYn+1. Also,
we will have Be(Yn) = Be

0 + Be
1Yn, and be(y) = be0 + be1y

with Be
0 > 0, Be

1 ≥ 0 and be0 > 0, be1 ≥ 0.

Let α, β > 0 be positive constants that represent the relative
costs of computation time and energy consumption. We can
then define the parameters:

B0(Y) = αBc
0(Y) + βBe

0(Y),

B1(Y) = αBc
1(Y) + βBe

1(Y),

b0 = αbc0 + βbe0,

b1 = αbc1 + βbe1, c = αcc + βce.

A. Fixed Checkpoint Intervals

Earlier work has shown that “age dependent” checkpoints
[28] can reduce the overall cost of checkpointing and failure
recovery, when (for instance) the failure rate of a system
increases with time. However, most practical checkpointing
schemes use a simpler approach where checkpoints are carried
out periodically each time the program has executed success-
fully a predertmined fixed number of instructions yn = y.
Thus, in the sequel we will make this assumption, so that
checkpoints are placed after Y1 = y, Y2 = 2y, .. Yn = ny,
etc. instructions have been successfully executed, and we will
proceed to compute the optimum value of y, assuming that n
is fixed in advance.

When the program ends after Y = Ny instructions are
executed, a further (N + 1)-th checkpoint is not needed,
while the first checkpoint is obviously installed before the first
instruction is executed.

We can then formulate our problem as that of a program that
executes a total fixed number of instructions Y , where we want
to choose the constant value y of the number of instructions
between checkpoints, or equivalently we can choose N , the
number of checkpoints so that Y = Ny so that the total
overhead in additional work and energy consumption due to
failures and due to checkpoints is minimized.

For a given y, let us compute Cc(y), the corresponding
“total expected execution time”, including all restarts due to
failures, starting from the most recent checkpoint. When the
average execution time per instruction is c, and the failure
probability per instruction is (1 − a), the total average time
elapsed time for the execution of y instructions is:

Cc(y) = cyay + (b0 + Cc(y))(1− ay),

+(cc + bc1)

y∑
x=1

xax−1(1− a), (2)

because with probability ay a failure does not occur durung
the y instructions, leading to an execution time of ccy time
units, while with probability (1−a)y at least one failure does
occur among the y instructions, and the first of those requires
a program re-start time of bc0, to which we should add Cc(y)
representing the effect of all future failures after the program
has been re-initialised from the checkpoint.

In addition, we have to include the execution time plus the
amounf of additonal work needed per executed instruction,
until the failure occurs – hence the term (cc+bc1) – multiplied

3

by x and the probability that the failure occurs at instruction
x which is ax−1.a, summed over x running from 1 to y. Since

y∑
x=0

ax =
1− ay+1

1− a
,

and
d

da

1− ay+1

1− a
=

1− yay(1− a)− ay

(1− a)2
,

we obtain:

Cc(y) = bc0[a
−y − 1] +

cc + bc1
1− a

[a−y − 1]− bc1y. (3)

the total expected energy consumption Ce(y) for a number of
instructions y after the most recent checkpoint, we similarly
obtain the quantity:

Ce(y) = be0[a
−y − 1] +

ce + be1
1− a

[a−y − 1]− be1y, (4)

where ce denotes the average energy consumption per instruc-
tion, so that

C(y) = αCc(y) + βCe(y),

= b0[a
−y − 1] +

c+ b1
1− a

[a−y − 1]− b1y. (5)

Interestingly enough, we can show using l’Hôpital’s Rule, for
all y ≥ 1, that:

lim
a→1

C(y) = cy, (6)

as would be expected.
Treating y as if it were a real number, we can compute

the derivative of C(y). We first note that for a differentiable
function f(y) of the real variable y, we can write:

df

dy
= f.

d ln f

dy
, hence

d

dy
a−y = −a−y. ln a, (7)

and therefore

dC(y)

dy
= − ln a.[

b0
ay

+
c+ b1

ay(1− a)
]− b1. (8)

Because a ≤ 1, the quantity − ln a ≥ 0, and since y is large,
1
ay is very large and dC(y)

dy > 0.

III. MINIMIZING COMPUTATION TIME AND ENERGY

When we include both the time and energy needed to create
each checkpoint, and assuming a fixed number of instructions
y executed between successive checkpoints, we can obtain
the total cost of the program up to and including the last
instruction executed at Y = yN as:

KN (y) = NB0 +

N∑
i=1

iyB1 +NC(y), (9)

= NB0 + C(y) +
N(N + 1)

2
yB1. (10)

The optimum checkpoint interval y∗ is then the value of y
that minimises κN (y), the overall cost per unit work that is

accomplished, i.e. KN (y) divided by Y = Ny which is the
total number of useful instructions executed over this time:

κN (y) ≡ KN (y)

Ny

=
B0 + C(y)

y
+ (

Y

y
+ 1)

B1

2

=
B0 +

B1Y
2 + C(y)

y
+
B1

2
. (11)

Therefore to seek the optimum value of y, we compute the
following derivative and set it to zero:

dκN
dy

=
y dC(y)

dy − (B0 +
B1Y
2 + C(y))

y2
, (12)

so that the optimum value of y is:

y∗ =
B0 +

B1Y
2 + C(y∗)

dC(y)
dy |y=y∗

=

B0 +
B1Y
2 + b0[a

−y∗ − 1] + c+b1
1−a [a

−y∗ − 1]− b1y∗

− ln a.[b0
ay∗ + c+b1

ay∗ (1−a)]− b1
,

or − y∗lna+ 1

ay∗ =
B0 +

B1Y
2

b0 +
c+b1
1−a

− 1. (13)

Defining B = B0 +
B1Y
2 and

A = b0 +
c+ b1
1− a

, (14)

we have:

−y
∗ ln a+ 1

ay∗ =
B0 +

B1Y
2

b0 +
c+b1
1−a

− 1,

or ln(a−y
∗
.e−1)[e−1a−y

∗
] =

−(y∗ ln a+ 1)e−(y
∗ ln a+1) =

B −A
e.A

, (15)

To verify that y∗ is the minimum value, we compute:

d2κN (y)

dy2
=
y3C ′′(y)− 2y(yC ′(y)−B − C(y))

y4
, (16)

where C ′(y), C ′′(y) denote the first and second derivatives
of C(y) with respect to y, and B = B0 + B1Y . Since at y∗

we have y∗C ′(y∗) = B + C(y∗), we can write:

d2κN (y)

dy2
|y=y∗ =

C ′′(y)

y
|y=y∗ , (17)

and we need to examine the sign of C ′′(y∗). Starting from (8)
we have:

C ′′(y) = a−y(ln a)2[b0 +
c+ b1
1− a

]− a−y ln a c+ b1
(1− a)2

, (18)

which is positive, so that y∗ is indeed the value of y at the
minimum.

4

A. The Optimum Checkpoint using the Lambert Function

Let us first recall the definition of the Lambert Function
W (z) [38], [39], [40], [41]. Consider any two numbers z, w,
which have the following relation:

z = w expw;⇐⇒ w =W (z). (19)

Thus, if we can write z = wew, then w =W (z), and similarly
if w =W (z), then z = wew.

Applying (19) to equation (15), we can write the expression
for y∗ as:

y∗ = − 1

ln a
[W (

B −A
e.A

) + 1], (20)

which provides an explicit solution for the value of the
optimum checkpoint interval y∗. Cleaarly, if we set α = 1
and β = 0, we obtain the optimum checkpoint that simply
minimizes the overall exection time, without consideration for
the energy consumption.

Also, if in the system under consideration the creation of
a checkpoint does not depend on the amount of successful
computation that the program has accomplished until the time
of the checkpoint, then we simply set Bc

1 = Be
1 = 0 in the

expression for B, so that B = B0 which is the case that is
usually discussed in the literature.

B. Sensitivity of the Optimum to Energy Consumption and
Computation Time

An important question concerns how y∗ varies with changes
in the relative importance of the energy expenditure with
respct to computation time. To address this issue as a single
parameter problem, we will set α = 1, and consider the
derivative of y∗ with respect to β. Noting that we can now
write B = Bc + βBe and A = Ac + βAe, we have:

∂y∗

∂β
= − 1

ln a
W ′(

B −A
e.A

).
BeAc −AeBc

(eA)2
,

= − 1

ln a

W (B−Ae.A)(BeAc −AeBc)
B−A
e.A (1 +W (B−Ae.A))((eA)2)

,

= − (y∗ ln a+ 1)(BeAc −AeBc)

y∗(ln a)2(B −A)eA
, (21)

where we have used the identity:

dW (x)

dx
=

W (x)

x(1 +W (x))
, (22)

when x 6= 0 and x 6= − 1
e . These two conditions will be

satisfied because it is unlikely in practice that the system
parameters be such that B = A, furthermore it is impossible
that B −A = −A because B > 0.

Thus we can use the expression (21) to determine how fast
y∗ will vary as a function of y∗. In particular we have the
following very interesting result.

Result: When BeAc = AeBc, then y∗ is does not depend on
the relative weight of the execution time and energy consump-
tion, so that a single value of y∗ will minimize the overall
cost for α = 1 and any value of β that represents the relative
importance of energy consumption to computtaion time.

IV. A PROGRAM WITH A SINGLE LONG LOOP

In this section we will apply the previous results to a
program with a single long loop of length L instructions which
is executed some number, say T times, so that Y = LT .
For this program we may be constrained to place checkpoints
either at the start of a loop so that y = m.L with one
checkpoint for each m > 1 loops, or n checkpoints may be
placed within the loop with L = ny where n > 1, or we set
n = 1.

We first apply the previous results to compute y∗:

y∗ = − 1

ln a
[W (

B −A
e.A

) + 1], (23)

where:

B = B0 +B1L.T, A = b0 +
c+ b1
1− a

, (24)

so that

y∗ = − 1

ln a
[W
((1− a)(B0 +B1L.T)

e[b0(1− a) + c+ b1]
− 1

e

)
+ 1]. (25)

Let us denote by I(x) the integer that is closest to the real
number x. Then we compute r = L

y∗ , and:

• If r ≥ 1 we set n = I(r),
• If r < 1, we set n = I(1r).

To illustrate these results, some numerical examples are pro-
vided in order to show the effect of the checkpoint interval n
(expressed in terms of the number of loop repetitions between
checkpoints) on the expected execution time and the total
energy consumption of a software application that operates
in the presence of failures. In order to differentiate the effect
of computation time and energy consumption, we use no to
represent the checkpoint interval that minimizes the total com-
putation time, while n+ referers to the optimum checkpoint
interval that minimizes the total energy consumption. Note
that in the preceding analysis, no can be obtained by setting
α = 1, β = 0, while n+ is obtained by setting α = 0, β = 1.

In the following examples we consider the case of a program
with a single loop in which checkpoints are established at the
beginning (or at the end) of the loop. We consider the cases
of a small, medium, large, and very large program, comprised
of Y = 104, 105, 106, 107 instructions, respectively. The
expected execution time of the same program with and without
the adoption of the ALCR mechanism is calculated and the
corresponding optimization problem is solved numerically.
The parameter values that we use are:

Be
0 = 500, Be

1 = 0, Bc
0 = 105, B1c = 0, cc = 1

ce = 10−5, be0 = 100, be1 = 10, bc0 = 100, bc1 = 10

g = 5× 10−6, L = 100, N = 10−4.

In Figure 1, the example of a small software program (i.e.,
Y = 104) is considered. Figure 1a compares the expected
execution time of the application with and without the ALCR
mechanism for different values of n, while Figure 1b shows
the expected Gain in terms of expected execution time for
different values of n. The values that correspond to the
optimum checkpoint interval no are marked within a rectangle.

5

(a)

(b)

Fig. 1: The case of a small software program (i.e., Y = 104):
(a) Expected execution time comparison (logarithmic axes) (b)
Expected execution time gain.

Figure 1 illustrates the fact that the optimum checkpoint
interval no minimizes the overall execution time of the appli-
cation and maximizes the overall expected Gain. From Figure
1 it is clear that the ALCR mechanism will not reduce the
expected execution time of a given software application unless
the checkpoint interval is optimally selected. Indeed, for some
poorly chosen values of n, the expected execution time of
the application with checkpointing is higher than the expected
execution time of the same application without checkpoints.

Similar observations can be made for software with longer
loops in Figures 2, 3 and 4. This emphasizes the importance
of setting n to be close or at no, when there is a need for
minimizing the execution time of the program.

The examples of Figures 1, 2, 3 and 4 show that a significant
reduction in the execution time of a software application
can be achieved by the ALCR mechanism, if the checkpoint
interval is selected to be at, or close to, the optimum no. In

(a)

(b)

Fig. 2: The case of a software program of medium size
(i.e., Y = 105): (a) Expected execution time comparison
(logarithmic axes) (b) Expected execution time gain.

these examples the Gain, ranges from 64% to 80%. However,
suboptimal values of the checkpoint interval will lead to a
smaller Gain or even to an average execution time which is
larger than when ALCR is not used. Indeed, the checkpoint
interval should not be selected arbitrarily and must be tuned
to a value at, or close to, the optimum no.

Still there is a relationship between calculations for no and
n+. However, we must have in mind that optimum checkpoint
interval will be different regarding energy consumption and
execution time. Figure 5 shows how they correspond to each
other. More specifically, Figure 5a shows how execution time
changes when we want to use optimal checkpoint interval
calculated for energy consumption. Similarly Figure 5b shows
how energy consumption changes when we want to use the
checkpoint interval that optimizes execution time.

6

(a)

(b)

Fig. 3: The case of a large software program (i.e., Y = 106):
(a) Expected execution time comparison (logarithmic axes) (b)
Expected execution time gain.

A. Impact of g and B on the Optimum Checkpoint Interval

The optimum checkpoint interval no is expected to be
influenced both by the probability of failure g = 1−a, and by
the cost of checkpointing Bc = Bc

0. In Figure ??, the optimum
checkpoint interval no is plotted against the probability of
failure g, for three different cases of checkpointing cost Bc.
Four different examples are provided, corresponding to a
sample software program of small, medium, large, and very
large size. In fact, the same cases of programs that were
investigated in Section IV were considered in this section.

From the different graphs in Figure 6 and Figure 7, we
notice that the same behavior is observed regarding the impact
that the values of Bc and g have on the optimum checkpoint
interval, regardlessof program size. Indeed for a given check-
pointing cost Bc, the higher the probability of failure g, the
lower the optimum checkpoint interval no. Conversely, for
a specific probability of failure g, a higher cost of a single

(a)

(b)

Fig. 4: The case of a very large software program (i.e., Y =
107): (a) Expected execution time comparison (logarithmic
axes) (b) Expected execution time gain.

checkpoint Bc eads to a larger optimum checkpoint interval
no.

These observations are highly intuitive, since frequent
checkpointing should be applied when the probability of
failure is high, while checkpoints should be generated less
frequently when the checkpointing cost is high. The same ob-
servations hold for the case of the optimum checkpoint interval
n+ that minimizes the total expected energy consumption of
the program.

V. CONCLUSIONS

Checkpoints are widely used in databases, operating sys-
tems, and in high performance computing. They allow a
system to recover from failures whithout having to restart each
program’s execution from scratch every time a failure occurs.
However checkpointing has costs both in additional time and
energy, even when no failures occur.

7

(a)

(b)

Fig. 5: The case of a large software program (i.e., M = 106):
(a) Expected execution time with highlighted n+. (b) Expected
energy consumption with highlighted no.

Thus, this paper has analyzed the choice of optimum
checkpoint intervals both from the perspective of energy costs
and costs in execution time. Statring from first principles
we have derived the optimum checkpoint for long running
programs and detailed the analysis for programs with a long
running outer loop. Explicit analytic results have been derived
with closed form expressions and have been illustrated with
numerical examples.

Future work will consider nested program structures and
ways of linking checkpointing and program structure in a
useful and intuitive manner, similar to what is done in this
paper for programs witha large single loop.

REFERENCES

[1] B. Randell, “System Structure for Software Fault Tolerance,” Science,
no. 2, pp. 1–18, 1975. [Online]. Available: http://portal.acm.org/citation.
cfm?doid=800027.808467

(a)

(b)

Fig. 6: The optimum checkpoint interval no against the proba-
bility of failure g for different cases of checkpointing cost Bc,
for a program of small (a) size with Y = 104, and a medium
sized program in (b) with Y = 105.

[2] L. V. Kale and S. Krishnan, “Charm++: A portable concurrent object
oriented system based on c++,” Parallel Process Letters, vol. 28, no. 10,
pp. 91–108, 1993.

[3] G. Zheng, L. Shi, and L. V. Kale, “Ftc-charm++: an in-memory
checkpoint-based fault tolerant runtime for charm++ and mpi,” in 2004
IEEE international Conference on Cluster Computing, September 2004,
pp. 93–103.

[4] G. L. Stavrinides and H. D. Karatza, “The impact of checkpointing in-
terval selection on the scheduling performance of real-time fine-grained
parallel applications in SaaS clouds under various failure probabilities,”
Concurrency and Computation: Practice and Experience, vol. 30, no. 12,
p. e4288, 2018.

[5] D. Dauwe, R. Jhaveri, S. Pasricha, A. A. Maciejewski, and H. J.
Siegel, “Optimizing checkpoint intervals for reduced energy use in
exascale systems,” in 2017 Eighth International Green and Sustainable
Computing Conference (IGSC). IEEE, 2017, pp. 1–8.

[6] I. P. Egwutuoha, D. Levy, B. Selic, and S. Chen, “A survey of fault
tolerance mechanisms and checkpoint/restart implementations for high
performance computing systems,” Journal of Supercomputing, vol. 65,
no. 3, pp. 1302–1326, 2013.

[7] S. Vadhiyar and J. Dongarra, “Srs – a framework for developing
malleable and migratable parallel software,” Parallel Processing Letters,
vol. 13, no. 2, pp. 291–312, 2003.

8

(a)

(b)

Fig. 7: The optimum checkpoint interval no against the prob-
ability of failure g for different cases of checkpointing cost
Bc, for a large program a with Y = 106, and a very large
program (b) with Y = 107.

[8] J. Mehnert-Spahn et al., “Architecture of the xtreemos grid checkpoint-
ing service,” in EuroPar 2009, LNCS 5704. Springer, Cham, 2009, pp.
429–441.

[9] S. Agrawal, R. Garg, M. S. Gupta, and J. E. Moreira, “Adaptive
incremental checkpointing for massively parallel systems,” in ICS ’04:
Proceedings of the 18th Annual International Conference on Supercom-
puting. ACM, 2004, p. 277–286.

[10] A. Moody, et al., “Design, modeling, and evaluation of a scalable
multi-level checkpointing system,” in SC ’10: Proceedings of the 2010
ACM/IEEE International Conference for High Performance Computing,
Networking, Storage and Analysis, 2010, pp. 1–11.

[11] J. S. Plank, M. Beck, G. Kingsley, and K. Li, “Libckpt: transparent
checkpointing under unix,” Technical Report UT-CS-94-242, Department
of Computer Science, University of Tennessee, 1994.

[12] J. Duell, “The design and implementation of berkeley lab’s linux
checkpoint/restart,” April 2005. [Online]. Available: http://www.nersc.
gov/research/FTG/checkpoint/reports.html

[13] J. B. M. Litzkow, T. Tannenbaum, and M. Livny, “Checkpoint and
migration of unix processes in the condor distributed processing system,”
Technical Report, University of Wisconsin, Madison, no. 1346, 1997.

[14] M. Chandy and L. Lamport, “Distributed snapshots: determining global
states of distributed systems,” ACM Transact Comput. Syst., vol. 3, no. 1,
p. 63–75, 1985.

[15] Y. M. Wang and W. K. Fuchs, “Optimistic message logging for inde-
pendent checkpointing in message-passing systems,” in Proceedings of
the 11th symposium on reliable distributed systems, October 1992, p.
147–154.

[16] J. C. Sancho et al., “On the feasibility of incremental checkpointing
for scientific computing,” in 18th International Parallel and Distributed
Processing Symposium, 2004. Proceedings,. IEEEXplore, 2004.

[17] M. Siavvas et al., “Static analysis-based approaches for secure software
development,” in Security in Computer and Information Sciences. Com-
munications in Computer and Information Science, E. Gelenbe et al.,
Ed., vol. 821. Springer, Cham, 2018, pp. 142–157. [Online]. Available:
http://link.springer.com/10.1007/978-3-319-95189-8{\ }13

[18] R. Arora, “ITALC : Interactive Tool for Application - Level Checkpoint-
ing,” Proceedings of the Fourth International Workshop on HPC User
Support Tools, 2017.

[19] F. Shahzad, J. Thies, and G. Wellein, “CRAFT: A library for easier
application-level Checkpoint/Restart and Automatic Fault Tolerance,”
IEEE Transactions on Parallel and Distributed Systems, 2018.

[20] N. Losada, M. J. Martı́n, G. Rodrı́guez, and P. Gonzalez, “Portable
application-level checkpointing for hybrid MPI-OpenMP applications,”
Procedia Computer Science, vol. 80, pp. 19–29, 2016.

[21] G. Rodrı́guez, M. J. Martı́n, P. González, J. Touriño, and R. Doallo,
“CPPC: a compiler-assisted tool for portable checkpointing of message-
passing applications,” Concurrency and Computation: Practice and
Experience, vol. 22, no. 6, pp. 749–766, 2010. [Online]. Available:
http://dx.doi.org/10.1002/cpe.1541

[22] E. Gelenbe, “A model on information renewal by the method of multiple
test points,” Avtomatika i Telemekhanika, no. 4, pp. 142–151, 1979.

[23] S. K. Tripathi, D. Finkel, and E. Gelenbe, “Load sharing in distributed
systems with failures,” Acta informatica, vol. 25, no. 6, pp. 677–689,
1988.

[24] E. Gelenbe, D. Finkel, and S. K. Tripathi, “Availability of a distributed
computer system with failures,” Acta Informatica, vol. 23, no. 6, pp.
643–655, 1986.

[25] J. W. Young, “A first order approximation to the optimum checkpoint
interval,” Commun. ACM, vol. 17, no. 9, pp. 530–531, Sep. 1974.
[Online]. Available: http://doi.acm.org/10.1145/361147.361115

[26] E. Gelenbe and D. Derochette, “Performance of rollback recovery
systems under intermittent failures,” Commun. ACM, vol. 21, no. 6, pp.
493–499, Jun. 1978. [Online]. Available: http://doi.acm.org/10.1145/
359511.359531

[27] E. Gelenbe, “A model of roll-back recovery with multiple checkpoints,”
in Proceedings of the 2Nd International Conference on Software
Engineering, ser. ICSE ’76. Los Alamitos, CA, USA: IEEE
Computer Society Press, 1976, pp. 251–255. [Online]. Available:
http://dl.acm.org/citation.cfm?id=800253.807684

[28] E. Gelenbe and M. Hernández, “Optimum checkpoints with age
dependent failures,” Acta Informatica, vol. 27, no. 6, pp. 519–531,
May 1990. [Online]. Available: https://doi.org/10.1007/BF00277388

[29] E. Gelenbe, “On the optimum checkpoint interval,” J. ACM,
vol. 26, no. 2, pp. 259–270, Apr. 1979. [Online]. Available:
http://doi.acm.org/10.1145/322123.322131

[30] M. Siavvas and E. Gelenbe, “Optimum interval for application-level
checkpoints,” in 2019 6th IEEE International Conference on Cyber
Security and Cloud Computing (CSCloud)/2019 5th IEEE International
Conference on Edge Computing and Scalable Cloud (EdgeCom). IEEE,
2019, pp. 145–150.

[31] ——, “Optimum checkpoints for programs with loops,” Simulation
Modelling Practice and Theory, vol. 97, p. 101951, 2019.
[Online]. Available: http://www.sciencedirect.com/science/article/pii/
S1569190X1930084X

[32] S. Dobson, et al., “A survey of autonomic communications,” ACM
Transactions on Autonomous and Adaptive Systems (TAAS), vol. 1, no. 2,
pp. 223–259, 2006.

[33] A. Berl, et al., “Energy-efficient cloud computing,” The Computer
Journal, vol. 53, no. 7, pp. 1045–1051, 2010.

[34] E. Gelenbe, “Energy packet networks: adaptive energy management for
the cloud,” in Proceedings of the 2nd International Workshop on Cloud
Computing Platforms, 2012, pp. 1–5.

[35] R. Buyya, et al., “A manifesto for future generation cloud computing:
Research directions for the next decade,” ACM Computing Surveys
(CSUR), vol. 51, no. 5, pp. 1–38, 2019.

[36] B. Pernici, et al., “What is can do for environmental sustainability: a
report from caise’11 panel on green and sustainable is,” Communications
of the Association for Information Systems, vol. 30, no. 1, 2012.

9

[37] E. Gelenbe and Y. Caseau, “The impact of information technology on
energy consumption and carbon emissions,” Ubiquity, vol. 2015, no.
June, pp. 1–15, 2015.

[38] J. H. Lambert, “Observationes variae in mathesin puram,” Acta Helveti-
cae Physico-Mathematico-Anatomico-Botanico-Medica, vol. III, 1758.

[39] L. Euler, “De serie lambertina plurimisque eius insignibus proprietati-
bus,” Acta Acad. Scient. Petropol., vol. 2, pp. 29–51, 1783.

[40] G. Pólya and G. Szegö, Aufgaben und Lehrsätze der Analysis. Springer-
Verlag, 1925.

[41] J. Daly, “A higher order estimate of the optimum checkpoint
interval for restart dumps,” Future Generation Computer Systems,
vol. 22, no. 3, pp. 303 – 312, 2006. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0167739X04002213

