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 A B S T R A C T

The Massive Access Problem arises due to devices that forward packets simultaneously to servers 
in rapid succession, or by malevolent software in devices that flood network nodes with high-
intensity traffic. To protect servers from such events, attack detection (AD) software is installed 
on servers, and the Quasi-Deterministic Transmission Policy (QDTP) has been proposed to 
‘‘shape traffic’’ and protect servers, allowing attack detection to proceed in a timely fashion 
by delaying some of the incoming packets individually based on their arrival times. QDTP does 
not cause packet loss, and can be designed so that it does not increase end-to-end packet delay. 
Starting with measurements taken on an experimental test-bed where the QDPT algorithm is 
installed on a dedicated processor, which precedes the server itself, we show that QDPT protects 
the server from attacks by accumulating arriving packets at the input of the QDTP processor, 
then forwarding them at regular intervals to the server. We compare the behaviour of the 
server, with and without the use of QDTP, showing the improvement it achieves, provided 
that its ‘‘delay’’ parameter is correctly selected. We analyze the sample paths associated with 
QDTP and prove that when its delay parameter is chosen in a specific manner, the end-to-end 
delay of each packet remains unchanged as compared to an ordinary First-In-First-Out system. 
An approach based on stationary ergodic processes is developed for the stability conditions. 
Assuming mutually independent and identically distributed inter-arrival times, service times 
and QDTP delays, we exhibit the positive recurrent structure of a two-dimensional Markov 
process and its regeneration points.

1. Introduction

The number of devices in the Internet of Things (IoT) reached 18𝐵𝑛 by the end of 2023, and is expected to attain 20𝐵𝑛 by 
the end of 2025 [1]. While this is less than the 30𝐵𝑛 devices that was predicted in 2020 [2] for 2023, it is still extremely large. 
Since the majority of these devices are low-cost simple machine-to-machine devices [3] which communicate via base stations or 
IoT Gateways, and forward large amounts of data to the Cloud and Edge, these large networked systems can experience a form of 
congestion known as the ‘‘Massive Access Problem’’ [4], causing untenable delays, possible packet loss, and the slowdown of needed 
attack detection software, due to the higher-priority packet processing tasks that are carried out by the multi-core servers.
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The effect of the Massive Access Problem is similar to that of ‘‘flood attacks’’ or Distributed Denial of Service (DDoS) attacks 
which occur when a large number of packets are sent towards one or more IP addresses, often as a result of a Denial of Service 
(DoS) or Botnet attack. Thus, many efforts have addressed the Massive Access Problem with congestion-based adaptive routing [5], 
access class barring [6,7], randomization and scheduling of packets [8], smart machine-to-machine communication [9,10], device 
clustering [11,12] and other techniques such as Joint Forecasting-Scheduling and Priority based on Average Load [13], and 
reactive techniques that adapt the receiver’s capacity to receive and process incoming traffic [14–18]. Other work has proposed 
that the transmitters may cooperate to improve channel usage efficiency and QoS [19,20], despite the well-known difficulty of 
managing access among unsynchronized distributed devices [21], and proactive prediction of IoT traffic patterns [22–24]. However, 
a scheduling approach may require additional computation, while Machine Learning (ML) to analyze the arrival and service 
characteristics, and sophisticated scheduling techniques can cause additional computation and communication costs.

Traffic shaping is a simpler approach that can be implemented at the sources of traffic [25]. It is widely used in networks [26] to 
reduce latency and optimize the bandwidth available to certain packets by delaying some other packets. Typically used at the source 
or edge, it is defined by the International Telecommunication Union (ITU) [27] as a scheme which ‘‘alters the traffic characteristics 
of a stream of cells ... to achieve a desired modification of those traffic characteristics, in order to achieve better network efficiency whilst 
meeting the QoS objectives or to ensure conformance’’. However, the ITU also indicates that many traffic shaping techniques have the 
‘‘ ... consequence of increasing the mean cell transfer delay’’. Though traffic shaping is mainly accomplished by delaying packets, it is 
sometimes confused with ‘‘traffic policing’’ which includes preventive packet dropping [28], while traffic shaping can result in more 
delay for some packets that may cause loss of data in finite buffers. Both approaches have been widely discussed for Asynchronous 
Transfer Mode (ATM) communications [29] and for the Internet Protocol (IP) [30,31].

Recent work [32] has introduced the Quasi-Deterministic-Transmission-Policy (QDTP) for the shaping of traffic sent by IoT 
devices, to protect an IoT Gateway from the Massive Access Problem, and from the massive amount of traffic generated by Denial 
of Service (DoS) or UDP flood attacks. When a cyberattack detection algorithm (AD) is installed in the IoT Gateway or server, to 
detect a DoS or flood attack rapidly and help mitigate its effect, the AD, which is implemented as application-level software, can 
be substantially slowed down by the amount of processing used by higher-priority network protocol software and the operating 
system to handle and store the incoming packets. The AD’s slowdown then delays its ability to detect both attacks and the equally 
important end of an attack. In such circumstances, QDTP, which we detail in Section 3, does not drop packets and can be placed 
on specific hardware (such as a Raspberry Pi) between the network and the Gateway, to dynamically delay the packets’ arrival at 
the Gateway and protect the Gateway software, including the AD, from being overwhelmed.

If the QDTP delay is set to a value that does not exceed the processing time of the AD, it was shown in [33] that the total 
end-to-end delay of incoming packets, including the queueing time for the QDTP, the QDTP delay, plus the waiting and processing 
time at the AD, does not increase as compared to the case where QDPT is not used, both under normal operation and when an 
attack occurs. Experiments with IoT data [34] have also experimentally demonstrated QDTP’s effectiveness to alleviate the Massive 
Access Problem and improve QoS [35]. This paper builds on prior work presented at the IEEE MASCOTS Conference in 2024 [36], 
and its extensions [37,38].

In Section 1.1 we briefly recall the QDTP System, which is composed of the QDTP algorithm, and the AD queue at the server. 
Then, in Section 2, we evaluate the QDTP algorithm in an experimental setting. In particular, we study the system in the case of 
flood attacks, where the system cannot be in steady-state, since the external interarrival times are far shorter than both the QDTP 
delays and the service times. We briefly describe the computer and network architecture that is used for the experiments, including 
a set of Raspberry Pis that emulate IoT devices, and an Ethernet switch that interconnects them with an IoT Gateway server, as 
well as the server that supports the SNMP communication management software, a software Attack Detector (AD), and processing 
software for packets that leave the AD. The implementation of QDTP as a software module that resides on its own specific low-end 
computer (a Raspberry Pi), which we call the‘‘Smart QDTP Forwarder’’ (SQF), as shown in Fig.  2, is also briefly described. The SQF 
receives packets from IoT devices or other sources via an Ethernet Local Area Network, shapes the packets’ departure instants using 
QDTP, and forwards the same packets to the IoT Gateway server. We are thus able to evaluate the effect of QDTP in the presence 
of the congestion caused by a flood attack in two ways:

1. We examine the large queue that builds up at the AD input when high levels of congestion or flood attacks occur without the 
use of QDTP, and also observe the very small queue that builds up at the server when QDTP is used, so that all the congestion 
is accumulated at the entrance to the QDTP algorithm itself (i.e. at the SQF).

2. We measure the slow-down that occurs in the AD’s packet processing times when an attack occurs without the use of QDTP, 
and show that with QDTP, this slow-down remains very small under 10% on average. These results, which cannot be observed 
or predicted using standard probabilistic analysis, allow us to illustrate the value and usefulness of QDTP.

We discuss the queueing theoretic model of QDTP in Section 3, where the packets are customers, and QDTP’s delay facility is called 
a ‘‘café’’, where the customers would prefer to spend most of the end-to-end delay, rather than in a queue. Then, in Section 3.1, we 
develop a sample-path approach, and prove an important result in Proposition  3.1 regarding the end-to-end packet delay of QDPT. 
Specifically, we show that the inequality in Theorem 1 of [33] is in fact an equality. Thus, we prove that QDPT does not change 
the end-to-end delay of packets (customers) at all as compared to a FIFO queue in front of the AD that does not use QDTP, contrary 
to most traffic shaping techniques, as stated by the ITU [27] (see above).

A stochastic model with stationary and ergodic input is considered in Section 4, and the stability of QDTP is examined in 
Section 4.2. Then in Section 4.3, we assume the independence and identical distribution (i.i.d.) of inter-arrival, service, and the 
QDTP delaying parameters, to prove the Harris recurrence of an underlying two-dimensional Markov process and exhibit the positive 
recurrent regeneration points, including for cases where the system may never empty. Finally, conclusions and suggestions for future 
work are presented in Section 5.
2 
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1.1. The QDPT system

The QDTP System is comprised of two First-In-First-Out (FIFO) queues in tandem, that contain and forward packets [33]:

• The first queue is formed by packets that arrive from the ‘‘external world’’ to the QDTP algorithm at instants {𝑎𝑛 ∶ 𝑎𝑛+1 ≥
𝑎𝑛, 𝑛 = 1, 2, …}, and leave the QDTP algorithm at the instants 𝑡𝑛 ∶ 𝑡𝑛+1 ≥ 𝑡𝑛, 𝑛 = 1, 2, …} to join the second queue, where 
𝑡1 = 𝑎1 and:

𝑡𝑛+1 = 𝑎𝑛+1, 𝑖𝑓 𝑎𝑛+1 > 𝑡𝑛 +𝐷𝑛, (1)
= 𝑡𝑛 +𝐷𝑛, 𝑖𝑓 𝑎𝑛+1 > 𝑡𝑛 +𝐷𝑛 ,

where 𝐷𝑛 ≥ 0, is the delay constant, a  real number that can depend on 𝑛. We then define 𝑊1 = 0, 𝑊𝑛+1 = 𝑡𝑛+1 − 𝑎𝑛+1, 𝑛 =
1, 2, …, so that from (1) we obtain: 

𝑊𝑛+1 = (𝑊𝑛 +𝐷𝑛 − (𝑎𝑛+1 − 𝑎𝑛))+ , (2)

which is the total delay experienced by the 𝑛 + 1-st packet that passes through the QDTP algorithm. Note that the QDPT 
algorithm can be implemented as software on a specific device, such as a Raspberry Pi, whose input is connected to the 
outside network (e.g. the Internet or an IoT network), and whose output is connected to the IoT Gateway or server.

• The second queue forms in front of the AD, which in practice is installed on the IoT Gateway or server, and the service (or 
attack detection time) of the AD for the 𝑛th incoming packet at 𝑎𝑛 is denoted by 𝑆𝑛 ≥ 0. The packets arrive at the second 
queue at the instants {𝑡𝑛, 𝑛 = 1, 2, …}, and leave at the instants {𝑡𝑛 + 𝑉𝑛}, where: 

𝑉1 = 0 𝑎𝑛𝑑 𝑉𝑛+1 = (𝑉𝑛 + 𝑆𝑛 − (𝑡𝑛+1 − 𝑡𝑛))+, 𝑛 = 1, 2, … . (3)

Eqs. (2), (3), both have the form of the well-known Lindley’s Equation [39], and provide useful insight into how the ‘‘free’’ parameter 
of the QDTP algorithm, namely 𝐷𝑛 should be chosen.

In particular, we notice that when a flood attack takes place, the external arrivals will occur in close succession, i.e., 𝑎𝑛+1−𝑎𝑛 ≈ 0
and 𝑡𝑛+1 − 𝑡𝑛 ≈ 𝐷𝑛 for long sequences of packets, so that the waiting times at the first queue (the QDTP algorithm) will constantly 
increase. Thus, in the presence of an attack, the successive interarrival times of the second queue are the {𝐷𝑛}, which should obey 
𝐷𝑛 ≥ 𝑆𝑛 so that the delay in the second queue 𝑉𝑛 remains as small as possible. However, according to Proposition  3.1, if 𝐷𝑛 ≤ 𝑆𝑛, 
the total end-to-end-delay of each packet 𝑊𝑛 + 𝑉𝑛 remains unchanged by the QDTP System.

Thus, although setting 𝐷𝑛 = 𝑆𝑛 seems to be the ideal option, this is – in practice – impossible because 𝐷𝑛 cannot be selected 
on-line to match 𝑆𝑛, since the latter can only be measured and known after the 𝑛th packet is first delayed using 𝐷𝑛, and then 
forwarded to the second queue placed in front of the AD.

Thus we propose to set 𝐷𝑛 to a fixed constant value 𝐷 such that the empirically measured probability 𝑃𝐴(𝐷 ≤ 𝑆𝑛) > 1− 𝜖, 𝜖 > 0, 
so that for a large fraction of the packets, we have 𝐷 ≤ 𝑆𝑛. This approach will be validated with measurements in the next Section 
2.

2. Experimental results

The test-bed that we use to illustrate the QDTP algorithm, and measure the different quantities of interest, is presented in Fig. 
1. It shows IoT devices that are emulated by Raspberry Pi 4 Model B Rev 1.2 (RPi1 and RPi2) computers, having 1.5 GHz ARM 
Cortex-A72 quad-core processors and 2GB LPDDR4 − 3200 SDRAM. They run the Raspbian the GNU/Linux 11 (bullseye) operating 
system. One Raspberry Pi is programmed to send packets that emulate an intense UDP flood attack in a predetermined manner, 
while other Raspberry PIs send ordinary UDP packets to the server containing real data about each PI’s own temperature. The 
server itself has an Intel 8-Core i7−8705G processor running at 3.1 GHz with 16GB of RAM and a 500GB hard drive; it uns the Linux 
5.15.0 − 60− 66−Ubuntu SMP operating system and communicates with each Raspberry Pi.

The QDTP algorithm is installed on a dedicated Raspberry PI, and designated by SQF in Fig.  2. On the other hand, the AD is 
installed as an application program on the server to examine all incoming packets, remove (or place in a safe buffer for further 
analysis) all those packets that appear to be part of a potential cyberattack, and forward for further processing only those packets 
that the AD decides are benign. It processes packets arriving from the QDTP algorithm in FIFO order. The AD that we use is described 
in [40] and studied in [41]. It is designed with the Random Neural Network [42] with auto-assistive Deep Learning, and trained 
to distinguish between normal (benign) and attack traffic using the FISTA optimization algorithm [43], using the MHDDoS [44] 
training dataset that includes DoS attacks and 56 different attack emulators.

In Fig.  2 we see the same architecture, with the important exception that it has been modified to include the QDPT algorithm 
implemented in software, and installed on a dedicated Raspberry Pi (designated by SQF), which is placed between the Ethernet 
switch and the Gateway server. Here, packets arrive at the server which houses the AD, after they have been delayed by the QDTP 
algorithm.

2.1. Measurements on the experimental test-bed

When the QDTP algorithm is not used, Fig.  3 reports measurements of the server’s AD processing times per packet when there 
is no attack (figure above) and when a UDP flood attack does occur (figure below). The data shown here is based on a 10 − sec
3 



J. Bergquist et al. Performance Evaluation 170 (2025) 102512 
Fig. 1. The experimental test-bed shown in this figure uses Raspberry Pi machines to emulate IoT devices. These are connected via an Ethernet 
switch to the Gateway server. The Raspberry Pis are programmed to send both normal and flood attack traffic to the server. In this figure, the 
QDTP algorithm is not included in the system so that the Raspberry Pis communicate directly with the server via an Ethernet switch using the 
UDP protocol. Once they arrive to the Gateway, the packets will be processed by the AD in FIFO order.

Fig. 2. Here we show the same architecture as in Fig.  1, except that it has been modified by placing an additional Raspberry Pi, designated 
as the SQF between the Ethernet switch and the Gateway server. The SQF supports the QDTP algorithm that is implemented in software. In 
this architecture, the packets sent by the IoT device emulators will traverse the Ethernet switch, then be processed in FIFO order by the QDTP 
algorithm, and then be forwarded to the Gateway where they are processed in FIFO order by the AD.

flood attack that launches approximately 420,000 packets against the server, i.e. with a traffic intensity of circa 42,000 packets per 
second, directly through the Ethernet switch against the server. The figure above shows that the average AD processing time per 
packet when there are no attacks is 2.98 ms (ms), while (below) we see that when the server is under a flood attack, the average 
processing time of the AD algorithm rises significantly to 4.82 ms. When the server is under attack, the AD processing time also 
has large outliers, as shown in the histogram in the diagram that is below in Fig.  3. Instances of these infrequent but very large 
outliers of the service time during the attack against the server when the QDTP algorithm is not used, are shown in Fig.  4, and 
they significantly exceed the average value of the service time, as indicated on a short time scale (above), and on a long time scale 
(below).

Fig.  5 presents the measurements of the AD processing time per packet in the form of histograms, when we use the QDTP 
algorithm installed in the SQF of Fig.  2, with the value 𝐷𝑛 = 𝐷 = 2.7 ms that is chosen based on the recommendations developed in 
Section 1.1. The histogram above presents the service time distribution of the AD without a flood attack, while the histogram given 
below concerns the measurements taken when an attack occurs. When we compare the results in the lower part of Fig.  5 with the 
ones in the lower part of Fig.  3, we observe that the QDPT algorithm installed on the Raspberry Pi (SQF), with 𝐷 = 2.7 ms, is very 
effective in limiting the AD’s slowdown during an attack. We have also plotted in Fig.  6, with a logarithmic 𝑦-axis, the queue length 
at the input of the AD against time in the 𝑥-axis, when the QDTP algorithm and SQF are not used (in red), and the same quantity 
when the QDTP algorithm and SQF are used with 𝐷 = 2.7 ms (in blue), and we notice that the QDTP algorithm largely eliminates 
the queue at the AD. Obviously, since none of the packets are lost, the packets form a queue at the input of the SQF, rather than at 
the input of the AD.

3. The QDTP queueing model

Let us now use the notation and definitions in Section 1.1, and also define the ‘‘nominal model’’ to represent the case where 
there is no QDTP traffic shaping, and denote by 𝐿𝑛 the 𝑛th customer’s (packet’s) waiting time (or queueing delay) for this case, 
which satisfies Lindley’s Equation for the FIFO single server queue: 

𝐿𝑛+1 = (𝐿𝑛 + 𝑆𝑛 − 𝐴𝑛)+, 𝑛 ≥ 0, (4)

where 𝐴 = 𝑎 − 𝑎 . Also define 𝑇 = 𝑡 − 𝑡 , and recall from the details given in Section 1.1, that 𝑇 ≥ 𝐷 , 𝑛 ≥ 0.
𝑛 𝑛+1 𝑛 𝑛 𝑛+1 𝑛 𝑛 𝑛

4 
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Fig. 3. Without the QDPT algorithm installed, the figure above shows the measured histogram of the AD processing time per packet, measured 
without an attack; its average value is 2.98 ms (ms), with a variance of 0.0055 ms2. The figure given below (again without QDTP) shows the 
measured histogram of the AD processing time when a 10 − sec attack occurs with 420,000 packets, and we observe that the average AD packet 
processing time increases to 4.82 ms with a substantially higher variance of 0.51 ms2.

Fig. 4. Without the QDPT algorithm, the figure above shows measurements over time, on a short time scale, while below they are shown over 
a much longer time scale, for the AD’s processing time per packet, measured during and after a flood attack that lasts 60 seconds. We notice 
that these very large but infrequently occurring service times can exceed the value of the average service time by several orders of magnitude.
5 
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Fig. 5. This figure shows the measured histograms of the AD processing time per packet, when we use the QDTP algorithm that is installed in 
the SQF of Fig.  2, with the value 𝐷𝑛 = 𝐷 = 2.7 ms. The histogram above concerns the service time distribution of the AD without a flood attack, 
while the histogram given below concerns the case during a flood attack. When a flood attack does not occur (above), the average AD processing 
time is 2.97 ms with a variance of 0.0041 s2. When a flood attack does occur (below), the average AD processing time grows by 10% to 3.28 ms
with a variance of 0.0023 s2. By comparison with the curve in the lower part of Fig.  3, this result shows that the QDPT algorithm installed on 
the Raspberry Pi (SQF), with 𝐷 = 2.7 ms is highly effective in limiting the AD’s slowdown during an attack.

Fig. 6. The figure above shows the effect of a 42,000 per second flood attack on the AD during a 10 s flood attack. The curve in Red corresponds 
to the logarithmic scale packet queue length at the entrance of the AD if the SQF with QDTP algorithm is not used, while the Blue Curve shows 
the measurements of the same queue length when the SQF with QDTP is installed with 𝐷 = 2.7 ms.

Since the 𝐷𝑛 are strictly positive, it follows that 𝑡𝑛+1 > 𝑡𝑛, 𝑛 ≥ 0, so that {𝑡𝑛} forms a simple point process even if {𝑎𝑛} has batches, 
i.e., if 𝑎𝑛 = 𝑎𝑛+1 for some values of 𝑛. Also note that it is possible that 𝑡𝑛 = 𝑎𝑛 for some values of 𝑛.

We define the total delay of the 𝑛th customer in the QDTP model as: 

𝑍𝑛 = 𝑊𝑛 + 𝑉𝑛, (5)

and its sojourn time as: 

𝑅𝑛 = 𝑍𝑛 + 𝑆𝑛 = 𝑊𝑛 + 𝑉𝑛 + 𝑆𝑛. (6)
6 
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3.1. The sample-path properties of QDTP

Recalling (5), we see that – in principle – it is possible to control the total delay via the pair 𝑊𝑛, 𝑉𝑛, by selecting the values of 
the {𝐷𝑛} in (1). The following result refines and expands Theorem 1 of [33], which had proved that when 𝐷𝑛 ≤ 𝑆𝑛, then 𝑍𝑛 ≤ 𝐿𝑛; 
instead the present paper proves the stronger result that 𝑍𝑛 = 𝐿𝑛.

Proposition 3.1.  Assume that 𝑍0 = 𝐿0. We then have:
(a) If 𝐷𝑛 ≤ 𝑆𝑛, 𝑛 ≥ 0, then 𝑍𝑛 = 𝐿𝑛, 𝑛 ≥ 0, i.e. the total delay in QDTP is identical to that in the nominal FIFO 𝐺∕𝐺∕1 model.
(b) If 𝐷𝑛 = 𝑆𝑛, 𝑛 ≥ 0, and if 𝑉0 = 0, then 𝑍𝑛 = 𝐿𝑛 = 𝑊𝑛, 𝑛 ≥ 0: Every customer enters service immediately when arriving at the service 

facility; they spend no time delayed in the queue; all delay is spent at the café.
(c) If 𝐷𝑛 < 𝑆𝑛, 𝑛 ≥ 0, then 𝑍𝑛 = 𝐿𝑛, 𝑛 ≥ 0, but for any 𝑛 ≥ 1, if 𝑊𝑛 > 0 then 𝑉𝑛 > 0 (equivalently if 𝑉𝑛 = 0 then 𝑊𝑛 = 0, i.e., 𝑡𝑛 = 𝑎𝑛). 

Any customer who spends time at the café also spends time delayed in the queue; I.e., delay is shared.
(d) If 𝐷𝑛 > 𝑆𝑛, 𝑛 ≥ 0, (and 𝑉0 = 0), then: 𝑉𝑛 = 0, 𝑛 ≥ 0, and thus 𝑍𝑛 = 𝑊𝑛, 𝑛 ≥ 0. All of the delay is spent at the café but 

𝑍𝑛 ≥ 𝐿𝑛, 𝑛 ≥ 1 with 𝑍𝑛 > 𝐿𝑛 if 𝐿𝑛 > 0: Total delay, hence sojourn time, is increased for each customer as compared to the nominal 
model. (But even in this case, in some queueing applications customers might prefer spending all their delay at the café, even if it is 
at the expense of increasing total delay.)

Proof.  For (a) it suffices (since by assumption 𝑍0 = 𝐿0) to prove that if 𝑍𝑛 = 𝐿𝑛 for a given 𝑛 ≥ 0, then 𝑍𝑛+1 = 𝐿𝑛+1. To this end, 
assume that 𝑍𝑛 = 𝐿𝑛 for some 𝑛. Recalling (5), (2) and (3), we have:

𝑍𝑛+1 = 𝑊𝑛+1 + 𝑉𝑛+1 = [𝑊𝑛 +𝐷𝑛 − 𝐴𝑛]+ + [𝑉𝑛 + 𝑆𝑛 − 𝑇𝑛]+, (7)
= [𝑊𝑛 +𝐷𝑛 − 𝐴𝑛]+ + [𝑍𝑛 + 𝑆𝑛 − 𝐴𝑛 −𝑊𝑛+1]+,

= [𝑊𝑛 +𝐷𝑛 − 𝐴𝑛]+ + [𝐿𝑛 + 𝑆𝑛 − 𝐴𝑛 −𝑊𝑛+1]+.

We consider two cases, (A) and (B):
(A) 𝑊𝑛+1 = (𝑊𝑛+𝐷𝑛−𝐴𝑛)+ = 𝑊𝑛+𝐷𝑛−𝐴𝑛 > 0. Then starting with the last line of (7), using our assumption that 𝐿𝑛 = 𝑍𝑛 = 𝑊𝑛+𝑉𝑛, 

and noting that [𝑉𝑛 + 𝑆𝑛 −𝐷𝑛]+ = 𝑉𝑛 + 𝑆𝑛 −𝐷𝑛 if 𝐷𝑛 ≤ 𝑆𝑛 yields
𝑍𝑛+1 = 𝑊𝑛 +𝐷𝑛 − 𝐴𝑛 + [𝐿𝑛 + 𝑆𝑛 − 𝐴𝑛 −𝑊𝑛+1]+,

= 𝑊𝑛 +𝐷𝑛 − 𝐴𝑛 + [𝑉𝑛 + 𝑆𝑛 −𝐷𝑛]+

= 𝑊𝑛 +𝐷𝑛 − 𝐴𝑛 + 𝑉𝑛 + 𝑆𝑛 −𝐷𝑛,

= 𝑊𝑛 + 𝑉𝑛 + 𝑆𝑛 − 𝐴𝑛 = 𝐿𝑛 + 𝑆𝑛 − 𝐴𝑛 = 𝐿𝑛+1.

(B) 𝑊𝑛+1 = [𝑊𝑛 +𝐷𝑛 − 𝐴𝑛]+ = 0. Then starting with the last line of (7) immediately yields 𝑍𝑛+1 = [𝐿𝑛 + 𝑆𝑛 − 𝐴𝑛]+ = 𝐿𝑛+1.

Thus in both cases 𝑍𝑛+1 = 𝐿𝑛+1, and the proof of the first assertion is complete.
For (b): Since we assume that 𝑍0 = 𝐿0, if also 𝑉0 = 0, then 0 = 𝑉0 = 𝑍0 = 𝑊0 from (a) and so the recursions for {𝐿𝑛} and {𝑊𝑛}

both start at 0 and hence yield identical processes 𝐿𝑛 = 𝑊𝑛, 𝑛 ≥ 0. Thus from (a) it follows that 𝑉𝑛 = 0, 𝑛 ≥ 0.
For (c): Suppose that 0 < 𝑊𝑛 = 𝑊𝑛−1 +𝐷𝑛−1 − 𝐴𝑛−1. Then

𝑉𝑛 = (𝑉𝑛−1 + 𝑆𝑛−1 − 𝐴𝑛−1 −𝑊𝑛 +𝑊𝑛−1)+

= [𝑉𝑛−1 + 𝑆𝑛−1 −𝐷𝑛−1]+.

Obviously, when 𝑆𝑛−1 −𝐷𝑛−1 > 0, 𝑛 ≥ 1, we will have 𝑉𝑛 = 𝑉𝑛−1 + 𝑆𝑛−1 −𝐷𝑛−1 > 0.
For (d): Since 𝑇𝑛 ≥ 𝐷𝑛, an upper bound 𝑉𝑛 ≤ 𝑉 𝑛, 𝑛 ≥ 0, is established by using the recursion 𝑉 𝑛+1 = (𝑉 𝑛 + 𝑆𝑛 − 𝐷𝑛)+, 𝑛 ≥ 0. 

Thus if 𝐷𝑛 > 𝑆𝑛, 𝑛 ≥ 0, then 𝑆𝑛 − 𝐷𝑛 < 0, 𝑛 ≥ 0, and the result 𝑉𝑛 = 0, 𝑛 ≥ 0 follows. Thus 𝑍𝑛 = 𝑊𝑛, 𝑛 ≥ 0. But again using the 
assumption that 𝐷𝑛 > 𝑆𝑛, 𝑛 ≥ 0, we obtain (by substituting each 𝑆𝑛 for 𝐷𝑛 in the recursion for 𝑊𝑛) that 𝑊𝑛 ≥ 𝐿𝑛, 𝑛 ≥ 0, and the 
strict inequality, 𝐷𝑛 > 𝑆𝑛, implies that 𝑊𝑛 > 𝐿𝑛 whenever 𝐿𝑛 > 0.  ■

4. A probabilistic framework

Now assume that {(𝐴𝑛, 𝑆𝑛, 𝐷𝑛) ∶ 𝑛 ≥ 0} forms a (general) stationary ergodic sequence of random variables, equivalently that 
{(𝑎𝑛, (𝑆𝑛, 𝐷𝑛))} ∶ 𝑛 ≥ 0}, forms a point-stationary ergodic marked point process. Since the random variables are stationary, we 
let 𝐴 = 𝐴0, 𝑆 = 𝑆0 and 𝐷 = 𝐷0 denote their generic versions. We also recall that any stationary sequence of random variables 
{𝑋𝑛 ∶ 𝑛 ≥ 0} can be extended to a two-sided stationary sequence, as a standard result of probability theory that is fully discussed 
in Section 4.3, p. 91 and Section 6.2, p. 131 of [45].

If the arrival rate, 𝜆 = 1
𝐸(𝐴) , is positive and finite, our next objective is to prove stability conditions  of the QDTP model, under 

which one can guarantee the existence of a unique limiting distribution and an associated (proper) stationary ergodic version. As 
we will see over the next several sections, the first condition: 

0 < 𝐸(𝐷) < 𝐸(𝐴) < ∞, (8)
7 
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yields the stability of the first queue (or café), concerning the sequence {𝑊𝑛}, while the second condition: 
0 < 𝐸(𝑆) < 𝐸(𝐴) < ∞, (9)

together with the first, constitute the necessary and sufficient conditions for the joint stability of {(𝑊𝑛, 𝑉𝑛)}.

4.1. Stability of {𝑊𝑛}

A proof of the following is based on Loynes’ Lemma [46], see Pages 131–137, Lemma 6.1 and Theorem 6.1, in [45].

Proposition 4.1.  If the stability condition (8) holds, then there exists a (2-sided; 𝑛 ∈ Z instead of only 𝑛 ≥ 0) jointly stationary ergodic 
version of {(𝑊𝑛, 𝐴𝑛, 𝐷𝑛)} denoted by {(𝑊 0

𝑛 , 𝐴
0
𝑛, 𝐷

0
𝑛) ∶ 𝑛 ∈ Z}, such that 

𝑊 0
𝑛+1 = (𝑊 0

𝑛 +𝐷0
𝑛 − 𝐴0

𝑛)
+, 𝑛 ∈ Z. (10)

As 𝑛 → ∞, 𝑊𝑛 converges in total variation to the distribution of 𝑊 0
0 , regardless of the initial conditions 𝑊0 = 𝑥 ≥ 0. If 𝐸(𝐷) > 𝐸(𝐴) then 

{𝑊𝑛} is unstable, i.e., 𝑃 (𝑊𝑛 → ∞) = 1.

Proposition  4.1 allows us to construct a stationary ergodic version of the point process {𝑡𝑛} with the same rate as 𝜆 as {𝑎𝑛}: 

Corollary 4.1.  If the stability condition (8) holds, then 
𝑡0𝑛 = 𝑎0𝑛 +𝑊 0

𝑛 , (11)

defines a point-stationary ergodic version of {𝑡𝑛}, that is, 𝑇 0
𝑛 = 𝑡0𝑛+1− 𝑡0𝑛 defines a stationary ergodic sequence of interarrival times. Moreover, 

𝐸(𝑇 0) = 1
𝜆 ; and {𝑡𝑛} has rate 𝜆, the same as {𝑎𝑛}.

Proof.  Defining 𝑡0𝑛 = 𝑊 0
𝑛 + 𝑎0𝑛, so that 𝑇 0

𝑛 = 𝑡0𝑛+1 − 𝑡0𝑛 = 𝐴0
𝑛 +𝑊 0

𝑛+1 −𝑊 0
𝑛  yields a stationary ergodic sequence of interarrival times, 

since it is a function of {𝑊 0
𝑛 }, which has already been shown to be a stationary ergodic sequence. Thus, {𝑡0𝑛} is a point-stationary 

ergodic version of {𝑡𝑛}. The fact that its rate is 𝜆 follows immediately from:

𝐸(𝑇 0
𝑛 ) = 𝐸(𝐴0

𝑛) + 𝐸(𝑊 0
𝑛+1 −𝑊 0

𝑛 ) =
1
𝜆
+ 0 = 1

𝜆
. ■

4.2. Stability of QDTP

From Proposition  4.1 and Corollary  4.1, we replace {(𝑊𝑛, 𝐴𝑛, 𝑇𝑛, 𝑆𝑛, 𝐷𝑛)} by a two-sided stationary ergodic joint version, 
{(𝑊 0

𝑛 , 𝐴
0
𝑛, 𝑇

0
𝑛 , 𝑆

0
𝑛 , 𝐷

0
𝑛)} in the following total delay recursion, so that it jointly uses stationary ergodic versions of the input: 

𝑍𝑛+1 = (𝑊 0
𝑛 +𝐷0

𝑛 − 𝐴0
𝑛)

+ + (𝑉𝑛 + 𝑆0
𝑛 − 𝑇 0

𝑛 )
+ 𝑛 ≥ 0. (12)

The first term on the right of. (12), derived from (10), already forms a stationary ergodic sequence. We now deal with the second 
term. Recalling from Corollary  4.1 that 𝐸(𝑇 0

𝑛 ) = 1
𝜆 , and our stability condition (9), 𝜆 < 𝜇, we can analogously obtain, using 

Proposition  4.1 methods, on the second piece, a jointly stationary ergodic pair {(𝑊 0
𝑛 , 𝑉

0
𝑛 ) ∶ 𝑛 ∈ Z}, yielding a stationary ergodic 

version {𝑍0
𝑛} of {𝑍𝑛} satisfying 

𝑍0
𝑛+1 = (𝑊 0

𝑛 +𝐷0
𝑛 − 𝐴0

𝑛)
+ + (𝑉 0

𝑛 + 𝑆0
𝑛 − 𝑇 0

𝑛 )
+, 𝑛 ∈ Z. (13)

We can also jointly throw in {𝑆0
𝑛} to obtain a stationary ergodic sojourn time sequence via 𝑅0

𝑛 = 𝑍0
𝑛 +𝑆0

𝑛 . Analogous to Proposition 
4.1, we thus obtain:

Theorem 4.1.  For the QDTP model with stationary ergodic input satisfying the stability conditions (8) and (9), there exists a unique 
stationary ergodic version of total delay and sojourn time. (𝑊𝑛, 𝑉𝑛) converges in total variation to the joint distribution of (𝑊 0, 𝑉 0) regardless 
of initial conditions, and 𝑍𝑛 converges in total variation to the distribution of 𝑊0 + 𝑉0, regardless of initial conditions.

4.3. Independent and identically distributed inputs: Harris recurrence and regeneration

We now focus on the special case when each of the following two input sequences, {𝐴𝑛} and {(𝑆𝑛, 𝐷𝑛)}, are i.i.d. and independent 
of each other, and we will refer to the model that satisfies these assumptions as the i.i.d. input case. Note however, that we can allow 
the two random variables 𝑆𝑛 and 𝐷𝑛 to be dependent of each other for each 𝑛, and 𝐷𝑛 may be chosen to be a function of 𝑆𝑛. Thus, 
we do not place restrictions on the form that this dependency may take.

Thus, in the i.i.d. input case,  the Lindley equation for the delay 𝑊𝑛, i.e., 𝑊𝑛+1 = (𝑊𝑛 +𝐷𝑛 − 𝐴𝑛)+, implies that {𝑊𝑛 ∶ 𝑛 ≥ 0} is a 
Markov chain.

Since 𝑇𝑛 = 𝑡𝑛+1 − 𝑡𝑛 = 𝐴𝑛 +𝑊𝑛+1 −𝑊𝑛 we can re-write the recursion for {𝑉𝑛} by using the Markov chain {𝑊𝑛} to drive it:

𝑉 = (𝑉 + 𝑆 − 𝑇 )+, (14)
𝑛+1 𝑛 𝑛 𝑛
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=
(

𝑉𝑛 + 𝑆𝑛 − 𝐴𝑛 − (𝑊𝑛+1 −𝑊𝑛)
)+

, (15)

=
(

𝑉𝑛 + 𝑆𝑛 − 𝐴𝑛 − ((𝑊𝑛 +𝐷𝑛 − 𝐴𝑛)+ −𝑊𝑛)
)+

. (16)

Focusing on (16), and recalling the i.i.d. assumptions, it follows that for 𝑀𝑛
def
= (𝑊𝑛, 𝑉𝑛), 

{𝑀𝑛 ∶ 𝑛 ≥ 0}, forms a Markov chain on R2
+. (17)

We will next show that the Markov chain {𝑀𝑛} is Harris ergodic. For basics on Harris recurrence and ergodicity, we refer to Chapter 
VII, Section 3, including Proposition 3.13, p. 205, of [47]. A key feature of Harris recurrent Markov chains is that they always form 
regenerative processes. Therefore in Proposition  4.3 we explicitly find two different kinds of regeneration points, Type I and Type 
II, which are exhaustive and cover all the ground. Type 1 visits are visits to the empty state, while Type 2 are more elaborate.

Proposition 4.2.  For the i.i.d. input case that satisfies the stability conditions (8) and (9), the Markov chain 𝑀𝑛 = (𝑊𝑛, 𝑉𝑛) is Harris 
ergodic.

Proof.  From Theorem  4.1, {𝑀𝑛} is ergodic and converges in total variation to a limiting stationary probability distribution 
𝜋, regardless of initial conditions on 𝑀0. Thus for 𝐴 ⊂ R2

+, if 𝜋(𝐴) > 0, then regardless of initial conditions, by ergodicity, 
lim𝑛→∞

1
𝑛
∑𝑛

𝑖=1 𝐼{𝑀𝑖 ∈ 𝐴} = 𝜋(𝐴) > 0, with probability one. Therefore, 𝐴 is visited infinitely often. Thus 𝜋 serves as a recurrence 
measure, while {𝑀𝑛} is positive Harris recurrent by definition.  ■

To proceed further, we need an important Lemma: 

Lemma 4.1.  When the stability conditions (8) and (9) hold, then either of the following conditions must be true: 
𝐓𝐲𝐩𝐞 𝟏 ∶ 𝑃 (𝐴 > max{𝑆,𝐷}) > 0, (18)

or 
𝐓𝐲𝐩𝐞 𝟐 ∶ 𝑃 (𝐷 > 𝑆) > 0. (19)

Note: A natural sufficient condition for obtaining (18) is that the interarrival time distribution has unbounded support, i.e., 𝑃 (𝐴 > 𝑥) >
0, 𝑥 ≥ 0.

Proof.  If (18) does not hold, then (19) must hold, for if it did not, then 𝑃 (𝐷 ≤ 𝑆) = 1 implying that 𝑆 = max{𝑆,𝐷}, and thus (18) 
is equivalent to 𝑃 (𝐴 > 𝑆) > 0 which indeed holds from the stability condition (9); we get a contradiction.  ■

Proposition 4.3.  Assume the stability conditions, (8) and (9). We then obtain the following result:
1. Type I Regeneration: If (18) also holds, then the successive times when 𝑀𝑛 = (0, 0) can be chosen as positive recurrent regeneration 
points. In particular, total delay, 𝑍𝑛 = 𝑊𝑛 + 𝑉𝑛, forms a positive recurrent regenerative process, with visits to state 0.

2. Type II Regeneration: If (18) does not hold, then (19) does hold (by Lemma  4.1) and in this case positive recurrent regeneration 
points can be found for {𝑀𝑛} of the form (in distribution upon regeneration) (𝑋, 0) where the construction of the random variable 
𝑋 is given explicitly below in Algorithm Algorithm  4.1.

Proof (Type I Regeneration). Since the recursion for {𝑊𝑛} describes a stable 𝐺𝐼∕𝐺𝐼∕1 queue, 𝑃𝜋 (𝑊0 = 0) > 0. Thus there exists a 
𝐵 > 0 such that 𝑃𝜋 (𝑊0 = 0, 𝑉0 ≤ 𝐵) > 0. By Harris recurrence, the event {𝑊𝑛 = 0, 𝑉𝑛 ≤ 𝐵} thus occurs infinitely often and does so 
a positive proportion of time. For a fixed sufficiently small 𝛿 > 0, the assumed (18) implies 𝑝 = 𝑃 (𝐴𝑛 > max{𝑆𝑛, 𝐷𝑛} + 𝛿) > 0. If we 
define 𝑘 = [𝐵∕𝛿] (the smallest integer ≥ 𝐵∕𝛿), and define the event 𝐹 𝑘

𝑛 = {𝐴𝑛+𝑖 > max{𝑆𝑛+𝑖, 𝐷𝑛+𝑖} + 𝛿, 0 ≤ 𝑖 ≤ 𝑘 − 1}, and whenever 
the event {𝑊𝑛 = 0, 𝑉𝑛 ≤ 𝐵} occurs, the event 𝐹 𝑘

𝑛  is independent of it and will occur with probability 𝑝𝑘 = 𝑃 (𝐹 𝑘
𝑛 ) > 0.

Using (14), suppose that for some 𝑛, both events {𝑊𝑛 = 0, 𝑉𝑛 ≤ 𝐵}, and 𝐹 𝑘
𝑛  occur. Then since 𝑊𝑛+1 = (𝑊𝑛 + 𝐷𝑛 − 𝐴𝑛)+, we 

conclude that 𝑊𝑛+𝑖 = 0, 0 ≤ 𝑖 ≤ 𝑘, implying that:

𝑉𝑛+1 =
(

𝑉𝑛 + 𝑆𝑛 − 𝐴𝑛 − (𝑊𝑛+1 −𝑊𝑛)
)+

= (𝑉𝑛 + 𝑆𝑛 − 𝐴𝑛)+ ≤
(

𝐵 − 𝛿
)+

.

We can continue in step-by-step fashion to obtain:
𝑉𝑛+2 ≤ (𝐵 − 2𝛿)+,… , 𝑉𝑛+𝑘 ≤ (𝐵 − 𝑘𝛿)+ = 0,

so that we have 𝑊𝑛+𝑘 = 𝑉𝑛+𝑘 = 0. Since, by the Borel–Cantelli Lemma, the event {𝑊𝑛 = 0, 𝐹 𝑘
𝑛 } occurs infinitely often with a positive 

proportion of times ≥ 𝑝𝑘𝑃𝜋 (𝑊𝑛 = 0, 𝑉𝑛 ≤ 𝐵) > 0, the regenerative cycle length distribution is aperiodic: given that 𝑀𝑛 = 0, there is 
a positive probability 𝑃 (𝐴𝑛 > max{𝑆𝑛, 𝐷𝑛}), that 𝑀𝑛+1 = 0 as well. Thus, the proof of Type I regeneration is complete.
Proof Type II Regeneration. First, note that since 𝑇𝑛 ≥ 𝐷𝑛, 𝑛 ≥ 0, we have 𝑉𝑛+1 = (𝑉𝑛 +𝑆𝑛 − 𝑇𝑛)+ ≤ (𝑉𝑛 +𝑆𝑛 −𝐷𝑛)+, 𝑛 ≥ 0. We thus 
define a new upper bound process {𝑉𝑛} by using the recursion 

𝑉 = (𝑉 + 𝑆 −𝐷 )+, 𝑛 ≥ 0, (20)
𝑛+1 𝑛 𝑛 𝑛
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for which it follows that 
𝑉𝑛 ≤ 𝑉𝑛, 𝑛 ≥ 0,  if 𝑉0 = 𝑉0. (21)

Now choose 𝐵 > 0 sufficiently large so that 𝑃𝜋 (𝑊0 = 0, 𝑉0 ≤ 𝐵) > 0 which implies the event {𝑊𝑛 = 0, 𝑉𝑛 ≤ 𝐵} will happen 
infinitely often. Choose a 𝛿 > 0 such that 𝑃 (𝐷 > 𝑆 + 𝛿) > 0. Define 𝑘 = ⌈𝐵∕𝛿⌉, and 𝐹 𝑘

𝑛 = {{𝐷𝑛+𝑖 > 𝑆𝑛+𝑖 + 𝛿}, 0 ≤ 𝑖 ≤ 𝑘 − 1}. Now 
suppose that for some 𝑛, both the events {𝑊𝑛 = 0, 𝑉𝑛 ≤ 𝐵} and 𝐹 𝑘

𝑛  occur. Then similar to the proof of Proposition  4.2 (we use (20) 
and (21) and set 𝑉𝑛 = 𝑉𝑛), we have 𝑉𝑛+𝑘 = 0 and hence 𝑉𝑛+𝑘 = 0.

Meanwhile, the random variable 𝑋 = 𝑊𝑛+𝑘 was constructed from only i.i.d. {(𝐷𝑛+𝑖, 𝐴𝑛+𝑖) ∶ 0 ≤ 𝑖 ≤ 𝑘 − 1}, conditional on 𝐹 𝑘
𝑛 , 

and is independent of all else; that is how 𝑀𝑛 regenerates; next we give a more explicit algorithm for the construction of such as 
𝑋. ■

Algorithm 4.1. 
1. Let {(𝑆𝑖, 𝐷𝑖) ∶ 0 ≤ 𝑖 ≤ 𝑘 − 1} denote 𝑘 i.i.d. pairs conditional on each pair satisfying 𝐹 𝑘

0 = {𝐷𝑖 > 𝑆𝑖 + 𝛿}, 0 ≤ 𝑖 ≤ 𝑘 − 1.
2. Also, let {𝐴𝑖 ∶ 0 ≤ 𝑖 ≤ 𝑘 − 1} be i.i.d.
3. Use as input {𝐴𝑖, 𝐷𝑖 ∶ 0 ≤ 𝑖 ≤ 𝑘 − 1} (starting with 𝑊0 = 0) in the recursion 𝑊𝑛+1 = (𝑊𝑛 +𝐷𝑛 − 𝐴𝑛)+, 0 ≤ 𝑛 ≤ 𝑘 − 1.
4. Set 𝑋 = 𝑊𝑘. Then when a regeneration occurs for {𝑀𝑛} at a time 𝑛 + 𝑘, it is distributed as (𝑋, 0).

4.4. Some mathematical examples

In Proposition  4.3, the stability conditions imply 𝑃 (𝐴 > 𝑆) > 0 and 𝑃 (𝐴 > 𝐷) > 0 but are not strong enough to imply 
𝑃 (𝐴 > max{𝑆,𝐷}) > 0, when 𝑆 and 𝐷 are dependent. Individually, each of {𝑉𝑛} and {𝑊𝑛} will empty infinitely often, a positive 
proportion of times; but in general, they do not do so at the same time 𝑛; hence the need to derive more involved regeneration points 
in such a case. We illustrate here with a counterexample. Choose 𝑃 (𝐴 = 2.6) = 1 and set (𝑆,𝐷) = (2, 3) w.p. 0.5, and (𝑆,𝐷) = (3, 2)
w.p. 0.5. Then 𝑃 (𝐴 > 𝑆) = 𝑃 (𝑆 = 2) = 0.5, and 𝑃 (𝐴 > 𝐷) = 𝑃 (𝐷 = 2) = 0.5. But 𝑃 (𝐴 > max{𝑆,𝐷}) = 𝑃 (𝐴 > 3) = 0.

To see that 𝑀𝑛 ≠ (0, 0) for 𝑛 > 0, we will show that 𝑊𝑛 and 𝑉𝑛 move/alternate in opposite directions. Suppose 𝑊𝑛+1 −𝑊𝑛 ≤ 0 for 
some 𝑛 which can happen only when (𝑆𝑛, 𝐷𝑛) = (3, 2). Then 𝑇𝑛 = 2.6+𝑊𝑛+1−𝑊𝑛 ≤ 2.6 and thus 𝑉𝑛+1 = (𝑉𝑛+3−𝑇𝑛)+ ≥ (𝑉𝑛+.4)+ = 𝑉𝑛+.4;
hence 𝑉𝑛+1 − 𝑉𝑛 ≥ 0.4. Thus if 𝑊𝑛+1 −𝑊𝑛 ≤ 0, then 𝑉𝑛+1 − 𝑉𝑛 > 0, and if 𝑉𝑛+1 − 𝑉𝑛 ≤ 0, then 𝑊𝑛+1 −𝑊𝑛 > 0; 𝑀𝑛 ≠ (0, 0) for 𝑛 > 0.

To explicitly characterize the regeneration points of Type II, we choose any 𝑏 > 0 such that 𝑃𝜋 (𝑊0 = 0, 𝑉0 ≤ 𝑏) > 0, 
then find the smallest such 𝑏. Supposing that the event {𝑊𝑛 = 0, 𝑉𝑛 ≤ 𝑏} occurs, one can then condition on alternating 
{(𝑆𝑛+𝑖, 𝐷𝑛+𝑖) ∶ 0 ≤ 𝑖 ≤ 𝑚 − 1} = {(2, 3), (3, 2), (2, 3),… , (3, 2)}, for any length 𝑚, which occurs with positive probability (1∕2)𝑚. 
Thus, 𝑊𝑛+1 = 0.4,𝑊𝑛+2 = 0,𝑊𝑛+3 = 0.4,… , alternating between 0.4 and 0. When 𝑇𝑛+𝑖 = 3 for even 𝑖 and 𝑇𝑛+𝑖 = 2.2 for odd 𝑖, then 
𝑉𝑛+𝑖 goes down by 1 and up by 0.8 until we have 𝑉𝑛+𝑖 = 0 for some 𝑖. If 𝑉𝑛+𝑖 = 0, we must have 𝑊𝑛+𝑖 = 0.4 (since 𝑀𝑛 ≠ (0, 0) for 
𝑛 > 0), and hence 𝑃𝜋 (𝑊0 = 0, 𝑉0 = 0.4) > 0 holds. Thus, as regeneration points we can take those consecutive times 𝑛 such that 
𝑀𝑛 = (0.4, 0).

Another example of this phenomenon is the classic FIFO 𝐺𝐼∕𝐺𝐼∕𝑐 queue with 𝑐 ≥ 2, which can be stable, but where an arrival 
may never find it to be empty. Indeed, a necessary condition for it to be empty when an arrival occurs is 𝑃 (𝐴 > 𝑆) > 0. Indeed, 
when 𝑐 = 2, if one takes 𝐴𝑛 = 1.5, 𝑛 ≥ 0, 𝑆𝑛 = 2, 𝑛 ≥ 0, then 𝜌 = 𝜆∕𝜇 = 4∕3 < 2, so stability holds, and all arriving customers 
for 𝑛 > 0 will find one server free, but the other server will be busy. Nonetheless, for any stable (𝜌 < 𝑐) FIFO 𝐺𝐼∕𝐺𝐼∕𝑐 queue, 
regeneration points can be found as shown in Chapter 7, Section 2, Page 344 in [47]. For another classic example, see [48].

5. Conclusions

This paper briefly surveys the Massive Access Problem, which is caused by the proliferation of IoT devices and the congestion 
that they cause, and by the congestion caused by frequent cyberattacks against IoT networks and Gateways. We also survey solutions 
that have been proposed in the literature to these problems. Then, in Section 1.1 we recall the Quasi-Deterministic Transmission 
Policy (QDTP) for traffic shaping at the entrance of IoT Gateways to mitigate the MAP, by delaying in a bounded manner the arrival 
times of incoming packets, and develop the basic equations that characterize the resulting system. We also address the choice of 
the key delay parameter of the algorithm, and suggest a simple heuristic for this choice.

Since the QDTP algorithm may be installed on a special low-cost processor such as a Raspberry Pi to protect the Gateway 
servers that is subject to cyberattacks, the server will typically support an AD algorithm and software to detect potential attacks 
by processing the incoming packet sequence. We first present experiments which show that the AD processing time itself may be 
significantly increased (or even stalled) by an incoming packet flood due to the higher priority operating system software which 
is handling the large number of incoming packets. We also study the effect of the QDTP algorithm’s critical delaying parameter 
through several measurements, when it is set to a deterministic value 𝐷, which is slightly smaller than the AD’s normal average 
processing time per packet, to guarantee that there is no congestion directly in front of the AD, allowing it to operate in a timely 
manner. This choice also allows the SQF, (that hosts the QDTP algorithm) to forward the incoming packets to the AD smoothly, and 
empty the large packet queue that builds in front of the SQF at a fixed rate of 𝐷−1, when an attack occurs. We also demonstrate the 
practical value of QDTP through experiments on the test-bed to, show that without QDTP and the same flood attack, a huge queue 
forms at the Gateway server, and a significant slowdown occurs in the AD’s useful operations.
10 



J. Bergquist et al. Performance Evaluation 170 (2025) 102512 
Then, assuming that the characteristic delay of QDTP does not exceed the AD service time, we prove that the end-to-end-delay 
of QDTP is exactly identical to that of a First-in-First-Out conventional server, showing that QDTP is useful in modifying the arrival 
process of packets into a Gateway server in a manner that reduces significantly the server congestion without modifying the end-to-
end delay of the packets. We also analyze the QDTP queueing system by assuming a stationary stochastic process that characterizes 
its interarrival, QDTP delay and service times, and obtain the relevant stability conditions. This is followed by an analysis based on 
‘‘independent and identically distributed’’ assumptions that analyze the conditions for stability and recurrence and lead to a Harris 
recurrent Markov chain.

In future work, we will investigate adaptive algorithms for updating 𝐷𝑛 as a function of prior values of the AD service times 
𝑆𝑘, 𝑘 = 1,… , 𝑛−1 and of the arrival rate of packets to the system. We will also investigate additional algorithms that can accompany 
the QDTP policy, such as optimum packet dropping during flood attacks, and congestion control to minimize the latency and loss 
of benign traffic.
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