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ABSTRACT A novel online Compromised Device Identification System (CDIS) is presented to identify
IoT devices and/or IP addresses that are compromised by a Botnet attack, within a set of sources and
destinations that transmit packets. The method uses specific metrics that are selected for this purpose and
which are easily extracted from network traffic, and trains itself online during normal operation with an
Auto-Associative Dense Random Neural Network (AADRNN) using traffic metrics measured as traffic
arrives. As it operates, the AADRNN is trained with auto-associative learning only using traffic that it
estimates as being benign, without prior collection of different attack data. The experimental evaluation
on publicly available Mirai Botnet attack data shows that CDIS achieves high performance with Balanced
Accuracy of 97%, despite its low on-line training and execution time. Experimental comparisons show that
the AADRNN with sequential (online) auto-associative learning, provides the best performance among six
different state-of-the-art machine learning models. Thus CDIS can provide crucial effective information to
prevent the spread of Botnet attacks in IoT networks having multiple devices and IP addresses.

INDEX TERMS Internet of Things (IoT), compromised device identification, random neural network, auto-
associative deep random neural network, botnets, Mirai, attack detection and prevention.

I. INTRODUCTION
The number of Internet of Things (IoT) devices is increasing
rapidly as the application of IoT expand, and [1] reported
that 52% of all IoT devices will consist of low-cost and low-
maintenanceMassive IoT devices that perform a single task at
a time and cannot run complex real-time algorithms to detect
and prevent attacks. While systemic approaches to improving
the security of cyberphysical systems have been suggested
[2], [3], it is difficult (if not totally impossible) to burden
simple IoT devices with complex security functionalities [4].
Thus IoT devices are often vulnerable to attackers [5], [6], [7],
and common Denial of Service (DoS) accounts for 20% of all
attacks against the IoT [8], in which an attacker or malicious
device forwards superfluous requests to prevent its normal
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operation by usurping its limited resources with or without
malware injection [9], [10].

Distributed DoS (DDoS) attacks can lead to thousands of
compromised devices [11] through Botnet attacks where vic-
tim devices become compromised and turn into a ‘‘bot’’ via
malware [12]. For instance, in 2016, a massive DDoS Botnet
attack whose source code was later released under the name
‘‘Mirai’’, targeted Domain Name System (DNS) provider
Dyn [13], rendering Netflix, Reddit, Spotify, and Twitter
[14], [15] inaccessible, and gaining malicious access to the
servers of leading cybersecurity companies from millions of
different IP addresses [16]. TheMirai Botnet sends TCP SYN
requests to the IP addresses of large numbers of IoT devices.
When the victim device responds to a request, the attacker
gains access to it using weak login credentials such as default
usernames and passwords pre-installed during manufacture,
and can install malware on the victim device, turning it into a
compromised device (Bot). The Bot then generates traffic that
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FIGURE 1. Example of a Botnet attack propagating over an IoT network,
where the red laptop represents the initial attacker. Here, green arrows
indicate benign traffic while red arrows indicate malicious traffic. When
malware is injected, each device turns into a compromised device shown
in red.

floods other servers and devices with meaningless requests.
Thus the Botnet compromises new devices and propagates
over the IoT network, as illustrated in Figure 1.
In addition to network-wide effects, Botnets significantly

increase network congestion and power consumption, and
processor and memory usage at the device level, hence pos-
ing challenges for resource-constrained devices [17]. Thus,
given the nefarious impact of Botnets at both network and
device level in Massive IoT networks, it is crucial to identify
malicious packets and compromised IoT devices in real-time
during an attack, so as to prevent the attack from spreading.

The remainder of the paper is organized as follows:

• Section II describes prior work and the novelty of this
work as compared to the state-of-the-art.

• Section III describes the data used for validating and
illustrating the results and introduces some related nota-
tion.

• Section IV presents the architectural design of CDIS,
and the methodology that it uses, including the choice
of traffic statistics.

• SectionV compares the performance of CDIS among six
different ML models, while also analyzing the effective-
ness of the proposed network traffic metrics.

• Finally, in Section VI themain outcomes of this work are
summarized, and some further directions for research
are indicated.

II. RELATIONSHIP TO THE STATE-OF-THE-ART
We now review the relationship between this work and the
state-of-the-art regarding the detection of Botnet traffic and
of IoT devices that were compromised during a Botnet attack.

In work that addresses the detection of Botnet attacks,
Antonakakis et al. have analyzed the characteristics of Botnet
attacks [18], and in [13], Margolis et al. examine the capa-
bilities and impact of Mirai, while in [19], Sinanovic et al.
examine its source code. In addition, Ahmed et al. suggested
that blockchains can be used to protect IoT devices against
such attacks [20].

Recent research has used the following ML models to
detect Botnet attacks: KNN, Support VectorMachine (SVM),
Decision Trees (DT) and MLP in [21]; Classification and
Regression Trees (CART) [22]; DT, Gradient Boosting and

Random Forests [23]; and Logistic Regression [24]. Tuan
et al. [25] conducted a comparative study of the perfor-
mance of classification models and Neural Networks (NN).
Neural networks were also used to detect Mirai Botnets in
Software Defined Networks (SDN) by Letter et al. [26].
In 2020, Sriram et al. [27] used MLP with a deep architec-
ture, while Soe et al. used NN and Naive Bayesian Models
(NB) with a sequential architecture [28]. In addition McDer-
mott et al. [29], developped a bidirectional LSTM-based text
recognition model for packet-level detection. Another deep
learning model, the Convolutional Neural Network (CNN),
was used with feature transformation by Liu et al. [30]
and combined with LSTM by Parra et al. [31]. Tzagkarakis
et al. [32] detected Botnet attacks via a sparse representation
framework with a large number of 115 inputs for which
only normal traffic is used to select parameters, while recent
work [33] developed a Mirai Botnet attack detector using the
AADRNN with auto-associative learning.

Whereas the work reviewed in this paragraph aims at
detecting Botnet attack traffic, the goal of the present paper is
to identify compromised IoT devices or IP addresses that have
received Botnet traffic or actually become ‘‘Bots’’ during a
Botnet attack. The paper does not discuss the actions that a
network may take, such as rerouting or blocking traffic [34],
[35] after an attack is detected.

Other work has focused on detecting compromised
IoT devices during Botnet attacks. Kumar and Lim. [36]
have developed an optimization-based technique to detect
Mirai-like bots by scanning the destination port numbers in
packet headers; they analyze the subset of IoT packets to
minimize the time it takes to detect compromised devices.
Chatterjee et al. [37] develop an evidence theory based traffic
flow analysis in IoT networks in order to detect malicious
devices selecting the rarest set of traffic features, where the
full set of features includes the transport layer protocol, num-
ber of reconnections and source/destination ports etc. In [38],
Nguyen et al. focus on an anomaly detection technique for
compromised devices using a combination of federated learn-
ing and language analysis for individual device types identi-
fied prior to anomaly detection. On the other hand, Abhishek
et al. [39] detect compromised gateways rather than devices,
monitoring the downlink channels in an IoT network. In the
case of mobile devices, Taneja [40] detects compromised
devices taking into account their location, so that a location
change or unusual current location may hels to identify a
device that is compromised.

In this paper, we develop a novel lightweight system called
CDIS, so as to identify devices which have become Bots,
which significantly differs from some past approaches aimed
at detecting compromised IoT devices because:
• CDIS is only trained online, and only with normal traf-
fic, so that the difficult collection of extensive attack data
is no longer necessary, and biases that may be caused by
the simulation of attacks are avoided, and

• CDIS only uses high-level packet information i.e. trans-
mission times and packet lengths to calculate traffic
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statistics. Therefore, it only needs access to the headers
of traffic packets, and it is computationally light.

A. CONTRIBUTIONS OF THIS PAPER
This paper develops a novel Compromised Device Identifi-
cation System (CDIS) to detect compromised devices or IP
addresses in a network during an ongoing Botnet attack:

• CDIS learns sequentially from ongoing normal traffic,
using only the packet streams that it recognizes as being
benign, and uses an original choice of statistics regarding
received and transmitted traffic, calculated only from
packet lengths and transmission times.

• It uses a Machine Learning (ML) algorithm based on
the Auto-Associative Dense Random Neural Network
(AADRNN) [41] with online auto-associative learning
that was initially designed for image recognition [42],
and also used successfully to detect SYN attacks against
IoT devices [43].

The high performance of the clasical Random Neural
Network [44] with offline gradient-descent learning [45]
to detect SYN attacks was shown earlier in [46], while
the AADRNN’s excellent performance with off-line train-
ing to detect MIRAI attacks was recently demonstrated
in [33].

We evaluate the performance of CDIS on the publicly
available Kitsune Mirai Botnet attack dataset [47], [48]
as well as the MedBIoT and Bot-IoT datasets. We also
compare the performance of AADRNN with the follow-
ing state-of-the-art Machine Learning (ML) models: Linear
Regression (LR), Least Absolute Shrinkage and Selector
Operator (Lasso), K-Nearest Neighbors Regressor (KNN),
Multi-Layer Perceptron (MLP) and Long-Short-Term Mem-
ory (LSTM). Our results show that CDIS under AADRNN
significantly outperforms all these other ML models. It suc-
cessfully identifies compromised IP addresses by achieving
high Sensitivity (98.7%) and Specificity (94.9%). In addition,
the computation time of CDIS is shown to be highly accept-
able for practical applications.

CDIS has the following contributions and advantages:

1) It is trained with the normal ongoing traffic which
is collected during real-time operation. CDIS learns
online and sequentially, in auto-associative mode,
by only using the traffic that it identifies as being
benign. Thus It does not require the collection
of either prior attack or normal non-compromised
traffic.

2) It identifies compromised IoT devices based on traffic
statistics calculated using only high-level packet infor-
mation such as packet lengths and transmission times.
Therefore, it only processes packet headers with very
low computational requirements.

3) It achieves high identification performance with
low computational requirements, which is vital to
quickly prevent the spread of Botnet attacks in large
networks.

III. DATASET, GROUND TRUTH AND METRICS
We use data from theMirai Botnet from the publicly available
Kitsune dataset [47], [48] which contains 764, 137 packets
cover a consecutive time period of roughly 7137 seconds
(nearly 2 hours) with 107 distinct IP addresses that either sent
or receive traffic and for each of which we will perform infec-
tion detection.Wewill denote by S the set of all sources nodes
or devices, while D will represent the set of all destination
node or devices in the dataset.

The dataset contains the ground truth regarding whether
a packet is an attack packet or a normal non-attack packet.
Thus, for a packet p in the dataset, a(p) denotes the binary
attack label for packet p in the dataset, with a(p) = 1 denoting
an attack, and a(p) = 0 denoting a non-attack normal packet.
Each packet also contains the date t at which it is sent, and
the complete representation of packet p is:

p ≡ pk(t, s, d), where s and d are the

× source and destination nodes. (1)

We separate the packets into time windows of fixed duration
T , so that the collection of packets that are sent by device s to
any other device d in the network in the k − th time window
is:

Ps,dk ≡ {pk(t, s, d) : (k − 1)T ≤ t < kT }, (2)

and the set of all packets arriving to d in the k−th slot is:

PS,dk ≡
∑
s∈S

Ps,dk . (3)

The ground truth for the infection level is defined as the ratio
of the number of attack packets to the total number of packets
that arrive at device or node d in time window k:

φik =

∑
{p∈∪kl=1P

S,i
l }

a(p)

| ∪
k
l=1 P

S,i
l |

, (4)

and the binary estimate of the ground truth is then obtained
from φik as:

vik = 1
[
φik ≥ 2

]
, (5)

where 0 < 2 < 1 is a threshold on the infection level to
compute the binary ground truth estimate. Note that2 should
be selected considering the desired sensitivity of the network
regarding malicious packet transmission.
vik is the variable that we use to test how well our attack

detection schemes are working. In this paper it is not used
at all for learning since we develop an online learning tech-
nique which does not rely on prior offline learning.

A. DEFINING THE TRAFFIC METRICS
Since the aim of the NTSC module in Figure 2 is to identify
instances of the traffic that may contain infection regarding a
device i, it is important to judiciously select the metrics to be
extracted.

The traffic metrics in this paper are chosen to address
Mirai Botnet attacks, and may not be useful for identifying
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FIGURE 2. Compromised device identification system (CDIS) whose inputs are received and transmitted traffic flows of IoT device i , output is
infection decision, and architecture consists of Network Traffic Statistics Calculator (NTSC), AADRNN and Infection Classifier (IC) modules.

compromised devices for other types of attacks, so that a
CDIS for other attacks may require other metrics. SinceMirai
attacks spread over the network by infecting IoT devices,
when a device is compromised via malware, it will generate
more packets with a larger amount of total traffic, so as to
spread the attack over more nodes and overload the network.
Previous work [33] had used and validated the following
three network traffic statistics which are related to malicious
packets in a Mirai attack:

• Traffic Statistics 1: The total size of the last P transmit-
ted packets,

• Traffic Statistics 2: The average inter-transmission
times of the packets over the last P packets,

• Traffic Statistics 3: Total number of packets that are
transmitted in a time window with a duration of T .

Experimental results in [33] have shown that malicious pack-
ets are successfully detected using these three statistics during
the Mirai attack.

However, since in this paper we wish to identify compro-
mised devices (not just malicious packets), we develop a new
set of metrics, or statistics, for both the traffic received and
transmitted by each IoT device i, inspired from these three
previous statistics. Indeed, in order to identify the sources of
attacks, and the effect of the attacks, it is important to analyze
the traffic received from each source individually, rather than
the overall aggregated traffic received from all sources, since
observing traffic from a compromised device can be an effec-
tive means of detecting the existence of an infection. Thus,
we have selected some statistics to summarize the traffic sent
by or received from each individual source.

Let |pk(t, s, d)| denote the length of the packet in bytes.
Packets sent by the set of nodes S have a maximum and
minimum length LMS and LmS rin bytes, respectively, where the
minimum may corresponds to a packet with just the header
included and an empty data field. Each node s also has a
maximum outgoing rate of θs in bytes/second.

The normalized statistics (or metrics) that are used for
the traffic received or sent by node i within window k are
as follows, where each normalized statistic takes a value
between 0 and 1:
• Received Traffic Statistics (RTS)1: The normalized
average size of packets received by device i from all the
sources in time window k:

x i,1k =

∑
p∈PS,ik

|p|∑
s∈S L

M
s × |P

s,i
k |

(6)

• RTS2: The normalized maximum size of any packet
received at node i from any of the sources in time win-
dow k:

x i,2k = max
p∈PS,ik

|p|

LMS
. (7)

The use of LMS in RTS1 and RTS2 offers a normalization
with respect to the maximum packet length. Note that
large packets do not always suggest attacks: indeed,
SYN attack packets may be quite short [43]. On the
other hand, Denial of Service attacks that aim at creating
congestion on links would have to be rather long.

• RTS3: The average number of packets received from all
sources that have sent packets to i in time window k:

x i,3k =
|PS,ik |∑

s∈S 1[|P
s,i
k | > 0]

. (8)

Note that the denominator term in the above expression
can be computed iteratively in a very efficient manner,
so that x i,3k is obtained directly from the terms in x i,3k−1.

• RTS4: The normalized maximum number of packets
received from any single source in time window k:

x i,4k =
maxs∈S |Ps,i

k |

maxu: 1≤u≤k [ maxs∈S |Ps,i
u | ]

. (9)
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We now define the other traffic statistics that are important
for detecting whether IoT device i is infected, and basically
measure the total traffic in terms of both size and packet
transmission rate from i to other nodes:
• Transmitted Traffic Statistics (TTS) 1: The normal-
ized total amount of traffic transmitted by device i in
time window k:

x i,5k =
1

θi × T

∑
d∈D

∑
p∈P i,d

k

|p| , (10)

• TTS2: The normalized total number of packets that are
transmitted by i in time window k:

x i,6k =
Lmi
θi × T

∑
d∈D

|P i,d
k | , (11)

where the use of Lmi in TTS2 is due to the fact that the
maximum number of packets that may be transmitted by
node i in time T is θi×TLmi

.

IV. THE COMPROMISED DEVICE IDENTIFICATION
SYSTEM (CDIS)
In this section, we present our Compromised Device Identifi-
cation System CDIS based on the AADRNNwhose architec-
ture for IoT device i is shown in Figure 2. The AADRNN [41]
is an extension of the Random Neural Network Model [44],
which (in addition to excitatory and inhibitory spikes), incor-
porates soma-to-soma triggering [49], which generalizes the
RNN and retains its ‘‘product form’’ solution. The power of
this model was recently confirmed in extensive tests with
conventional supervised off-line learning for a wide range of
network cyberattacks [50], based on the proven aproximation
capability of these models [51].

In our approach, a distinct instance of the CDIS is installed
on each device i to determine if that device is compromised.
The inputs of the CDIS are extracted from the received and
transmitted traffic flows for the device (or IP Address) i, and
the output is a binary infection decision zik for device i.
CDIS is composed of the Network Traffic Statistics Cal-

culator (NTSC), AADRNN, and Infection Classifier (IC)
modules. The Traffic Statistics Calculator is already detailed
in Section III-A so that we now focus on the AADRNN and
IC Modules. Note that Table 1 summarizes the symbols in
order of appearance in this paper.

In CDIS of Figure 2, the NTSC module extracts the values
x i,jk of the distinct metrics 1 ≤ j ≤ J from the packets received
or sent in timewindow k by device i.Wewill define the vector
of metrics for node i at window k:

x ik = [x i,1k , . . . x
i,J
k ], (12)

and the ordered sequence of vector of metrics collected from
window 1 up to and including window k:

X ik = (x i1, . . . x
i
k ). (13)

We now detail the weights of the AADRNN used by CDIS
in Section VI and use W i,k to denote the generic form of the

whole matrix of weights for device i after input x ik has been
used for learning

Thus W i,k is composed of the weight matrices connecting
the clusters of neurons in layer l to layer l + 1 : W i,k

0
denotes the weight matrix connecting the inputs (from the
traffic metrics) to the first layer, whileW i,k

L connects the last
L − th layer to the outputs [y1,L+1, . . . , yJ ,L+1].

Now let ζ (.) be the J−vector activation function for the
AADRNN defined in Section VI. We can iteratively define
the outputs of the AADRNN’s l − th layer, 1ł ≤ L, for
the overall weight matrix W i,k obtained after x ik , the k − th
J−vector input, has been processed. Let:

yl(x ik ,W
i,k )= [y1,l(x ik ,W

i,k ), . . . , yj,l(x ik ,W
i,k )],

where each 0 ≤ yj,l(x ik ,W
i,k ) ≤ 1, .

Then y1(x ik ,W
i,k )=ζ (x ik ,W

i,k
0 ),

yl(x ik ,W
i,k )=ζ (yl−1(x ik ,W

i,k ),W i,k
l−1) (14)

and the whole AADRNN ′s output is :

yL(x ik ,W
i,k )=ζ (yL−1(x ik ,W

i,k ),W i,k
L−1), (15)

and finally : yL+1=yL . W i
L . (16)

Thus each yj,L+1, 1 ≤ j ≤ J is a function:

yj,L+1 ≡ yj,L+1(x ik ,W
i,k ), (17)

of the corresponding input x ik and of the overall weight matrix
W i,k after each time window k .

A. THE INFECTION CLASSIFIER (IC)
Using the previously defined quantities, we now compute
an output error that is needed to classify the inputs of the
successive windows at step k as being ‘‘normal’’ or of attack
nature. This is done by computing the maximum of all the
differences between the elements of the input vector x ik and
the elements of the output vector:

9 i
k = max

j∈{1, ... ,J}
|x i,j − yj,L+1(x ik ,W

i,k−1)|. (18)

We then use a specific threshold value 0 < γi < 1 for each
of the devices or nodes, so as to provide a binary decision of
the form:

zik = 1 (attack) if 9 i
k ≥ γi, z

i
k = 0 otherwise. (19)

Since we are carrying out online learning, without prior
off-line training using the ground truth, the outputs zik not only
provide decisions, but they also allow us to operate the on-line
auto-associative algorithm given below.

B. ONLINE LEARNING
Since we use on-line learning, the W i,k

l matrices may be
updated after each successive input x ik , so that the sequence
of weight matrices are updated after each subsequent input,
as follows. However, we can only train with ‘‘normal’’ (non-
attack) values of x ik so that:
• If zik = 1, i.e. x ik is estimated to contain an attack, then do
not update the weights, i.e.W i,k

l ← W i,k−1
l , 1 ≤ l ≤ L,
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TABLE 1. List of symbols in order of appearance.

where W i,k−1
l is the value, prior to the processing of

input x ik , of the weight matrix that connects the l − th
layer to the inhibitory inputs at layer l + 1.

• Otherwise, if zik = 0 (non-attack) then

W i,k
l ← Fl

(
W i,k−1
l , x ik , yl(xk ,W

i,k−1)
)
, (20)

using the optimization function detailed in Section IV-C.
which is specialized to layer l as Fl .

C. OPTIMIZATION ALGORITHM
The ‘‘online auto-associative learning’’ for the AADRNN
uses the fast training algorithm from previous work [33],
[43]. It adapts to the naturally time-varying characteristics
of network traffic, and the CDIS will update its parameters
automatically as a function of the traffic it encounters as
it operates. Here W i,k−1

l is l − th layer output connection
matrix, just before the CDIS processes input x ik with the
semi-supervised algorithm of [42]. We then use the following
approach only if zik = 0:

Computation: For each layer l ∈ {0, . . . ,L}, com-
pute W i,k

l using the Fast Iterative Shrinkage-Thresholding

Algorithm (FISTA) [52]:

W i,k
l = arg min

{W : W≥ 0}

×
[
||adj(ζ (yl−1(x ik ,W

i,k−1),WR )W

− yil(x
i
k ,W

i,k−1)||2L2 + ||W ||L1
]
, (21)

where the J × J weight matrix WR is randomly generated
with elements in the range [0, 1]. On the other hand, adj(B) is
the linear mapping of the elements of matrix B into the range
[0, 1] then applies the z-score (standard score), and adds a
positive constant to remove negativity.

FISTA: After FISTA [52] is performed for 700 iterations,
we finally normalize the resulting weight matrixW i,k

l :

W i,k
l ← 0.1

W i,k
l

max
[
yl(x ik ,W

i,k
l )
] . (22)

D. PARAMETER SETTINGS FOR CDIS
We first set T = 10 seconds to have a significant number
of time windows (approximately 712) each of which con-
tains significant number of packets. Then, for normalization,
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FIGURE 3. Ground truth value of the level of infection (φi
k ) for individual

IP addresses over 712 windows.

we set τ = 0.1 seconds and M = 85 bytes based on our
observations on the dataset.

In order to be able to present clear and detailed analysis,
in the first part of this section, we consider only the IP
addresses in ‘‘192.168’’ network within the experimental
setup of the used Mirai Botnet dataset [47]. The ordered
list of IP addresses in the network are: [192.168.1.252,
192.168.2.1, 192.168.2.101, 192.168.2.103, 192.168.2.104,
192.168.2.105, 192.168.2.107, 192.168.2.108, 192.168.2.109,
192.168.2.110, 192.168.2.111, 192.168.2.112, 192.168.2.113,
192.168.2.115, 192.168.2.117, 192.168.2.118, 192.168.2.119,
192.168.2.120, 192.168.2.121, 192.168.2.122, 192.168.2.126,
192.168.2.196, 192.168.2.255, 192.168.4.1]. Note that, dur-
ing our experiments, we do not consider any information
about the characteristics of the devices to which the IP
addresses belong; that is, we treat all IP addresses as equiva-
lent (or as individual IoT devices).

Figure 3 displays the ground truth values of the level
of infection (φik ) for these IP addresses (shown with local
indexes) over 712 windows. One may see that the infection
level gets significantly high for the 4th, 7th, 10th, 16th, 19th,
20th and 22nd IP addresses while the infection level remains
around 0 for only the 1st, 8th, 15th, 17th, 18th, 23rd and 24th
IP Addresses.

Based on the data in Figure 3, we can consider that
an IP address is compromised if infection level φik is
at least 0.5 (i.e. at least 50% of transmitted packets are
malicious).

Let us note that the 50% threshold may be too high in the
case of particularly dangerous or stealthy attacks, where the
presence of 10% or 20% of attacking packets may result in a
significant compromise of the system.

However, we set2 = 0.5 to have a represenative case, and
calculate the binary ground truth of compromised devices via
using (5). The resulting ground truth data contains 1494 pos-
itive (compromised) samples and 15594 negative samples
in total over all of these 24 IP addresses over all of the
712 windows. In addition, using the binary ground truth
for 2 = 0.5, we observe that the 4th, 7th, 10th, 16th,
19th, 20th, and 22nd IP addresses become compromised
over time.

E. HYPERPARAMETER SETTINGS FOR ML MODELS
In order to compare the performance of CDIS under
AADRNN with other ML models, we replace the AADRNN
in our architecture in Figure 2 with each of the LR, Lasso,
KNN, MLP, and LSTM models. At each time window k , all
these models are sequentially trained with the same input Xi

k
and output Yi

k matrices as for AADRNN in Section IV-C.
Thus, in the remainder of this subsection presents the

parameter selections for each of these models as well as
AADRNN.

1) AADRNN
The number of hidden layers of the AADRNN is L = 3; then,
n = LJ for total number of statistics J = 6, and p = 1/n.
We also set r = 1 and 3j,l = λj,l = 0.005.

2) LR AND LASSO
We use two different linear ML models, LR and Lasso,
in place of the AADRNN, and selected the most simple
LR technique to create a baseline performance. Also, Lasso
is used to observe the effects of feature selection on the
cumulative performance since it is a linear model which
shrinks irrelevant statistics values to zero, and we search for
the best value of the L1 term multiplier between 0.1 and
1 in increments of 0.1, setting the value of this multiplier to
0.2. Moreover, we implement both LR and Lasso using the
scikit-learn library [53] on Python.

3) K-NEAREST NEIGHBOURS REGRESSOR (KNN)
Early research [21] showed that the KNN achieves highly
competitive results for detection of Botnet attacks, thus the
KNN is one of the methods that we have implemented in
scikit-learn and compared against the AADRNN. In each
window k tthe number of neighbors in KNN is set to min(k−
1, J ), since the number of samples used for training equals
k − 1 and KNN requires at least as many neighbors as the
number of samples.

4) MULTI-LAYER PERCEPTRON (MLP)
A feed-forward MLP with two hidden layers with J =
6 neurons, followed by an output layer was used, with
a sigmoidal activation function and J = 6 neurons in
the output layer. Both training and execution was per-
formed using Keras on Python, where the MLP is trained
via the Adam optimizer for 50 epochs at each time
window.

5) LONG-SHORT TERM MEMORY (LSTM)
Lastly, we use LSTM with a single LSTM layer, J = 6 units,
and three fully connected layers including the output layer
which is comprised of J = 6 neurons, and sigmoidal activa-
tion througout. Training and execution of is also performed
using Keras on Python, and trained via Adam optimizer for
100 epochs at each time window k .
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FIGURE 4. Balanced accuracy during the search for the best value of γi in CDIS with online training for each IP address i ∈ {1, . . . ,24}.

F. PERFORMANCE EVALUATION METRICS
The dataset being used is unbalanced due to the nature
of the problem. Therefore our main metric of ‘‘Balanced
Accuracy’’ [54], has been revised to handle IP addresses
that are never compromised as well as those that may be
compromised. To this end, for each IP address i, we sum
the number of True Positive, True Negative, False Posi-
tive, and False Negative cases in each window for each i
to obtain:

TPi =
∑
k

1[vik = zik = 1], TNi =
∑
k

1[vik = zik = 0],

FPi =
∑
k

1[vik = 0 & zik = 1],

FNi =
∑
k

1[vik = 1 & zik = 0].

Then, for each IP address i, the Revised Balanced Accuracy
BAi is:

BAi =
1
2
(

TPi
TPi + FNi

+
TNi

TNi + FPi
), if

∑
k

vik > 0,

=
TPi + TNi

TPi + TNi + FPi + FNi
, otherwise. (23)

Thus BAi is ‘‘Balanced Accuracy’’ if the IP address i is
compromised in any timewindow k , while it is simply ‘‘Accu-
racy’’ if the IP address i is never compromised.

In addition to the Balanced Accuracy, we also use other
well-known metrics: Sensitivity (True Positive Rate), Speci-
ficity (True Negative Rate), geometric mean of Sensitivity
and Specificity (G-Mean), and Matthews Correlation Coef-
ficient (MCC), which are displayed as percentages. Note that

Sensitivity, G-Mean, and MCCmetrics can only be presented
for IP addresses which are compromised in at least one time
window. Since some IP addresses are never compromised,
as seen in Figure 3, these three metrics cannot be presented
for uncompromised addresses.

V. PERFORMANCE EVALUATION RESULTS
For each IP address i in the considered network, in order to
achieve the highest performance of the CDIS, we first analyze
and select the best value of γi. To this end, the Balanced
Accuracy performance of CDIS of IP address i is measured
for all γi values increasing in 0.002 intervals from 0 to 1.
The measured performance displayed in Figure 4, where
the performance range is shown with colors which range
from red to green, also reveals that the Balanced Accuracy
performance of CDIS (using AADRNN) under the best value
of γi is very close to 100% (shown with dark green) for all
IP addresses except for the 16th, 19th, 20th, and 22nd IP
addresses, whose performances are around 62%, 71%, 72%
and 56% respectively under the best value of γi.

Furthermore, Figure 4 shows that the Balanced Accuracy
performance of CDIS is acceptably high for various γi values
around the best value; hence, one may say that the perfor-
mance of CDIS is highly robust with respect to the choice
of γi. On the other hand, the best value of γi is considerably
different for each IP address i, and is best for successive
IP addresses as follows: 0.102, 0.888, 0.998, 0.002, 0.114,
0.102, 0.002, 0.186, 0.156, 0.212, 0.102, 0.132, 0.282, 0.208,
0.102, 0.002, 0.102, 0.102, 0.002, 0.002, 0.122, 0.098, 0.102,
and 0.102. Note that if several values of γi achieve the best
performance, the smallest value is selected.
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FIGURE 5. Box plot of the balanced accuracy, sensitivity, specificity, G-mean and MCC performances over considered 24 IP
addresses.

TABLE 2. Average percentage performance of CDIS under different ML models over IP addresses.

Using the best values of γi’s, we evaluate the performance
of CDIS under AADRNNwith respect to BalancedAccuracy,
Sensitivity, and Specificity. Figure 5 displays the box plot of
this performance evaluation over the considered IP addresses.
Recall that Sensitivity is only presented for IP addresses that
are compromised in at least one window.

The Balanced Accuracy, Sensitivity and Specificity show
that the median performance of CDIS is almost 100%. How-
ever there are four IP addresses for which the measured
performances are the outliers. The Balanced Accuracy for the
outliers are 72%, 71%, 62%, and 56%.While searching for
the best value of γi, we observed that these are the 16th, 19th,
20th, and 22nd IP addresses in Figure 4.

These results also reveal that CDIS is able to successfully
detect infection for all IP addresses (minimum Sensitivity is
85%) but suffers from low Specificity (i.e. high false alarm
rate) for outlier IP addresses. Indeed, we observe that the
reason for the low specificity of the IP addresses with the
outlier CDIS performance is that their traffic statistics do
not indicate infection, and two of these IP addresses (19th
and 20th) do not receive traffic but only transmit, so that the
indicators RTS 1-4 are zero for all time windows.

A. PERFORMANCE OF CDIS UNDER DIFFERENT ML
MODELS
The performance of CDIS under AADRNN is compared with
that under each of LR, Lasso, KNN, MLP, and LSTM, where
the best value of decision threshold is selected via exhaustive
search for each ML model. The comparison of the perfor-
mances with respect to Balanced Accuracy, Sensitivity, and
Specificity are presented in Table 2. The numerical results in
this table are presented as the average of each measurement
over the IP addresses considered. For example, the Balanced
Accuracy is first calculated for each IP address; then, the aver-
age of Balanced Accuracy is computed over all IP addresses.

The results in Table 2 show that CDIS is able to achieve
highly acceptable performances under various ML models
although some models lack the balance between Sensitivity
and Specificity. On the other hand, the best Balanced Accu-
racy performance of CDIS is observed under AADRNN,
which achieves the most balanced performance between Sen-
sitivity and Specificity. It also appears that linear models (LR,
Lasso and KNN) achieve high Specificity but LR and KNN
have significantly low Sensitivity. In addition, the Sensitivity
of linear models and the Specificity of MLP and LSTM are
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TABLE 3. Training and execution times of CDIS under different ML
models (in milliseconds).

significantly low. That is, majority of linear models cannot
properly detect compromised IP addresses, while MLP and
LSTM cause a high rate of false positive alarms.

Furthermore, Table 3 displays the average and standard
deviation, in milliseconds, of each of the training and exe-
cution times over all IP addresses and all time windows
for each ML model. Training and execution times are mea-
sured in Python using the CPU of a PC with 32 GB of ram
and AMD Ryzen 7 3.70 GHz processor. Also, recall (from
Section IV-E) that each of the neural network models con-
sidered (i.e. AADRNN, MLP, and LSTM) has three hidden
layers with six neurons each. In addition to its three hidden
layers, LSTM neural network has also an LSTM layer with
six units.

The results in Table 3 show that:

1) The mean training time of AADRNN is lower than
Lasso, MLP and LSTM, with very low standard devia-
tion of 15 ms. However, all of the AADRNN, Lasso,
MLP and LSTM models require significantly more
training time than LR and KNN.

2) Considering both the mean and standard deviation of
the execution time, AADRNN, LR, Lasso andKNN are
competitive with each other, but are much faster than
MLP and LSTM.

B. PERFORMANCE OF CDIS FOR 107 DISTINCT IP
ADDRESSES
We now evaluate the performance of CDIS under AADRNN
for the extended IoT network scenario where all 107 unique
IP addresses provided in the [47] dataset are addressed instead
of only considering the IPs in ‘‘192.168’’network. To this
end, Figure 6(top) displays the average performance of CDIS
over IP addresses with respect to each of Balanced Accuracy,
Sensitivity and Specificity, and Figure 6 (bottom) displays the
box plot of the performance of CDIS over IP addresses with
respect to the same metrics.

FIGURE 6. Bar graph (top) of the average performance and box plot
(bottom) of the performance of CDIS over all (107) IP addresses in the
Kitsune Mirai dataset.

FIGURE 7. In this figure, the logarithmic prediction error
log10(|v i

k −9
i
k |), 1 ≤ k ≤ 712 of CDIS with AADRN, is plotted versus the

time slot k for three IP addresses: the 1st, 10th, and 101st. Only three IP
addresses were chosen to clearly visualize the prediction errors that may
be affected by online training.

In the top of Figure 6 we see that CDIS under AADRNN
provides an average 88%BalancedAccuracy for this complex
network structure with 107 unique IP addresses, while both
average Sensitivity is 90% and Specificity is 79%.

More detailed results in Figure 6(bottom) reveal that the
Balanced Accuracy performance of CDIS is above 92% for
2/3 of IP addresses and above 50% for all IP addresses. That
is, the Balanced Accuracy performance of CDIS is between
50% and 92% for only 36% of IPs. It is also seen that
both median Sensitivity and median Specificity are 100%;
however, the number of node with lower Specificity is high
compared to Sensitivity. On these results, we also observed
that Sensitivity is above 90% for 85% of the IP addresses
that are compromised at least in one time window, while
Specificity is above 90% for 67% of all IP addresses. On the
other hand, for only 4 IPs, the Sensitivity is below 40%.
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FIGURE 8. Performance of CDIS using the parameters set for Mirai is evaluated for other type of attacks on various datasets.

Furthermore, in Figure 7, we plot the logarithmic predic-
tion error of CDIS with AADRNN, defined as log10(|v

i
k −

9 i
k |), 1 ≤ k ≤ 712, versus the slot k for three IP

addresses: the 1st, 10th, and 101st. Our purpose is to present
the prediction errors of the online training clearly. Indeed, the
results on the 10th and 101st IP addresses show that CDIS
achieves lower prediction errors for normal non-attack traffic
after k = 100. On the other hand, the online training does
not appear to reduce the accuracy for the 1st IP address,
which may be because this address was never compromised
as shown by the ground truth in Figure 3.

C. CDIS WITH DIFFERENT DATASETS
Although this paper mainly focuses on identifying the com-
promised IoT devices during a Mirai Botnet attack, the pro-
posed CDIS architecture can also be used for different types
of DDoS or DoS attacks, in which the malware spreads over
the devices. However, the proposed network statistics may
or may not be effective while implementing our CDIS for
DDoS attacks other thanMirai. Accordingly, achieving a high
performance for various types of DDoS attacks may require
to define and use amuch larger set of statistics. In this section,
we now evaluate the performance of CDIS for various types
of DDoS attacks provided in three different datasets: Kitsune
[47], [48], MedBIoT [55], and Bot-IoT [56].

In addition to the Mirai Botnet data which is used dur-
ing the performance evaluation in Section V, we now use
SYN DoS data from the Kitsune dataset, which contains
2, 771, 276 packets transmitted in about 53 minutes. Next,
we evaluate the performance of CDIS on Mirai attack in the
MedBIoT dataset. For this dataset, we merged the files of
attack and normal traffic preserving the actual time stamps
resulted in 5, 727, 929 packets transmitted in about 30 min-
utes. We also present our results for DDoS attacks using

HTTP, TCP and UDP protocols as well as a DoS attack
using HTTP protocol from the Bot-IoT dataset. In Bot-
IoT, there are 19, 826 packets transmitted in 42 minutes
for the DDoS HTTP, 19, 548, 235 packets in 40 minutes
for DDoS TCP, 18, 965, 736 packets in 47 minutes for
DDoS UDP, and 29, 762 packets in 49 minutes for DoS
HTTP. During the performance evaluation for the datasets
except DDoS TCP and DDoS UDP, we use the same data
processing and parameter settings which are described in
Sections III, IV-D and IV-E. For DDoS TCP and DDoS UDP,
we set τ = 0.01 andM = 190.

Figure 8 displays the balanced accuracy results of the
performance evaluation of CDIS for the Kitsune, MedBIoT
and Bot-IoT datasets. First of all, these results show that
the proposed CDIS is able to very successfully identify
compromised devices during Mirai Botnet attacks, with a
median Balanced Accuracy of 100% for both Kitsune and
MedBIoT. Recall that the Balanced Accuracy is above 92%
for 2/3 of unique IP addresses. For MedBIoT dataset, the
Balanced Accuracy performance is above 85% for 90% of
all IP addresses.

The results in Figure 8 also show that CDIS can achieve
high performance for DDoS and DoS attacks. On the other
hand, the results for DDoS and DoS attacks, especially those
use TCP and UDP protocols, are significantly lower than
those for Mirai attacks. The inferior performance is mainly
because the traffic statistics are defined considering the Mirai
Botnet attacks. For each of the DDoS HTTP and DoS HTTP,
the median Balanced Accuracy performance is above 100%.
We may also see that the performance of CDIS slightly lower
for DDoS attacks on the network traffic using TCP or UDP
protocols. Since CDIS parameters have already been adapted
for DDoS TCP andDDoSUDP datasets, our results show that
communication protocols are effective on the identification
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performance and can be evaluated to determine more specific
statistics.

D. FURTHER REMARKS ON THE RESULTS
We first evaluated the performance of CDIS on KitsuneMirai
attack dataset for two different network setups with 24 and
107 unique IP addresses. We also presented the performance
evaluation for 7 attack data in three different datasets, namely
Kitsune, MedBIoT and Bot-IoT. The experimental results
show that:

• The CDIS achieves high performance (94% Balanced
Accuracy) with low computation time for both execution
and online training.

• The CDIS under AADRNN outperforms the other mod-
els (LR, Lasso, KNN, MLP, LSTM) by a significant
margin, while its computation time is very competitive
with that of the fastest (simplest) models.

• The CDIS can be used not only for Mirai, but also for
various types of DDoS attacks where malware spreads
over IoT devices. However, some attack types and/or
communication protocols may require customization of
traffic statistics and parameter settings of CDIS.

VI. CONCLUSION
In order to identify compromised devices and/or IP addresses
in an IoT network as ongoing traffic flows through the
system, we have developed a novel ‘‘Compromised Device
Identification System (CDIS)’’, which analyzes the received
and transmitted traffic by each individual device. Based on
inter-packet transmission times and packet lengths that are
measured from the traffic flow and taken in successive time
windows, it determines whether the device is compromised
using ML. The AADRNN is used as the ML tool, and is
trained via online auto-associative learning using only normal
traffic that is available during the system’s normal real-time
operation. Thus, it is important to state that CDIS does not
require prior offline collection of any attack or normal traffic.

The performance of CDIS is tested on a publicly available
Kitsune Mirai Botnet attack dataset for two different network
setups, as well as on the MedBIoT and Bot-IoT datasets.
As the experimental results suggest, the proposed CDIS pro-
vides highly accurate results, and it may pave the way to
prevent Botnet attacks from spreading over the devices in an
IoT network by blocking, or dropping, the outflow of traffic
from IoT devices or IP addresses that have been identified as
being compromised and turned into Bots.

Thus future work could also study the dynamics related to
the CDIS system, from the instant when the attack begins,
to the instant of detection, and finally to the time when the
Botnet outflows can be blocked or dropped, so as to determine
the overall time delay needed to actually stop the Botnet from
spreading. Such studies can also examine the possibility of
identifying the sources of the Botnet and carrying out preven-
tive blocking/dropping of traffic at the sources themselves as
was suggested in some earlier work [57]. Another important

issue that is worth considering, is the energy consumption
consequences of the AD itself [58], [59] as well as of the
mitigation actions that are taken.

The proposed CDIS does not consider the known direct
relationships between devices, such as their connectivity pat-
terns. Thus in future work, it will be interesting to investigate
the effects of each compromised device on other devices in an
IoT network not just from the arriving packets at each node
but also from any available known information concerning
the connectivity between IP addresses, network nodes and
devices.

APPENDIX: DENSE RANDOM NEURAL NETWORK WITH
ONLINE AUTO-ASSOCIATIVE LEARNING (AADRNN)
The AADRNN structure introduced in [42], which was
adapted to the design of CDIS, has L hidden layers, with
J clusters in each hidden layer as shown in Figure 2. Each
cluster consists of n statistically identical, probabilistically
interconnected cells. As shown in Figure 2, the input to the
AADRNN is the collection of network statistics, x ik , calcu-
lated by the NTSC module for each device or port i for
each successive time window k − 1, and the corresponding
AADRNN output is denoted by yL+1(x ik ,W

i,k ), for current
window k .

Since cells in a given cluster are identical, for the time
being we denote the state of each cell in layer l and cluster
j by qj,l , with total firing rate denoted by rj,l , and it receives
external excitatory arrivals of spikes at rate 3j,l . Each cell j
also receives inhibitory inputs from a corresponding cell in
each cluster j′ belonging to the previous layer l − 1, with
inhibitory weight w−j′,l−1,j, j

′
∈ {1, . . . J}. Thus for any

cell in cluster (j, l) at layer l ∈ {2, . . . ,L}, the cell’s total
external inhibitory input is:

λj,l = λ
−

j,l +

J∑
j′=1

qj′,l−1 × w
−

j′,l−1,j, (24)

where λ−j,l is an additional external inhibitory spiking rate
into cell or neuron (j, l), and the sum of the (j, l)-neuron’s
outgoing inhibitory weights is:

wj,l =
J∑

j′=1

w−[j, l, j′], hence rj,l = wj,l + r, r ≥ 0, (25)

where r is the firing rate of the soma-to-soma interactions that
provoke the joint firing of any cell in the same cluster with
probability p

n where n is the number of cells in each cluster.
Thus, we have:

qj,l =
3j,l + rqj,l(n− 1)

∑
∞

v=0[
qj,lp(n−1)

n ]v 1−pn
rj,l + λj,l + rq(n− 1)

∑
∞

v=0[
qj,lp(n−1)

n ]v pn
, (26)

which reduces to:

qj,l =
3j,l +

rqj,l (n−1)(1−p)
n−qj,lp(n−1)

rj,l + λj,l +
rqj,lp(n−1)
n−qj,lp(n−1)

. (27)
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We are interested in solutions of the above expression which
are probabilities, and first seek the maximum value qj,l = 1,
which is attained for the maximum value of3j,l . Thus we can
write:

3j,l ≤ rj,l + λj,l −
r(n− 1)(1− 2p)
n− p(n− 1)

,

≤ rj,l + λj,l −
r(n− 1)

n
,

≤ wj,l + λj,l +
r
n
. (28)

We notice that th expression for qj,l is a second degree equa-
tion in qj,l and for large n it becomes:

q2j,lpλj,l − qj,l[λj,l + p(3j,l + r)]+3j,l = 0,

whose solution is the activation function ζ (.) for each cell in
each cluster of the AADRNN:

ζj,l = max
[
1,
λj,l + p(3j,l + r)

2pλj,l

±

√
[λj,l + p(3j,l + r)]2 − 4pλj,l3j,l

2pλj,l

]
. (29)
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