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A B S T R A C T

In software systems comprised of many interconnected components, the vulnerability of each component
will affect the vulnerability of other components and of the system as a whole. Existing techniques allow
the quantification of the vulnerability of individual components taken singly, but the assessment of their
vulnerability when they are interconnected or interdependent remains a challenge. The present work addresses
this problem with a novel System-Wide Vulnerability Assessment (SWVA) framework for interconnected
software components, based on an Associated Random Neural Network (ARNN) that estimates the system-
wide vulnerability of all software components from known local vulnerabilities of individual components, and
from their interconnections. The ARNN uses a problem-specific weight initialization, and learns from existing
software system examples with a gradient-based deep learning algorithm. The ARNN is then used to assess
the vulnerability of hitherto unseen software systems. The performance of the proposed ARNN-based SWVA
framework is evaluated and compared against several well-known machine learning techniques on 13 different
versions of a real-world software system with up to 11 components. The experimental results show the superior
performance of the ARNN achieving above 85% median accuracy and good high scalability with respect to
the number of connected software components.

1. Introduction

Secure information and communication technologies (ICT) may be
difficult and expensive to build, but the cost of not meeting security
requirements can also be extremely high (cisco, 2019; ciscopriv, 2019).
Since software is pervasive across all ICT systems, there has been much
interest in methods that can automatically inspect software to detect
and reduce the security vulnerabilities that may result from design
and implementation errors, from defects in the programming languages
and tools that are used to develop software (Walden, Stuckman, &
Scandariato, 2014), or from common programming mistakes (Siavvas,
Gelenbe, Kehagias, & Tzovaras, 2018).

Thus, useful Static Code Analyzers exist to seek out vulnerabili-
ties in software (sonarqube, 2024; verastat, 2020), and testing tech-
niques (Pang, Xue, & Wang, 2017) have been suggested as a way
to detect vulnerabilities during software production. Security is also
a concern in programming languages, and vulnerabilities in the lan-
guages can be exploited by potential attackers. Thus several languages,
e.g. OCaml, Java, and C# use static analysis and dynamic checks (Salka,
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2005), while Rust is a system programming language specifically de-
signed for safety-critical systems (Ding et al., 2017). While several
organizations offer guidelines to enhance software security (cert, 2020;
owasp, 2020; owaspguide, 2020; sans, 2020), it appears that some
85% of applications may contain vulnerabilities, while 10% or more
of them may contain critical flaws that can lead to security breaches in
software (Veracode, 2018).

Since the analysis of software vulnerability is time consuming (Jack-
son & Bennett, 2018), recent research has applied machine learning
to this area (Dam et al., 2017; Nafi, Roy, Roy, & Schneider, 2020)
using various methods (Neuhaus, Zimmermann, Holler, & Zeller, 2007;
Shin, Meneely, Williams, & Osborne, 2010; Walden et al., 2014), includ-
ing neural networks (Catal, Akbulut, Ekenoglu, & Alemdaroglu, 2017;
Zhang, de Carnavalet, Wang, & Ragab, 2019), and deep learning (Filus,
Boryszko, Doma´ska, Siavvas, & Gelenbe, 2021; Li et al., 2018).

Most of this prior work focuses on the vulnerability of individ-
ual programs or software components. Yet in a system where many
individual components are logically interconnected as a system, the
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vulnerability of each component can be modified by the vulnerabil-
ity of other individual components in the system. Indeed, if only a
few components have security vulnerabilities, then other components
which individually do not have vulnerabilities may be compromised
due to the propagation of security breaches from other components.

Thus, to address this major challenge, the present paper proposes
and tests a novel System-Wide Vulnerability Assessment (SWVA)
method based on the recently developed Associated Random Neural
Network (ARNN) (Gelenbe & Nakip, 2023), which offers an auto-
mated machine learning approach to vulnerability testing for multi-
component software systems.

We consider a software system composed of n separate individual
sequential software components S = {S1,… ,S

n
}. We assume that all

of these components are resident on a single physical shared memory
computing platform, and some or all components are interconnected to
each other through procedure calls from one component to another. In
this context, the proposed SWVA method uses:

• The individual vulnerability V
i
of each component of the system

is assessed by existing methods that are discussed below, and
• The graph that represents procedure calls or message passing
between components, is defined by its n ù n adjacency matrix A.

For instance, a procedure call can result in the return of data, or the
transfer of code, to the component that initiates the call, so that the
vulnerability of the component that initiates the call can be affected
by the vulnerability of the component that is called. Therefore, in
the sequel we will use an undirected graph A, that is represented by
an adjacency matrix whose elements satisfy A(i, j) = A(j, i), A(i, i) =
0, ≈ i, j = 1,… , n.

As shown in Fig. 1, the SWVA predicts the updated vulnerability
Likelihood Level L

i
of all the system components, using the data about

each component’s individual vulnerability level V
i
, and the matrix

A.about the direct or indirect interactions between the components of
S.

The SWVA uses the recently introduced ARNN model for Machine
Learning (ML), with a specific initialization procedure and gradient-
based deep learning algorithm. In this paper, the approach is applied
and tested on a real-world software system consisting of 11 components,
with 13 different versions, where each version has distinct internal
connections among its components.

The remainder of this paper is organized as follows. The abbrevia-
tions used in this paper are listed in Table 1.

Section 2 briefly reviews the recent related research. Section 3
details the problem and presents the SWVA framework with our ap-
proach to solving the problem using a particular Machine Learning
(ML) model, the ARNN. Section 4 presents the adaptation and usage
of ARNN for the SWVA framework, including the learning algorithm.

Section 5 and Section 6 respectively describe the experimental work
we have performed and the results obtained. Conclusions are detailed
in Section 7, where we also present suggestions and plans for future
work.

2. Related work

In this section, we review recent research in the two areas that we
use in this paper: (1) Vulnerability prediction, and (2) ML research
using Random Neural Networks (RNNs, which is the core ML model
in this paper.

2.1. Vulnerability prediction

The purpose of vulnerability prediction is to identify security
hotspots, i.e., software components that are likely to contain vulnerabil-
ities. It focuses on the construction of vulnerability prediction models,
which are typically based on ML and are able to predict the existence
of vulnerabilities in software components using information retrieved

Table 1
List of abbreviations in order of appearance.
Abbreviation Definition

ICT Information and Communication Technologies
SWVA System-Wide Vulnerability Assessment
ARNN Associated Random Neural Network
ML Machine Learning
NLP Natural Language Processing
BERT Bidirectional Encoder Representations from Transformers
RNN Random Neural Network
JVM Java Virtual Machine
WORA Write Once, Run Anywhere
MLP Multilayer Perceptron
KNN K-Nearest Neighbours
Lasso Least Absolute Shrinkage and Selection Operator
TNR True Negative Rate
TPR True Positive Rate
CPU Central Processing Unit
PC Personal Computer
GB Gigabyte
RAM Random-Access Memory

from the components themselves. Several vulnerability prediction mod-
els have been proposed over the years, with the vast majority of them
using information retrieved from source code mainly through static
analysis or text mining.

The use of software metrics to identify security flaws was first
examined in Shin and Williams (2008a, 2008b), which showed that
complexity metrics are weak indicators of vulnerabilities. In Chowd-
hury and Zulkernine (2011), a framework for automatically predicting
vulnerabilities based on software metrics was proposed, showing that
software metrics can be adequately used for vulnerability prediction.
The capacity of using statically collected software metrics in predict-
ing the existence of software vulnerabilities has further been verified
in Moshtari and Sami (2016) and Zagane, Abdi, and Alenezi (2020).

In text mining methods, the code tokens (i.e., words) are used as
input in training ML models, and in Hovsepyan, Scandariato, Joosen,
and Walden (2012), ML-based predictors exploit textual terms and their
corresponding frequencies, which are extracted from the source code
of software components. In Li et al. (2018) the VulDeePecker system is
described with the word2vec embedding tool (Mikolov, Chen, Corrado,
& Dean, 2013) that converts each token into a vector, and identifies
vulnerabilities through deep learning.

In recent studies, it was examined whether graphical code rep-
resentations may be used in vulnerability prediction. For instance,
Zhou, Liu, Siow, Du, and Liu (2019) presented Devign, which is a
broad graph neural network-based model. In this work, several graph-
ical code representation formats (e.g., Control Flow Graphs, Abstract
Syntax Trees, etc.) were combined to enhance the performance of
deep learning model for vulnerability prediction. Following the ad-
vances in the field of Natural Language Processing (NLP), researchers
have utilized pretrained Transformer-based models for the downstream
task of vulnerability prediction. In Kim, Choi, Ahmed, Nepal, and
Kim (2022), the authors developed a vulnerability prediction tool,
called VulDeBERT, using the well-known Bidirectional Encoder Rep-
resentations from Transformers (BERT) model (Devlin, Chang, Lee,
& Toutanova, 2018) with problem-specific fine-tuning. Their findings
suggested that the performance of VulDeBERT is better than that of
VulDeePecker (Li et al., 2018). In addition, in Hanif and Maffeis (2022),
VulBERTa is developed by fine-tuning BERT to predict vulnerabilities
using source code. Thus much research has been conducted on vul-
nerability prediction, and several vulnerability prediction models have
been developed including text mining-based models with advanced
text processing techniques (such as BERT), that have recently attracted
the greatest attention (Devlin et al., 2018; Fu & Tantithamthavorn,
2022; Hanif & Maffeis, 2022; Vaswani et al., 2017) and demonstrated
promising results (Kalouptsoglou, Siavvas, Kehagias, Chatzigeorgiou, &
Ampatzoglou, 2022).
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Fig. 1. The System Wide Vulnerability Assessment (SWVA) takes as inputs the individual component vulnerabilities V
i
estimated with existing methods, as well as the interactions

between different components expressed via an adjacency matrix A, and uses the ARNN to produce the updated vulnerability Likelihood Level metric L
i
for each software

component. SWVA learns from prior ground truth data with real software component vulnerability and interconnection data, and accurately predicts the updated Likelihood Level
of the actual vulnerabilities L

i
for (hitherto unseen)multi-component software systems that were not used in training the SWVA.

However, existing vulnerability prediction models detect the poten-
tial presence of vulnerabilities in a given software component based
solely on information retrieved from the component itself, neglecting
critical information from the wider system of interconnected compo-
nents that affects the vulnerability status. That is, none of the current
vulnerability prediction models considers the architecture of the wider
software system (i.e. the interconnections between components) to
make a prediction. In contrast, as a novel approach, we propose the
SWVA framework, which collectively assesses the vulnerability of all
interconnected components, considering both the intrinsic information
from the components themselves and the architecture of the wider
software system, together with the information from the intercon-
nected components. To the best of the authors’ knowledge, it is the
first approach to performing a system-wide vulnerability assessment of
interconnected components.

2.2. Random neural network

The Random Neural Network (RNN) (Gelenbe, 1989) was invented
to mimic the spiking behaviour of mammalian brain neurons, and its
gradient-based learning was designed both for feed-forward and recur-
rent structures (Gelenbe, 1993), and used for deep learning (Gelenbe
& Yin, 2017). In addition, Levenberg–Marquardt learning (Basterrech,
Mohamed, Rubino, & Soliman, 2011) and unique weights initializa-
tion (Timotheou, 2009) algorithms have also been proposed for the
RNN.

In recent years, RNNs have been widely applied, and shown to
perform better than other neural models in several areas (Aiello, Gaglio,
Lo-Re, Storniolo, & Urso, 2005; Timotheou, 2010; Yin, 2018), such as
vehicle classification (Hussain & Moussa, 2016), cyberattack detection
and mitigation (Evmorfos, Vlachodimitropoulos, Bakalos, & Gelenbe,
2020; Latif et al., 2022; Latif, Idrees, Zou, & Ahmad, 2020), voice
and video quality evaluation in the Internet (Ghalut & Larijani, 2014;
Martínez, Moròn, Robledo, Rodríguez-Bocca, Cancela, & Rubino, 2008;
Radhakrishnan & Larijani, 2011; Rubino, Tirilly, & Varela, 2006), the
modulation of downlink traffic in LTE systems (Adeel, Larijani, &
Ahmadinia, 2017), and optimal scheduling of video content (Ghalut
& Larijani, 2018) in networks. Other applications have included the

dynamic management of energy (Ahmad, Larijani, Emmanuel, Man-
nion, Javed, & Phillipson, 2017; Ahmad et al., 2020) and of the air
comfort level (Javed, Larijani, Ahmadinia, Emmanuel, Mannion, &
Gibson, 2017; Javed, Larijani, Ahmadinia, & Gibson, 2017) in smart
buildings.

3. Problem statement and system design

We now present the problem statement that we consider in this pa-
per and introduce the System-Wide Vulnerability Assessment (SWVA)
framework. To this end, Fig. 1 displays the overall structure of the
proposed approach, and presents the particular structure of an ARNN
node.

The ARNN is a specific neural network architecture, that uses
the mathematical structure of the Random Neural Network (Gelenbe,
1989). It is designed to represent the connectivity of a multi-component
system, and the ARNN learning algorithm reflects the needs of SWVA.
The neural weights of the ARNN represent the procedure calls and
communications between individual software components, and the
weights are learned so that they reflect the propagation of vulner-
abilities among different components. Thus, the unique architecture
of the ARNN enables it to learn the relationships between software
components, and to assess the effects of the vulnerabilities of other
components on each component. Earlier research using the ARNN for
evaluating the vulnerability of interconnected Internet of Things (IoT)
devices (Gelenbe & Nakip, 2023) has shown that the ARNN-based
compromised device identification outperforms current state-of-the-art
ML methods by achieving high average accuracy of the order of 95%.

In this paper we develop the recurrent ARNN architecture, with a
specific weight initialization and gradient-based learning to address the
SWVA problem.

As shown in Fig. 1, we consider each software component S
i
– a

part of a system S comprised of n components – whose local (individual)
vulnerability V

i
is known empirically. The local vulnerability V

i
results

from the presence of code constructs within S
i
that cause vulnerabili-

ties and is predicted via ‘‘Local Vulnerability Prediction’’ methods, as
developed in Dam et al. (2018).
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Fig. 2. Flowchart of the initialization, training, and estimation functionalities of ARNN.

On the other hand, the binary connectivity matrix A = [A(i, j)]
nùn

represents the manner in which components can call each other via
procedure calls, or transfer data to each other. By convention, we set
A(i, i) = 0, while if i ë j and A(i, j) = 1, this means that during its
execution, S

i
can transfer data to S

j
or activate it through a procedure

call which may also require a data transfer, or the component S
j
re-

quest results that are produced by S
i
. Such exchanges can then transfer

security vulnerabilities between components. In general, procedure call
between two components will require a return of results from the called
component to the calling component, so that transfers of data will
typically be bilateral, and require that A(i, j) = A(j, i), i ë j.

Thus, the SWVA method assesses whether any component in a soft-
ware system is vulnerable, either due to its own local vulnerability, or
due to the vulnerabilities of other components with which it exchanges
data in the software system.

3.1. Local vulnerabilities

We use the variables 0 f V
i
, v

i
= 1 * V

i
f 1 to represent the local

vulnerability of component S
i
, which allows us to define the likelihood

that it is locally vulnerable, by using the metric:

L
L

i
=
V
i

v
i

. (1)

We can also use a threshold value 0 < ↵ < 1 so that we may consider
that the software component S

i
is locally vulnerable if:

⌧

V
i
> ↵ or v

i
< (1 * ↵)

�

, hence L
L

i
> ✓ = ↵

1 * ↵ , (2)

where ✓ is interpreted as the threshold of the local vulnerability
likelihood calculator.

3.2. SWVA based on the ARNN

The SWVA method that we propose, is a ML-based approach to as-
sess the impact of the local vulnerabilities of each component, together

with the connection matrix A of procedure calls and communications
between components, to assess the resulting overall vulnerability of
each component and hence of the software system. Hence, the ARNN
model uses the connectivity matrix A, and is trained with existing data
to learn the mapping:

ARNN : {V
i
, v
i
}
iÀ{1,…,n} ô L = {L

i
}
iÀ{1,…,n}, (3)

where L is the system wide vulnerability likelihood regarding each
component S

i
of S.

4. ARNN for system-wide vulnerability assessment

We now detail the ARNN model that is used for the SWVA method.
As shown in the right-hand part of Fig. 1, for each software component
S
i
, the ARNN has a pair of two competing RNN neurons X

i
and x

i
with

internal states K
i
(t) and k

i
(t). X

i
indicates that S

i
is vulnerable while x

i

indicates that S
i
is not vulnerable. V

i
, v

i
= 1*V

i
are the inputs to X

i
, x

i
,

respectively. The stationary states:

Q
i
= lim
tôÿ

Prob[K
i
(t) > 0], q

i
= lim
tôÿ

Prob[k
i
(t) > 0], (4)

serve as decision variables regarding the vulnerability of S
i
, and are

used to calculate the likelihood ratio L
i
regarding the vulnerability of

the software component S
i
.

4.1. ARNN model building, initialization, and estimation

Figure 2 shows the manner in which the ARNN model is built. It
is first constructed based on the component interconnection matrix
provided by the software system program analyzer, as was shown
schematically in Figure 1.

The ARNN weights are initialized as detailed in Section 4.1.2.
Then, its weights are learned using the gradient descent algorithm that
minimizes the cost function specific to the SWVA on a training dataset.
The remainder of this section details the ARNN methodology, weight
initialization, and learning algorithm.
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4.1.1. The competing RNN neurons X
i
and x

i

The ARNN architecture is a recurrent RNN, whose non-linear state
equations are a given in Gelenbe (1993), with 2n neurons that are used
for the n ARNN nodes. These state equations take the form:

Q
i
= lim

tôÿ
Prob[K

i
(t) > 0]

=
V
i
+≥n

j=1W
+
ji
Q
j

v
i
+≥n

j=1[W
+
ij

+W *
ij
] +≥n

j=1w
*
ji
q
j

, (5)

and similarly

q
i
= lim

tôÿ
Prob[k

i
(t) > 0]

=
v
i
+≥n

j=1w
+
ji
q
j

V
i
+≥n

j=1[w
+
ij
+w*

ij
] +≥n

j=1W
*
ji
Q
j

, (6)

where W
+
ij

and W
*
ij

are the excitatory and inhibitory connection
weights from X

i
to the neurons of ARNN node j, while w+

ij
and w*

ij

are the connection weights from x
i
to neurons of node j. In the ARNN,

these are restricted as follows:

W
ij
= W

+
ij

+W *
ij
, w

ij
= w

+
ij
+w*

ij
, ≈ i, j À {1… n}, i ë j, (7)

with constants W
ij
, w

ij
g 0 representing the total firing rates of the

neurons towards other connected neurons. This restriction has two
advantages: it simplifies the learning algorithm since it only updates
W

+
ij
, w

+
ij
, i, j À {1,… , n}, i ë j, and it also avoids having very large or

very small weights, resulting in better convergence.
Thus, we can then write:

Q
i
=

V
i
+≥n

j=1W
+
ji
Q
j

v
i
+≥n

j=1Wij
+≥n

j=1[wji *w
+
ji
]q
j

, (8)

q
i
=

v
i
+≥n

j=1w
+
ji
q
j

V
i
+≥n

j=1wij +
≥n

j=1[Wji
*W +

ji
]Q

j

.

4.1.2. Initializing the connection weights of the ARNN
Before applying the learning algorithm based on specific input data,

we initialize the connection weights of the ARNN model in a manner
which avoids the bias that may arise from a specific choice of the
weights:

• The local vulnerability predictor provides ‘‘perfect ignorance’’
information, i.e. V

i
= v

i
= 0.5, for each component.

• The initial connection weights are chosen so that the ith node
reflects ‘‘perfect uncertainty’’ with Q

i
= q

i
= 0.5.

To select the network weights that satisfy these two constraints, we use
Eqs. (8) for Q

i
and q

i
:

Q
i
= 0.5 =

V
i
+ 0.5≥n

j=1W
+
ji

V
i
+≥n

j=1Wij
+ 0.5≥n

j=1[wji *w
+
ji
]
,

or

n
…

j=1
W
ij
= V

i
* 0.5

n
…

j=1
[w

ji
*w+

ji
* 2W +

ji
], (9)

and

q
i
= 0.5 =

V
i
+ 0.5≥n

j=1w
+
ji

V
i
+≥n

j=1wij + 0.5≥n

j=1[Wji
*W +

ji
]

or

n
…

j=1
w
ij
= V

i
* 0.5

n
…

j=1
[W

ji
*W +

ji
* 2w+

ji
]. (10)

Since each pair of neurons X
i
, x

i
is symmetric, we select W +

ji
= w

+
ji
,

W
ji
= w

ji
, and W +

ij
= w

+
ij
= 0.5w

ij
so that:

n
…

j=1
w
ij
= V

i
+ 0.5

n
…

j=1
[3w+

ji
*w

ji
].

Due to the bilateral communication, we set w
ij
= w

ji
when A(i, j) = 1.

We then have:
n
…

j=1
W
ij
=

n
…

j=1
w
ij
= 4

3Vi,

so
n
…

j=1
W

+
ij

=
n
…

j=1
w

+
ij
= 2

3Vi (11)

Let N
i
denote the number of neighbours of component S

i
, i.e. the

number of components that are directly connected with S
i
. We then

initialize the ARNN weights as follows:

W hen A(i, j) = 1 and i ë j : W
+
ij

= W
*
ij

= w
+
ij
= w

*
ij
= 1

3N
i

, (12)

Else if A(i, j) = 0 or if i = j : W
+
ij

= W
*
ij

= w
+
ij
= w

*
ij
= 0.

Note that the inter-neuron weights are zero if A(i, j) = 0, and we also
have zero weights from a neuron to itself.

After initialization, for all neuron pairs i, j, i ë j with A(i, j) = 1,
the weights W +

ij
, w

+
ij
determined via the learning algorithm given in

Section 4.2.

4.1.3. Computing the likelihood ratio L
i
of the overall vulnerability S

i

We now show how the Likelihood Ratio L
i
for the Overall Vulnera-

bility of Component S
i
can be computed from the ARNN. Using Gelenbe

(1993), we know that if the solution to the 2n Eqs. (5) and (6) are
such that 0 f Q

i
, q

i
< 1 for i À {1,… , n}, then the joint stationary

distribution of network state satisfies:

lim
tôÿ

Prob[K1(t) = C1,… ,K
n
(t) = C

n
,

k1(t) = c1,… , k
n
(t) = c

n
]

=
n
«

i=1
Q
Ci

i
(1 *Q

i
) qci
i
(1 * q

i
), (13)

and the probability that ARNN predicts the component S
i
is vulnerable,

is:

P
V

i
= lim
tôÿ

Prob[K
i
(t) > k

i
(t)] =

Q
i
(1 * q

i
)

1 * q
i
Q
i

(14)

Similarly, we obtain that the probability that component S
i
is not

vulnerable:

P
v

i
= lim
tôÿ

Prob[K
i
(t) < k

i
(t)] =

q
i
(1 *Q

i
)

1 * q
i
Q
i

, (15)

Accordingly, one computes the Likelihood Ratio regarding the vulner-
ability of component S

i
as:

L
i
=
P
V

i

P
v

i

=
Q
i
(1 * q

i
)

q
i
(1 *Q

i
) À [0,+ÿ) . (16)

Thus for some threshold ⇥ > 0, L
i
g ⇥ supports the hypothesis that S

i

is vulnerable in the presence of the interconnected components, while
if L

i
< ⇥, then the ARNN infers the opposite, while L

i
= ⇥ would

indicate that the ARNN is unable to reach a decision.

4.2. Training the ARNN for SWVA

The training dataset � contains a pair of n-vectors  
z
and G

z
, for

each data sample z À {1,… ,Z} that corresponds to a version of the
software system S:

� = { 
z
,G

z
}
zÀ{1,…,Z}, (17)

where  
z
is the vector of input pairs (V

i,z
, v

i,z
) for all components

i À {1,… , n} for sample z such that:

 
z
=
⌧

(V1,z, v1,z),… , (V
i,z
, v

i,z
),… , (V

n,z
, v

n,z
)
�

, (18)

and G
z
is the vector of ground truths G

i,z
for the likelihood ratio of

vulnerability for all components i À {1,… , n} for sample z such that:

G
z
=
⌧

G1,z,… , G
i,z
,… , G

n,z

�

. (19)
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4.2.1. The learning algorithm
First, let Q

i,z
and q

i,z
respectively denote the values of Q

i
and q

i

for the input values in  
z
, i.e. Q

i,z
= Q

i
( 
z
) and q

i,z
= q

i
( 
z
). Then,

the resulting likelihood ratio (denoted by L
i,z
) for the sample z in the

dataset � is calculated as

L
i,z

=
Q
i,z
(1 * q

i,z
)

q
i,z
(1 *Q

i,z
) , (20)

and the cost function to be minimized takes the form:

E
z
= 1

2

n
…

i=1
(L

i,z
* G

i,z
)2. (21)

The steps of the ‘‘Learning Algorithm’’ are then as follows:

• Initialize the ARNN as described in Section 4.1.2.
• For z = 1 to z = Z:
• For i = 1 to i = n:
• Compute Q

i,z
, q

i,z
, and L

i,z

• Compute E
z
using (21)

• Update the connection weights of ARNN for components S
i
using

Gradient Descent with the cost function E
z
:

W
+
J ,K

} W
+
J ,K

* ⌘
)E

z

)W
+
J ,K

, (22)

w
+
j,k

} w
+
j,k

* ⌘
)E

z

)w
+
j,k

,

where ⌘ > 0 is the learning rate.

4.2.2. Gradient descent of the cost function
We first obtain the derivative of the cost function for each z with

respect to the ARNN weights W +
J ,K

and w+
j,k
as

E
J ,K

z
í )E

z

)W
+
J ,K

=
n
…

i=1
(L

i,z
* G

i,z
)
)L

i,z

)W
+
J ,K

, (23)

E
j,k

z
í )E

z

)w
+
j,k

=
n
…

i=1
(L

i,z
* G

i,z
)
)L

i,z

)w
+
j,k

.

In order to compute the corresponding terms, we can easily show that:

)L
i,z

)W
+
J ,K

= L
i,z

⌧ Q
J ,K

i,z

Q
i,z

(1 *Q
i,z
) *

q
J ,K

i,z

q
i,z

(1 * q
i,z
)

�

, (24)

)L
i,z

)w
+
j,k

= L
i,z

⌧ Q
j,k

i,z

Q
i,z

(1 *Q
i,z
) *

q
j,k

i,z

q
i,z

(1 * q
i,z
)

�

,

where

Q
J ,K

i,z
í )Q

i,z

)W
+
J ,K

, q
J ,K

i,z
í )q

i,z

)W
+
J ,K

, (25)

Q
j,k

i,z
í )Q

i,z

)w
+
j,k

, q
j,k

i,z
í )q

i,z

)w
+
j,k

.

Now, let us define the vectors of size [1 ù n]:

L
z
=
⇠

L
i,z

⇡

iÀ{1,…,n}
, (26)

L
J ,K

z
=
⇠

L
J ,K

i,z

⇡

iÀ{1,…,n}
, L

j,k

z
=
⇠

L
j,k

i,z

⇡

iÀ{1,…,n}
,

Y
J ,K

z
=
H

Q
J ,K

i,z

Q
i,z

(1 *Q
i,z
) *

q
J ,K

i,z

q
i,z

(1 * q
i,z
)

I

iÀ{1,…,n}
,

Y
j,k

z
=
H

Q
j,k

i,z

Q
i,z

(1 *Q
i,z
) *

q
j,k

i,z

q
i,z

(1 * q
i,z
)

I

iÀ{1,…,n}
,

so that if we denote the Hadamard product of vectors a and b by a˝b,
we can write:

L
J ,K

z
= L

z
˝Y J ,K

z
, L

j,k

z
= L

z
˝Y j,k

z
. (27)

The gradient descent update ofW +
J ,K

, w
+
j,k
for sample z then becomes:

W
+
J ,K

} W
+
J ,K

* ⌘(L
z
* G

z
)⌧ LJ ,K

z
, (28)

w
+
j,k

} w
+
j,k

* ⌘(L
z
* G

z
)⌧ Lj,k

z
,

where M⌧ is the Transpose of matrix M .

5. Experiments using a real-world software system

In order to evaluate the performance of the proposed SWVA frame-
work, we consider a real-world software system, called GitHubCrawler,
and collect data using this system. During the data collection using
GitHubCrawler system, we first identify the interconnections between
software components, i.e. extract the [nùn] matrix A

c
, for each commit-

ted version c of this system. Then, for each component in software with
version c, we utilize a local vulnerability detector to compute inputs
and the ground truth.

5.1. The software system

The GitHubCrawler system has been developed as part of a Euro-
pean Union research project SDK4ED (EU HORIZON Project SDK4ED,
2020). This system, which is written in Java and a core element of the
Dependability Toolbox (DepTool, 2024) of the SDK4ED Platform (Ke-
hagias, Jankovic, Siavvas, & Gelenbe, 2021), is responsible for (1)
cloning both public and private software repositories from GitHub,
(2) compiling them with MAVEN (Maven, 2024), and (3) crawling
GitHub, in order to retrieve software repositories that satisfy user needs
based on submitted queries (programming language, stars, etc.). In
earlier research, it has been used by the Quantitative Security Assess-
ment (Siavvas, Kehagias, Tzovaras, & Gelenbe, 2021) and Vulnerability
Prediction (Filus et al., 2021; Filus, Siavvas, Doma´ska, & Gelenbe,
2020) micro-services of the Dependability Toolbox to access the GitHub
repositories for security analysis.

The GitHubCrawler system has 13 committed versions in its devel-
opment history, and its latest version consists of 11 software compo-
nents interconnected to perform its main functions. Note that earlier
versions of this system consist of fewer (4 to 10) components. The se-
lected software system has undergone a thorough security code review
and actual vulnerabilities were identified in some of its components.
This information was particularly useful for the present work for con-
structing the ground truth that is required for building and evaluating
the ARNN model.

As already stated, for the purposes of the present study, the various
components of the selected software system operate on the same local
machine (i.e. on a single physical shared memory platform), where
some or all of its components are interconnected to each other through
procedure calls. Since the source code is written in the high level
programming language Java, the analysis benefits from a higher level
of abstraction, that focuses on the system’s logic and functionality,
rather than on low-level hardware specific operations. It should be
also noted that, although the various components operate on the same
local machine, the analysis is not restricted to a particular operating
system, since Java applications operate on the Java Virtual Machine
(JVM), which enables applications to run across various operating
systems (cross-platform operation). Java adopts the ‘‘Write Once, Run
Anywhere (WORA)’’ philosophy, which is achieved by compiling the
source code into a bytecode that can be executed on any hardware
platform or operating system that has compatible JVM. JVM acts as
an abstraction layer between the application and the underlying OS,
handling the application’s execution in a way that makes it compatible
across different platforms.
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Fig. 3. The graphs with the interconnections between the components of the six latest versions of the GitHubCrawler software system, as produced by the Dependency Viewer
plugin.

5.2. Interconnection of software components

Recall from Section 3 and Fig. 1, that it is first necessary to iden-
tify the interconnections between all components, i.e. to extract the
connection matrix A

c
in software version c, for either training or

execution of the ARNN model. To this end, we use the Eclipse plugin
named Dependency Viewer (VIEWER, 2024) to provide a graph of the
interconnections between the components of the given software system.

During our experimental work, in order to construct the dataset
that is used for performance evaluation, the Dependency Viewer was
employed for each of the 13 versions of the GitHubCrawler system to
obtain the interconnections between the components.

The component interconnection graphs of the 6 latest versions (v8–
v13) of GitHubCrawler are illustrated in Fig. 3 . These graphs were used
to construct the connection matrix of each committed software version
c, denoted by A

c
. Note that we manually inspected both the graphs

and source code of each software version to verify the correctness of
interconnections between components and to add links missed by the
Dependency Viewer tool.

5.3. Local vulnerability prediction

In order to collect a dataset of the local vulnerability predictions
within the SWVA framework, we use 13 different vulnerability pre-
diction models developed as part of the IoTAC Software Security by
Design Platform (Siavvas et al., 2024). That is, for each committed
version c of the GitHubCrawler system, we collect a dataset comprised
of 13 samples. The local component based vulnerability predictions are
based on text mining of the word sequences, which have demonstrated
promising results in recent work (Dam et al., 2018).

For each software component S
c,i
in version c of the GitHubCrawler,

we first parse its source code to extract word sequences, and then
calculate its local vulnerability score V

c,i,z
using the local vulnerability

predictor that corresponds to the sample z. Recall that we set v
c,i,z

=
1 * V

c,i,z
.

5.4. Ground truth for the likelihood of vulnerability

For each sample z À {1,… , 13} collected for component i in any
software version c, we compute a ground truth likelihood G

c,i,z
for

three different scenarios considering the vulnerability level of the set
(I
c,i
) of software components, which is comprised of S

c,i
and its directly

connected neighbours, i.e. I
c,i

= {i} ‰ {j : A
c
(i, j) = 1}.

Accordingly, these three different scenarios are as follows:

1. Average: In this instance, we take the ground truth vulnerability
level of component i as the average of S

c,i
and of the correspond-

ing values of the components to which component i is connected:

H
1
c,i,z

= 1
I
c,i


…

jÀIc,i
V
c,j,z

(29)

2. Maximum: As the worst case scenario, we calculate the ground
truth for the given component S

c,i
based on the local vulner-

ability level of its most vulnerable neighbour (i.e. connected
component):

H
2
c,i,z

= max
jÀIc,i

�

V
c,j,z

�

(30)

3. Maximum-Standard Deviation (Max-Std): We finally consider
an intermediate scenario where the standard deviation is sub-
tracted from the maximum vulnerability level among S

c,i
and

its neighbours. In this way, we aim to avoid considering a com-
ponent equally vulnerable with its most vulnerable neighbour.
Then,

H
3
c,i,z

= H
2
c,i,z

*
v

1
I
c,i


…

jÀIc,i
�

V
c,j,z

*H1
c,i,z

�2 (31)
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Fig. 4. Performance of the proposed ARNN-based SWVA framework for the latest version (v13) of the GitHubCrawler system using each of the three ground truth calculation
methods, namely ‘‘Average’’, ‘‘Maximum’’, and ‘‘Maximum-Standard Deviation’’, with respect to percentage Accuracy, TNR, and TPR metrics.

Then, considering any scenario m À {1, 2, 3}, the ground truth of the
likelihood ratio is calculated as

G
c,i,z

=
H
m

c,i,z

1 *Hm

c,i,z

. (32)

5.5. Data collection

The data collection process that was followed for the present study
is summarized in the following steps:

• Step 1: Initially, the selected software application, i.e., the GitHub
Crawler, was cloned locally along with all its 13 versions, in order
to undergo specific processing for generating the required data.

• Step 2: For each version of the selected software application, the
adjacency matrix A was extracted. In particular, the Dependency
Viewer tool was executed in order to extract the interconnection
graph of each version of the selected software application (see
Fig. 1). Subsequently, the graphs were manually processed to
construct the adjacency matrix (A) for each version, following the
process described in Section 5.2.

• Step 3: For each component of each version of the selected
software application, the 13 local vulnerability detectors were
executed in order to retrieve their vulnerability scores V and v.
These scores reflect the local vulnerability level of each com-
ponent, as provided by the local vulnerability detectors. All 13
versions of the GitHub Crawler were processed, and this process
was repeated for each one of the 13 versions of the selected
software application, leading to 169 samples.

• Step 4: Using (i) the adjacency matrices A for each version of
the selected software application, and (ii) the local vulnerability
scores/levels of their software components were computed, we
constructed the ground truth, by computing the vulnerability
ground truth for the best, worst, and intermediate case scenarios,
by taking the average, maximum, and maximum-std vulnerability
levels respectively of each component and of its neighbouring
components in the adjacency matrix A.

• Step 5: Then, based on the vulnerability level ground truth we
computed the vulnerability likelihood ground truth by using (32),
for each one of the three considered scenarios. (see Section 5.4).
In that way, for each one of the 169 samples we have three
ground truth vulnerability likelihood values for each component
that correspond to three different scenarios (i.e., best case, worst
case, and intermediate case scenarios).

• Step 6: The final dataset was extracted and stored in a form
suitable to train and evaluate the ARNN-based SWVA mechanism.

6. Performance of SWVA and its comparison with other methods

We now evaluate the performance of the proposed ARNN-based
SWVA framework, using the GitHubCrawler system for each of the
three given scenarios, and compare it against the well-known ML
models, Multilayer Perceptron (MLP), K-Nearest Neighbours (KNN),
and Least Absolute Shrinkage and Selection Operator (Lasso). Since we
have 13 samples corresponding to each of the different lexicographic
techniques that are used to detect the vulnerability of a software
component, for each of the 13 software versions, this leads to a total
of 169 samples. Therefore, we perform 5-fold cross-validation to obtain
generalizable results using the relatively small dataset. Note that as
5-fold cross-validation trains a given model with 80% of the dataset
and tests it with the remaining 20% iteratively changing the training
and test data, it provides results that reflect the predicted performance
of the model in practice. Also, during our experiments, we trained
the ARNN for 100 epochs with learning rate of 10*12 for each cross-
validation fold, and we used the best value of the decision threshold
for each ML model. Note that a relatively small learning rate is selected
to prevent large gradient updates, as the learning algorithm minimizes
the squared error of the likelihood ratio.

6.1. Performance with different ground truth computations

We first evaluate the performance of the proposed ARNN-based
SWVA framework using each of the three ground truth calculation
methods given in Section 5.4, for the latest version – v13 – of the
GitHubCrawler system. Accordingly, Fig. 4 displays a box-plot of the
SWVA performance over software components with respect to percent-
age Accuracy, True Negative Rate (TNR), and True Positive Rate (TPR)
metrics for each of ‘‘Average’’, ‘‘Maximum’’, and ‘‘Max-Std’’ methods.

For each ground truth calculation method, the results in this figure
show that ARNN-based SWVA achieves 85% median Accuracy and
100% median TNR. We also see that:

• When Average is used, median performance is 100% with respect
to both TNR and TPR. However, the lower whisker of the TNR
box-plot shows that the average false detection rate for a minority
of 25% of components is slightly high, such that the average TNR
for 3 of the 11 components is below 85%. At the same time,
SWVA successfully identifies vulnerable components achieving
above 72% TPR for every component except one.
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Fig. 5. Percentage accuracy of the ARNN model presented as a box-plot (top) and a bar chart showing the individual components (bottom) for all software versions.

• When Maximum is used, although the median of TPR is 82%, the
TNR performance of SWVA is 100% i.e. SWVA provides no false
detection, for all components except one. This result is expected,
as this ground truth only labels each component as invulnera-
ble if all neighbours are also invulnerable. On the other hand,
this ground truth calculation significantly decreases median TPR,
since our ARNN-based SWVA assesses the vulnerability based on
the learned relationship between connected components instead
of taking the maximum. That is, ARNN-based SWVA may indicate
that a component is not vulnerable even if one of its neighbours
is predicted to be locally vulnerable.

• When Max-Std is used, we obtain similar results with using
Average. In contrast, SWVA now achieves slightly higher TNR for
all components with slightly decreased TPR.

In order to avoid biased measurements that could result from taking
the maximum vulnerability of connected components as ground truth,
during the rest of our analysis we present the results for the Average
ground truth calculation.

6.2. Detailed results using average-based ground truth

We now analyse the performance of ARNN-based SWVA for differ-
ent versions of the considered software system by varying the number
of components. Thus, in Fig. 5, we present the percentage accuracy
of ARNN-based SWVA as a box-plot (top) presenting the performance

statistics over all components in each version and as a bar graph
(bottom) showing the performance for each component separately.

In Fig. 5, we see that the median accuracy is above 85% for all
versions except v3 and v4. We also see that the overall accuracy
of ARNN-based SWVA tends to be higher when the total number of
components n is comparably larger. This may be due to the fact that
ARNN-based SWVA considers interconnected components to make an
accurate assessment. In addition, our results in this figure show that
although the median accuracy is considerably high, the lower whisker
is often between 45% to 60%.

In Fig. 6 (top), which presents the TPR results, we see that the
median TPR equals 100% for all versions except v1 for which the
median TPR is about 83%. Despite the high median TPR, there are
outliers or low whisker values around 45%–50%. During our analysis
of the dataset and the results, we observed that the TPR performance
is low mainly for the single-connected components, which have a
connection with only one of the other components, especially when
the ground truth is slightly above 1. The ground truth of the likelihood
ratio is observed to be just over 1 (between 1 and 1.5) when ARNN-
based SWVA underestimated the likelihood indicating that the given
component is invulnerable.

Next, Fig. 6 (bottom) displays the TNR performance of ARNN-based
SWVA for each version of the considered software. Our TNR results –
similar to the TPR – show that the median performance equals 100%
for the majority of versions, and it is between 85% to 90% for only v1,
v2 and v10. In addition, for each software version, we see that there
are one or two components for which the TNR is less than 60%.
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9�



E. Gelenbe et al.

Fig. 6. Box-plot for the percentage TPR (top) and TNR (bottom) performance of the ARNN model for all software versions.

6.3. Comparison with other ML models

We further compare the performance of the ML model, ARNN,
adapted specifically for SWVA in this work, with other well-known
models, MLP, KNN, and Lasso. As these models are not structured to
process local vulnerability predictions (V

i
and v

i
) separately, the input

provided is LL
i iÀ{1,…,n}. That is, the ML models other than ARNN learn

a mapping:

ML : {LL
i
}
iÀ{1,…,n} ô L (33)

In addition, these models are implemented as follows:

• MLP is a multi-layer perceptron with three hidden layers and
sigmoidal activation. Each layer contains n neurons, which, is
identical to the number of components in the software system.
This architecture does not cause feature shrinkage related to the
local vulnerability states of components. Thus, it allows MLP to
learn how to assess system-wide vulnerabilities based on local
states. Considering the value range of the likelihood ratio, we use
the Rectified Linear Unit activation function at each layer of MLP.
Moreover, this model is implemented using Keras API in Python
and trained via the Adam (Kingma & Ba, 2014) optimizer for 300
epochs to minimize mean squared error.

• KNN uses equally weighted 4 neighbours, which are approxi-
mately 25% of training samples in each fold of cross-validation
and equal to the minimum number of components through all

software versions. The KNN model is implemented using scikit-
learn library in Python.

• Lasso is selected to represent the models with the ability of
feature selection and used with the regularization coefficient of
0.1. It is also implemented using the scikit-learn library.

Note that the rest of the parameters of models which are mainly
implementation-dependent are used as the default values provided by
the libraries.

Fig. 7 displays the performance of ARNN against the MLP, KNN, and
Lasso models with respect to median Accuracy, TPR, and TNR respec-
tively from top to bottom. The results in Fig. 7 (top) mainly show that
ARNN outperforms other models with 4% to 10% accuracy difference
for the majority of the software versions. In more detail, as shown in
Fig. 7 (top), ARNN achieves the best accuracy for 8 of 13 versions,
while its performance is the same with either Lasso or KNN for the
remaining versions v2-4, v10, and v13. That is, ARNN is able to reach
the top performance in terms of accuracy for all software versions. The
superior performance of ARNN is due to its specific architecture and
learning algorithm. The architecture and learning algorithm of ARNN
allows it to learn the propagation of vulnerabilities so as to successfully
assess the system-wide security. The results in Fig. 7 (bottom left) also
shows that ARNN assesses the vulnerabilities significantly better than
all of the other models, while the TPR difference between ARNN and
the second-best model is about 15% on average. We also see in Fig. 7
(bottom right) that ARNN is able to achieve very high TNR along with
its successful assessment of vulnerabilities.
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Fig. 7. Performance comparison of different ML models with respect to average Accuracy (top), TPR (bottom left), and TNR (bottom right) for all software versions.

In addition, among the ML models compared, MLP is shown to be
the worst-performing model due to the low number of training samples.
We see that the TNR of KNN significantly increases with n while that
of Lasso and MLP remains almost the same.

In Fig. 8, we present the performance of the compared ML models
for each software component in v13. The results in this figure show that
ARNN achieves considerably low accuracy only for the ‘‘XmlLogger’’
component. On the other hand, considering all components, ARNN
provides consistently high and acceptable accuracy. One should note
that although ARNN is a neural network model with a significantly
larger set of learnable parameters compared to KNN and Lasso, all
ML models are trained only with 10 samples at each fold of the
cross-validation.

6.4. Performance evaluation on extended dataset

Furthermore, we evaluate the performance of our SWVA framework
on the extended dataset. To this end, for each software version in

the original dataset, we first enlarged the data to have 6000 new
versions of the software system half having vulnerabilities and half not.
Subsequently, we trained the ARNN using 1500 vulnerable and 1500
invulnerable software systems, and we tested it using the remaining
3000 versions of the software system.

For each software version in the original dataset, in order to create
3000 new vulnerable software systems, we inserted a vulnerability
code into a randomly selected line of a randomly selected software
component. The vulnerability is also randomly chosen among the set of
vulnerabilities: {Heap Overflow, CWE-22-CWE-20, CWE-209, CWE-248,
CWE-396, CWE-772, CWE-835}. Each component to which a vulnera-
bility was introduced was considered to have a local vulnerability level
of 1.

In order to create invulnerable software systems, we first manually
removed all vulnerabilities in the original system. Then, to create a new
invulnerable software system, we removed a random number of bidirec-
tional connections (up to half of all connections), which are randomly
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Fig. 8. Performance comparison of different ML models for each component in the latest version (v13) of the considered software with respect percentage accuracy.

Fig. 9. Examples of generated invulnerable software systems.

selected. Note that the first two software versions are not considered
due to the low number of components they contain. Examples of the
resulting systems are displayed in Fig. 9.

The average performance of the SWVA framework for assessing
the vulnerability of individual components in each software system
is given in Fig. 10. The results in this figure show that the ARNN-
based SWVA can classify vulnerable and invulnerable components with
accuracy varying between 60% to 80%. On the other hand, SWVA clas-
sifies vulnerable components with higher accuracy than invulnerable
components, indicating slightly high false positive decisions.

We also evaluate the performance of the SWVA for deciding whether
the complete software system is vulnerable, where a system is classified
as vulnerable if at least one of its components is predicted to be
vulnerable by ARNN. That is, a software system is invulnerable only if
it does not contain any vulnerabilities. The ground truth for vulnerable
systems is calculated in the same way, using the ground truths for
component vulnerabilities instead of ARNN predictions.

Fig. 11 displays the performance of the ARNN-based SWVA frame-
work for classifying vulnerable and invulnerable software systems.
The results show that the proposed framework can perfectly classify
vulnerable software systems. On the other hand, it provides a large

number of false decisions for more than half of the software systems.
One may say that false positive decisions are less costly than false
negative decisions for vulnerability assessment problems.

6.5. Evaluation of the computation time

We finally analyse the computation time of the ARNN model. To
this end, Fig. 12 displays the average training time (top) and execution
time per sample (bottom) with standard deviation bars for increasing
number of software components observed through the system versions.
One may say that the computation time is not an important perfor-
mance indicator for vulnerability assessment as both the training and
execution of ARNN for SWVA shall be performed offline. On the other
hand, computation time metrics can be indicative of the scalability of
ARNN-based SWVA.

In Fig. 12 (top), we see that the training time of ARNN is highly
acceptable about 200 seconds for the largest version of the system with
n = 11. In Fig. 12 (bottom), we see that the mean execution time of
ARNN is between 6 to 10 ms, and it increases slightly with n. Note that
we implemented ARNN using TensorFlow on Python and measurements
are taken using the CPU of a PC with 32 GB of RAM and AMD Ryzen
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Fig. 10. Accuracy of the ARNN-based SWVA for classifying vulnerable and invulnerable components, corresponding to performance with respect to TPR and TNR.

Fig. 11. Accuracy of the ARNN-based SWVA for classifying vulnerable and invulnerable software systems.

7 3.70 GHz processor. In addition, recall that the training of ARNN is
performed for 100 epochs with approximately 10 samples at each fold
of cross-validation.

6.6. Another example of the use of SWVA

The SWVA method is currently being utilized in practice for pro-
viding system-level vulnerability assessment of actual software, and for
facilitating the identification and elimination of actual vulnerabilities,
in a real-world software application that is operating on a Smart Home
environment. The software application called WeatherAPI(i) gathers
information from sensors installed outside Smart Home, (ii) to provide
weather forecasts based on ML/DL models, and (iii) enable actua-
tors that control the interior temperature of the house based on the
forecasts via thermostats and on/off switching of the air-conditioning.
WeatherAPI is written in Java by developers who previously used
traditional local vulnerability prediction mechanisms for identifying
potentially vulnerable components, to prioritize their software testing
and improvement. The simple local vulnerability predictors have now
been replaced by the SWVA method, which the WeatherAPI developers
are actively using as part of their software development pipeline.

In Figure 13, the output of SWVA for a specific commit of the
WeatherAPI software application, is illustrated in the form of a graph,
whose nodes correspond to the software components of the WeatherAPI
application, whereas the vertices denote the interconnections between
its components, i.e., the procedure calls. The colour of each node
reflects how likely it is for its corresponding class to be vulnerable, as
computed by the SWVA mechanism through (32). The darker the shade,

the higher the Vulnerability Likelihood of the corresponding compo-
nent, allowing the developers prioritize their testing and fortification
efforts by focusing on high-risk, potentially vulnerable, components.
For instance, we see that the WeatherBitDescription component has a
much higher likelihood to be vulnerable, and therefore requires further
investigation by the development team.

7. Conclusions

In an interconnected system of hardware and software components,
when individual components have some vulnerabilities, it is difficult
to determine how these local vulnerabilities may propagate across the
system and potentially affect other components.

Thus, in this paper, we have developed the System-Wide Vulnera-
bility Assessment (SWVA) framework based on the ARNN model which
infers whether the vulnerability of some interconnected components
may be affected by the security vulnerabilities of other components.

To this end, the SWVA framework first extracts the interconnec-
tions between software components, and the local vulnerabilities are
predicted using existing techniques. Then, based on this information,
the ARNN – via its problem-specific gradient-based learning algorithm
– learns the effect of any vulnerable component on the security of other
components connected to it. In this manner, the vulnerability of the
given software system as a whole is evaluated, and the effect of local
vulnerabilities on the system security.

We have evaluated the performance of the SWVA framework for 13
different versions of the GitHubCrawler, a real-world software system,
and compared the results of SWVA with several well-known ML models.
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Fig. 12. Training (top) and execution (bottom) times of ARNN for increasing number of components n.

Fig. 13. Graphical output of the SWVA method for the WeatherAPI Java multi-component application that gathers Smart Home sensor data to provide weather forecasts, and
control the temperature and air-conditioning actuators of the house. The graph shows the software components and their procedure calls which affect the system vulnerability. A
darker colour on a component (nodes), indicates that it is more vulnerable, and therefore that it may require a more careful risk analysis, and possible reprogramming, or that
the procedure calls with which it is linked to other components may need to be re-organized. However, we also see that the most ‘‘connected’’ modules are not necessarily those
that are the most vulnerable.
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Specifically, the evaluation has compared the predictions the ARNN-
based SWVA method, applied to the vulnerability prediction of the
real-world GitHubCrawler software system, against predictions offered
by three well-known ML methods: Multilayer Perceptron (MLP), K-
Nearest Neighbours (KNN), and Least Absolute Shrinkage and Selection
Operator (Lasso). We have used data from 13 different lexicographic
techniques that detect the vulnerability of a software component, for
each of the 13 versions of the software, yielding a total of 169 samples.
We performed 5-fold cross-validation that trains a given model with
80% of the dataset and tests it with the remaining 20%, iteratively
changing the training and test data, to obtain generalizable results
using the relatively small dataset. The ARNN was trained for 100
epochs. We also used the best value of the decision threshold for each
of the ML models that were compared, and vulnerability prediction
was evaluated with respect to percentage Accuracy, True Negative Rate
(TNR), and True Positive Rate (TPR).

Our results show that the ARNN-based SWVA successfully assesses
the system-wide vulnerability of a multi-component interconnected
software system, outperforming the other ML models by achieving over
85% median accuracy. In addition, the ARNN has been shown to have
a reasonable computation time — with about 200 s of training time and
9 ms of execution time for an 11-component system. This is relatively
low, and it augurs well for the scalability of this novel ARNN based
SWVA framework.

In future work, we will extend the SWVA framework to intercon-
nected systems whose number and connections change dynamically
over time, so that the structure of the ARNN, namely the neurons
and connection weights, will evolve and learn for different successive
versions of a software system.
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