
Towards a Taxonomy for Reversible
Computation Approaches

Robert Glück1 , Ivan Lanese2(B) , Claudio Antares Mezzina3 ,
Jaros�law Adam Miszczak4 , Iain Phillips5 , Irek Ulidowski6,7 ,

and Germán Vidal8

1 DIKU, Department of Computer Science, University of Copenhagen,
Copenhagen, Denmark

2 Focus Team, University of Bologna/INRIA, Bologna, Italy
ivan.lanese@gmail.com

3 Dipartimento di Scienze Pure e Applicate, Università di Urbino, Urbino, Italy
4 Institute of Theoretical and Applied Informatics, Polish Academy of Sciences,

Gliwice, Poland
5 Imperial College London, London, England

6 Department of Applied Informatics, AGH, Kraków, Poland
7 SCMS, University of Leicester, Leicester, England

8 MIST, VRAIN, Universitat Politècnica de València, Valencia, Spain

Abstract. Reversible computation is a paradigm allowing computation
to proceed not only in the usual, forward direction, but also backwards.
Reversible computation has been studied in a variety of models, includ-
ing sequential and concurrent programming languages, automata, pro-
cess calculi, Turing machines, circuits, Petri nets, event structures, term
rewriting, quantum computing, and others. Also, it has found applica-
tions in areas as different as low-power computing, debugging, simula-
tion, robotics, database design, and biochemical modeling. Thus, while
the broad idea of reversible computation is the same in all the areas, it
has been interpreted and adapted to fit the various settings. The exist-
ing notions of reversible computation however have never been com-
pared and categorized in detail. This work aims at being a first stepping
stone towards a taxonomy of the approaches that co-exist under the term
reversible computation. We hope that such a work will shed light on the
relation among the various approaches.

Keywords: Reversible computing · Taxonomy · Models and languages

I. Lanese has been partially supported by French ANR project DCore ANR-18-
CE25-0007 and INdAM-GNCS Project CUP E55F22000270001 “Proprietà qualitative
e quantitative di sistemi reversibili”. I. Ulidowski has been partially supported by JSPS
Fellowship grant S21050. G. Vidal has been partially supported by grant PID2019-
104735RB-C41 funded by MCIN/AEI/ 10.13039/501100011033. J.A. Miszczak has
been partially supported by NCN grant 2019/33/B/ST6/02011.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Kutrib and U. Meyer (Eds.): RC 2023, LNCS 13960, pp. 24–39, 2023.
https://doi.org/10.1007/978-3-031-38100-3_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-38100-3_3&domain=pdf
http://orcid.org/0000-0001-6990-3935
http://orcid.org/0000-0003-2527-9995
http://orcid.org/0000-0003-1556-2623
http://orcid.org/0000-0001-8790-101X
http://orcid.org/0000-0001-5013-5876
http://orcid.org/0000-0002-3834-2036
http://orcid.org/0000-0002-1857-6951
https://doi.org/10.1007/978-3-031-38100-3_3


Towards a Taxonomy for Reversible Computation Approaches 25

1 Introduction

Reversible computation is a paradigm considering computation to proceed not
only in the usual, forward direction, but also backwards [22,68,76]. Reversible
computation has been studied in a variety of models, including sequential pro-
gramming languages (both imperative [30,31,96,97], functional [38,43,88,95],
and object-oriented [35,36,85]), concurrent programming languages [37,53,
54], process calculi [18,19,51,83], universal logic elements [28,67,90], Turing
machines [3,8,67,70], automata [46,68], cellular automata [40,66,69,91], modal
logics [80], Petri nets [6,60,62], event structures [79], term rewriting [1,72],
Markov chains [41], circuits [23,27], and others. Also, it has found applications
in areas as different as low-power computing [27,47], debugging [59,93], bidirec-
tional transformations [58,73], database design [11], simulation [84], robotics [56,
86], quantum computing [65,74], and biochemical modeling [16,44,45,82]. In
some of those applications, including quantum computing, the reversibility of
the computational process is enforced by the very nature of the physical process
of computation. In some other areas, the reversibility is treated as a crucial fea-
ture, implemented, for example, by database transactions. Thus, while the broad
idea of reversible computation is the same in all the areas, it has been interpreted
and adapted to fit the various settings. The existing notions of reversible compu-
tation however have never been compared and categorized in detail. This work
aims at being a first stepping stone towards a taxonomy of the approaches that
co-exist under the term reversible computation.

We remark that defining a taxonomy for a field as heterogeneous as reversible
computation is a very difficult task, and as far as we are aware this is the first
effort in this direction. As such, we provide a possible classification, with the
aim to start the discussion. We do not claim that our taxonomy is the final
word on the subject, and indeed other dimensions may be worth considering, in
addition to or instead of some of the ones that we propose (cf. Sect. 2), and of
course we do not claim to be complete on our coverage of models1 and languages
(cf. Sect. 3). Indeed, our examples are concentrated in the area of formal methods
and programming languages, which are the main expertise of most of the authors,
and we may have missed very significant examples from other areas.

2 Taxonomy

In this section we present our taxonomy for approaches in the area of reversible
computation. The taxonomy includes six dimensions, and for each dimension
we describe different positions that a given approach may fit. In many cases,
positions on a dimension are ordered, in the sense that one generalizes the other.
Hence, of course, if an approach fits a position it fits also all the more general
1 In the following we mainly use the term model to refer to the instances of reversible

computation that we consider. Indeed, many of our examples are (formal) models.
However, we think that our taxonomy can be applied also to more concrete entities,
such as languages, applications or systems.



26 R. Glück et al.

ones. We write (dim, pos) to refer to position pos in dimension dim. We write
(d1, p1) =⇒ (d2, p2) to say that pair (d1, p1) implies (d2, p2), and dually the
latter is a generalization of the former.

We note that the same approach may fit different positions, depending on the
level of abstraction. Vice versa, very different models may fit the same position
in the classification. This is the case for instance of the reversible imperative
language Janus [97] and of reversible logic elements [28]. This is partially by
construction, in the sense that we tried to focus in the taxonomy on the features
of the reversibility mechanisms, abstracting away as far as possible from the
features of the underlying model.

We describe below each dimension, by explaining the different positions, with
examples of approaches that fit each of them. We refer to Sect. 3 for a more
comprehensive description about where models from the literature fit in our
taxonomy.

Reversibility focus (FOC): This is the main dimension in the proposed tax-
onomy. It refers to which aspects of a model are looked at to check whether
it is reversible. It features three positions, listed below.
Functional behavior (FUN): In this case a system is said to be reversible

if it computes an injective function. Indeed, injectivity ensures that there
is a single input which can result in a given output, hence from the output
one can recompute the input. As examples, reversible Turing machines,
Janus programs, reversible circuits, quantum circuits, and the biorthog-
onal automata of [1] all define injective functions, hence they fit this
position. The functional behavior can be computationally as powerful as
reversible Turing machines (r-Turing-complete) [3], or subuniversal [70]
and total (always terminating) such as in reversible primitive recursive
programs [75] and reversible circuits [28]. Reversible circuits compute
exactly the bijective Boolean functions, which are a proper subset of
the partial injective functions that are computable by reversible Turing
machines and r-Turing complete reversible languages, like Janus.

Reachable states (STA): In this case a system is said to be reversible if it
can go back to past states. Checkpointing and SVN are real world tech-
niques fitting this position. Some notions of reversibility in Petri nets [25],
requiring that the initial state is reachable from any state, fit this dimen-
sion too. Notably, this class of approaches does not consider how past
states are reachable, allowing one to reach them via transitions unrelated
to the ones used in the past of the computation. Actually, approaches such
as rollback directly restore past states, without taking a step-by-step app-
roach to reach them. Notably, not all past states may be reachable, or
they may be reachable only with some approximation.

Undoing steps (UND): In this case a system is said to be reversible if it
can undo previous steps. This may require or not using special memory or
history information. Reversible process calculi [10,12,19,51,83], cellular
automata [91] and Janus [97] fit in this position. Note that Janus fits the
FUN position too: the position depends on the level of abstraction. If



Towards a Taxonomy for Reversible Computation Approaches 27

we consider a small step semantics, then Janus fits position UND; if we
abstract away execution details and just look at the functional behavior,
then Janus fits position FUN.

Note that, if one is able to undo steps, then by undoing steps one can reach
past states. Hence, we have the relation (FOC, UND) =⇒ (FOC, STA).

Also, if a functional behavior can be defined, by undoing steps one can com-
pute the unique inverse function. Hence, the computed function is injective (keep-
ing into account additional memory if present), and we have the implication
(FOC, UND) =⇒ (FOC, FUN).

Resources for reversibility (RES): This dimension refers to whether a model
is directly reversible, or whether additional resources (e.g., memory) are
needed to enable backward execution.
None (NON): The model is directly reversible, without needing addi-

tional memory. Janus, reversible Turing machines and reversible cellular
automata fit here. Janus [97] is the standard representative of the class of
clean (without garbage) reversible programming languages, which all fit
this position [32]. This class includes imperative [30,31], functional [38,
43,88,95], and object-oriented [35,36,85] languages; reversible flowchart
languages [96] to model the high-level structured languages, as well as
low-level machine code for reversible von Neumann machines [4,89].
We remark that models designed without reversibility in mind (e.g., main-
stream programming languages) in most of the cases do not fit this posi-
tion (quantum circuits are an exception to this observation though). In
order for models to fit this position, one normally restricts a general class
of models. For example, the reversible Turing machines [8] are a forward-
and backward-deterministic subset of the Turing machines.

Inside the model (INS): In order to enable reversibility some history infor-
mation is needed. This information is represented in the same formalism
as the original system. This happens, e.g., for some Petri nets [60], where
additional places and tokens can be used to keep such history informa-
tion. This is also the case for reversible rewrite systems [72], where some
additional terms are added to make a function injective, an approach
which is similar to the addition of a complement in the bidirectionaliza-
tion of functional programs [58,73]. Another example is the Reverse C
Compiler [76] that instruments C programs with statements that trace
the computation history. Earlier work that trace at the source level are
for Pascal programs [13] and for irreversible Turing machines [8].

Outside the model (OUT): In order to enable reversibility some history
information is needed, but to represent this information the model needs
to be extended. This happens normally in process calculi [19,51,83] and
when mainstream programming languages are made reversible: RCCS
processes [19] are not CCS processes, and reversible Erlang [53] is not
plain Erlang (since the interpreter is instrumented to additionally store
history information).



28 R. Glück et al.

In reversible event structures, additional relations on events such as prece-
dence or direct causation are used to work out how to reverse events [92].

It is easy to note that no history information is a particular case of history
information, and history information outside the model can mimic history infor-
mation inside the model. Thus, (RES, NON) =⇒ (RES, INS) and (RES, INS)
=⇒ (RES, OUT).

Moreover, the classification in this dimension depends on the definition of the
model. Notably, by considering a model together with the additional memory
needed to make it reversible, one moves from position OUT to INS, or even
to NON if one considers history information as part of the normal runtime
information of the system. Notably, a model of category NON is able to run
backwards without having first run forwards, while for models in category IN or
OUT one first needs to run forward to generate and store history information.
However, if one looks at history information as part of the state, then one can
imagine running backwards directly, just by providing history information as
part of the starting state. In practice, the history is often difficult to construct
without running a program because it depends on the operational internals of
the program.

To summarize this discussion, the categorization of a model inside this dimen-
sion critically relies on a clear definition of which is the basic model and which is
the history information. This distinction comes out naturally when a reversible
model is obtained by extending a non-reversible one: in this case what is added
to the non-reversible model can be considered as history information kept to
enable reversibility. This is the case of, e.g., RCCS [19], which extends CCS with
reversibility by equipping each process with a dedicated memory, and in general
of Landauer embedding [47].

When reversibility is enabled (WHE): This dimension considers whether
reversibility is always enabled or not.
Always (ALW): Reversibility is always enabled, one can take any state and

compute backwards. This happens, e.g., in Janus. Process calculi require
history information to compute backwards, but we fit them here if they
can always go backwards provided that history information is available.
The distinction between the Janus case and the process calculi case can
be made by looking at dimension RES.

Sometimes (SOM): Reversibility is not always enabled, i.e. there are irre-
versible steps or other conditions that need to be satisfied for enabling
reversibility. Some of the examples include RCCS with irreversible
actions [20] (and in general models or languages featuring control mech-
anisms for reversibility [50]), robotics [56], where some actions (e.g., glu-
ing objects together and drilling holes) cannot be physically reversed, or
hybrid quantum-classical algorithms, where only part of the calculation
is executed using a reversible quantum circuit.

In this dimension we have (WHE, ALW) =⇒ (WHE, SOM). Notably, we
stated above that Janus fits position ALW, since one can execute backwards from



Towards a Taxonomy for Reversible Computation Approaches 29

any state, however Janus also has mechanisms to change the direction of execu-
tion, in particular the uncall of a function computes its inverse function, which
can be seen as a control mechanism to decide when reversibility is enabled. Clean
reversible programming languages, including reversible machine code, typically
include mechanisms that allow to change the computation direction at run time.
However, no such mechanism is available in reversible Turing machines [2].

Order of undoing (ORD): This dimension is a sub-dimension of the location
(FOC, UND), and refers to which transitions can be reversed at a given point
in the execution.
Reverse order (REV): This requires actions to be undone in reverse order

of completion. This is the typical notion of reversibility in sequential sys-
tems (e.g., reversible Turing machines, Janus), and backtracking in con-
current systems [9] is also an example of REV. Notably, REV ensures
that at any point in time a single backward action is enabled, hence the
model is backward deterministic.

Causal order (CAU): This requires actions to be undone only if their con-
sequences, if any, are undone beforehand. Equivalently, causal dependent
actions need to be undone in reverse order, while independent actions
can be undone in any order. This approach, born in the area of process
calculi, is known as causal-consistent reversibility [19,52]. This is the typ-
ical notion of reversibility in concurrent process calculi and languages
(e.g., RCCS [19], reversible Erlang [53,54], . . . ). It has also been used in
reversible event structures [92], and reversible Occurrence Nets [62]. In
this position the notion of backward determinism from position REV is
weakened into backward confluence.

Out of causal order (OCO): This position does not prescribe any con-
straint on when actions can be undone. This has been used, e.g., in bio-
logical systems and models for them (in some process calculi [45,82], some
Petri nets [61,77]) and in modeling distributed antenna selection for mas-
sive MIMO [87] systems.

We have (ORD, REV) =⇒ (ORD, CAU) and (ORD, CAU) =⇒ (ORD,
OCO). Some Petri net models [77] can be tuned so as to cover all three positions
in this dimension.

State reachability (STR): This dimension is a sub-dimension of (FOC, STA),
and roughly corresponds to the dimension ORD above. This describes which
states can be reached by backward execution.
Only past states (PAS): In this position only past states can be reached.

This is typical of sequential models (e.g., Janus) or concurrent models
when backtracking is used.

Only past states up-to concurrency (CON): Only states that could
have been reached in the past by swapping the order of concurrent actions
can be reached. This is the typical behavior of concurrent systems based
on the causal-consistent approach, such as concurrent process calculi and
languages (e.g., RCCS [19], reversible Erlang [53]).



30 R. Glück et al.

States reachable by going forward (FOR): In this case backward exe-
cution does not introduce new states, but may allow to reach states in
different ways. This happens for instance in Petri nets [6], where one would
like to avoid introducing new states, but it does not matter whether the
states were in the past of the computation or not.

Also states not reachable by going forward (NOT): In this case back-
ward execution allows computation to reach new states. This behavior
may happen in the presence of out of causal order reversibility (ORD,
OCO), hence typically in biological systems. In Petri nets there is a line
of work [6] trying to understand whether the specific net falls under loca-
tion NOT or under location FOR.

For state reachability, we have (STR, PAS) =⇒ (STR, CON), (STR, CON)
=⇒ (STR, FOR) and (STR, FOR) =⇒ (STR, NOT). This dimension is clearly
related to dimension ORD: if a system can be looked at both from the point of
view of undoing actions and from the point of view of reachable states, (ORD,
REV) corresponds to (STR, PAS), (ORD, CAU) to (STR, CON), and (ORD,
OCO) to either (STR, FOR) or (STR, NOT). It would be interesting to find a
position in classification ORD corresponding to (STR, FOR), but it is not clear
whether any such position exists.

Preciseness of reversibility (PRE): This dimension refers to whether by
going backwards one perfectly undoes the effect of forward moves or not.
Precise (PRC): Going forwards and then backwards exactly restores the

original state. This happens in most of the models (e.g., Janus, process
calculi). This has been captured in causal-consistency theory by the Loop
Lemma [19].

With additional information (ADD): When going backwards one keeps
some information on the undone computation, e.g., that an unsuccessful
try has been performed (to avoid doing the same try again), or that a
possible solution of the problem has been found (but one would like to find
all the solutions). This approach has been partially explored in the area of
reversible process calculi using alternatives [48] (which allow one to select
a different computation upon rollback) or predictions [94] (which are not
involved in backward computation, hence keep trace of what happened).
It has also been studied in the field of session types [17], where branches of
a choice are discarded upon rollback, and of reversible contracts [5], where
different alternatives are explored looking for a compatible behavior with
another process.

Approximate (APP): By going forwards and backwards one can reach a
state which is close in some sense to the starting one, but not exactly the
same. This happens typically in long-running transactions with compen-
sations [14,15], where the compensation does an approximate undo, and in
robotics [56], where perfect reversibility is not possible due to small impre-
cisions in physical actions. Similarly, in reversible neural networks when
inputs are recalculated from outputs (not using precise arithmetic), one
only gets inputs equal to the original ones up to some small error [7,33].



Towards a Taxonomy for Reversible Computation Approaches 31

We have (PRE, PRC) =⇒ (PRE, ADD) and (PRE, ADD) =⇒ (PRE,
APP).

Another possible dimension concerns control of reversibility, namely whether
there is any policy to decide which action to take when more than one (forward
or backward) action is enabled. Possible positions include uncontrolled (no such
policy), semantic control (policy hardwired in the language definition), internal
control (there are specific constructs in the model to specify the policy) and
external control (the policy comes from outside the program, e.g., from the user
or from another program). This dimension has been discussed in [50]. We note
that frequently uncontrolled reversibility corresponds to (WHE, ALW) while
forms of control correspond to (WHE, SOM), since the policy may disallow
backward actions under some conditions.

3 Application of the Taxonomy

While in the previous section we discussed the different dimensions of the tax-
onomy, here we focus on which approach fits which position in the taxonomy.
While there is a partial overlap with the examples given in the previous section,
this dual view provides interesting insights as well. The results of this section
are captured in Table 1.

Research on reversible computing first tackled sequential models of compu-
tation, such as finite state automata and Turing machines. The basic idea was
to take the original models and restrict to those instances which were reversible.
This naturally led to approaches focused on undoing actions at the small step
level, computing injective functions at the global level. Actions were undone in
reverse order, as natural for sequential systems, leading back to past states in
a precise way. This is the case, e.g., of the language Janus and the biorthogo-
nal automata of [1]. In turn, some sequential models were extended in order to
become reversible by introducing a so-called Landauer embedding [47]. Here, we
find, e.g., reversible rewrite systems [72] and the bidirectionalization of functional
programs in [58].

Such an approach was less suitable for concurrent systems, where reverse
order of undoing was too strict in many cases, and one would like to be able
to undo independent actions in any order, while undoing dependent actions
in reverse order. This was first argued in [19], which introduced the notion of
causal-consistent reversibility. Instead of restricting calculi to their injective part,
memories were added to keep track of past execution (thus fitting position (RES,
OUT)), and enable backward computation. Given that in concurrency functional
behavior is of limited interest, since interaction with the environment is impor-
tant, the focus is mainly on undoing actions. A similar approach has been applied
to programming languages for concurrency, in particular Erlang [53,54], where
causal consistency is ensured for both forward (replay) and backward computa-
tions during debugging [29,55].

While the first approaches considered precise reversibility which was always
enabled, further studies introduced control mechanisms [20,49] as well as forms



32 R. Glück et al.

Table 1. Application of the taxonomy to sample approaches from the literature

Formalism Approach FOCus RESource WHEn ORDer STate R. PREcis.

Reversible Turing
machines

[8,67]
FUN
UND

NON ALW REV PAS PRC

Janus [97]
FUN
UND

NON ALW REV PAS PRC

Biorthogonal
automata

[1]
FUN
UND

NON ALW REV PAS PRC

Reversible
cellular automata

[66,91]
FUN
UND

NON ALW REV PAS PRC

Reversible logic
elements

[28,67]
FUN
UND

NON ALW REV PAS PRC

Reversible
rewriting

[72] UND
INS
OUT

ALW REV PAS PRC

Causal-consistent
calculi

[19,83]
[18,51]
[10,12]

UND OUT ALW CAU CON PRC

Calculi + control [20,49] UND OUT SOM CAU CON PRC

Calculi +
predictions

[94] UND OUT ALW CAU NOT ADD

Reversible Erlang [53,54] UND OUT
ALW
SOM

CAU CON PRC

Petri nets [6] STA NON ALW OCO
FOR
NOT

PRC

Reversing Petri
nets

[77,78] UND INS ALW
CAU
OCO

CON
FOR
NOT

PRC

Occurrence nets [62] UND NON ALW CAU CON PRC

Petri nets [60] UND INS ALW CAU CON PRC

Biological models [45,82] UND OUT SOM OCO NOT PRC

Event structures [81,92] UND OUT SOM
CAU
OCO

CON
FOR
NOT

PRC

Quantum circuits [24,26]
FUN
UND

NON ALW REV PAS PRC

Quantum
programming

languages

[42,74] UND INS SOM REV PAS PRC

Reversible neural
networks

[33] UND
NON
OUT

SOM REV NOT APP

Reversible
Markov chains

[41] STA NON ALW REV PAS PRC

Sagas [14] UND INT SOM CAU X APP

SVN [63] STA INT ALW X PAS PRC



Towards a Taxonomy for Reversible Computation Approaches 33

of reversibility which were not precise [94]. Some applications, most notably
in the biochemical setting, triggered the need for weakening causal order, thus
introducing out of causal order reversibility [45,82]. We note that CCSK [83],
with the addition of a control mechanism in the form of a rollback operator
inspired by [49], has been modeled using reversible event structures exploiting
out of causal order reversibility [34].

Petri nets, while being a model for concurrency like process calculi, resulted
in a number of different approaches. The fact that Petri nets have a clear rep-
resentation of state (in terms of tokens inside places), triggered approaches [25]
focusing on state reachability more than on action undoing. Approaches based on
action undoing were also considered and contrasted with the ones based on state
reachability [6]. Other works [62] considered the causal-consistent approach, thus
matching the one of process calculi. Further work tailored Petri nets for biologi-
cal applications [77], allowing one to explore different forms of reversibility, most
notably the out of causal order one.

In the quantum circuit model [24,26] used for developing most quantum
mechanical algorithms, the set of allowed operations is represented by unitary
matrices or unitary gates. Such matrices act on an isolated physical system and,
in this scenario, one is always able to undo the last action. Hence, the term
reversible is, in quantum computer science, synonymous with the term ‘unitary’.
Compared with classical reversible gates, unitary matrices provide us with a
larger set of operations. However, to read out the result of the computation, one
needs to translate the final state into the classical result. Such a process requires
a measurement which is achieved through interaction with the system executing
the computation. The main feature of such a process is its irreversibility. Thus,
reversibility is lost at the moment of ‘interfacing’ with a classical machine or
with the readout procedure. Architecture-specific limitations of current quan-
tum hardware lead to the problem of optimizing quantum circuits [71], most
importantly taking into account the hardware topology [21]. Such optimization
is part of the process of transpilation – translation of quantum circuits to the
form suitable for the target quantum computer.

This need of interfacing between the reversible and the irreversible elements
motivated the development of quantum programming languages [42,64,74]. Also,
many quantum algorithms (NISQ algorithms in particular) use classical subrou-
tines. Quantum programming languages include a specialized type system for
handling quantum structures used in purely quantum, reversible computation.
Additionally, they also include an irreversible subsystem, suitable for dealing
with classical – which in this case means irreversible – computation.

Reversibility is used in Convolutional Neural Networks [57] (CNNs) to undo
computation of the networks’ layers. This removes the need to store, retrieve
and delete layers’ inputs and outputs, which can be recomputed instead. Some
layers perform transformations (of inputs to outputs) which have inverses, such
as multiplication by a matrix, so are directly reversible. Other transformations,
such as applying a convolution or max pooling, lose data so can only be reversed
by enriching the network with additional components. A Reversible Residual



34 R. Glück et al.

Network [33] (ResNet) is a form of CNN that adds shortcuts between layers.
This makes it possible to undo computation of most layers. Calculation is not
in precise arithmetic, so only approximate values of inputs can be uncomputed
from outputs (up to an agreed precision), and thus new states can be reached.

In the field of performance evaluation, a Markov chain is (time) reversible [41]
if it has the same behavior as its inverse, in terms of probabilistic distribu-
tion. Hence the focus is on states, and, since the approach restricts attention
to Markov chains which naturally satisfy the reversibility property, no addi-
tional resources are required. Reversible transitions are always enabled, though
they are subject to a probabilistic distribution, and the order of reversing is the
inverse of the forward one. An initial work relating causal-consistent reversibility
with reversible Markov chains in the setting of a stochastic process algebra is
described in [10].

We conclude the table with a few approaches which are at the bound-
ary of reversible computation, namely Sagas [14], used to model long-running
transactions with compensation, and the well-known tool SVN for version con-
trol [39,63]. Given the distance from classical reversible computation, it is not
clear whether some of the dimensions make sense in these cases. We put ‘X’ in
the cells which we believe are not interesting.

4 Conclusion, Related and Future Work

We have presented a first proposal of taxonomy for reversible computation
approaches, and discussed how various models fit in it. We focused on approaches
from programming languages and concurrency theory, hence in future work it
would be good to put our taxonomy at work also on other kinds of models.

We are not aware of other works putting forward proposals of taxonomies
for reversible computing. A partial analysis in this direction is the classification
of control mechanisms in [50] and an account of reversible computing from a
programming language perspective [32]. Also, a few works in the context of
Petri nets contrast different approaches [6,77], taking advantage of the existence
of many such approaches.

Table 1, while not covering all the literature, highlights some holes which are
interesting targets for future work. For instance, a large part of the approaches
concern precise reversibility, and indeed this is the main focus of the reversible
computing community. Approaches where reversibility is not perfect are however
of interest as well, motivated, e.g., by applications in robotics and neural net-
works, and are an interesting research direction for the reversible computation
community. Another interesting point is that most of the approaches focus on
undoing actions, while a focus on functional behavior and on states has been
adopted only in a few cases. From a theoretical perspective, it would also be
interesting to investigate the computational power and inherent complexity of
reversible computing models.



Towards a Taxonomy for Reversible Computation Approaches 35

Acknowledgements. This work refines and extends the results of discussions that
occurred during the meetings of the COST Action IC1405 on Reversible Computation
– Extending Horizons of Computing. We thank all the participants to such discussions.
The authors were partially supported by the COST Action IC1405. We thank the
anonymous referees for their helpful comments.

References

1. Abramsky, S.: A structural approach to reversible computation. Theor. Comput.
Sci. 347(3), 441–464 (2005)

2. Axelsen, H.B., Glück, R.: A simple and efficient universal reversible Turing
machine. In: Dediu, A.-H., Inenaga, S., Mart́ın-Vide, C. (eds.) LATA 2011. LNCS,
vol. 6638, pp. 117–128. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-21254-3 8

3. Axelsen, H.B., Glück, R.: On reversible Turing machines and their function uni-
versality. Acta Informatica 53(5), 509–543 (2016). https://doi.org/10.1007/s00236-
015-0253-y

4. Axelsen, H.B., Glück, R., Yokoyama, T.: Reversible machine code and its abstract
processor architecture. In: Diekert, V., Volkov, M.V., Voronkov, A. (eds.) CSR
2007. LNCS, vol. 4649, pp. 56–69. Springer, Heidelberg (2007). https://doi.org/10.
1007/978-3-540-74510-5 9

5. Barbanera, F., Lanese, I., de’Liguoro, U.: A theory of retractable and speculative
contracts. Sci. Comput. Program. 167, 25–50 (2018)

6. Barylska, K., Koutny, M., Mikulski, �L., Pia̧tkowski, M.: Reversible computation
vs. reversibility in Petri nets. Sci. Comput. Program. 151, 48–60 (2018)

7. Behrmann, J., Vicol, P., Wang, K.-C., Grosse, R.B., Jacobsen, J.-H.: Understand-
ing and mitigating exploding inverses in invertible neural networks. In: AISTATS
2021, volume 130 of Proceedings of Machine Learning Research, pp. 1792–1800.
PMLR (2021)

8. Bennett, C.H.: Logical reversibility of computation. IBM J. Res. Dev. 17(6), 525–
532 (1973)

9. Bergstra, J.A., Ponse, A., van Wamel, J.J.: Process algebra with backtracking. In:
de Bakker, J.W., de Roever, W.-P., Rozenberg, G. (eds.) REX 1993. LNCS, vol.
803, pp. 46–91. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-58043-
3 17

10. Bernardo, M., Mezzina, C.A.: Towards bridging time and causal reversibility. In:
Gotsman, A., Sokolova, A. (eds.) FORTE 2020. LNCS, vol. 12136, pp. 22–38.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-50086-3 2

11. Bernstein, A.P., Newcomer, E.: Principles of Transaction Processing, 2nd edn.
Morgan Kaufmann Publishers Inc., Burlington (2009)

12. Bocchi, L., Lanese, I., Mezzina, C.A., Yuen, S.: The reversible temporal process
language. In: Mousavi, M.R., Philippou, A. (eds.) FORTE 2022. LNCS, vol. 13273,
pp. 31–49. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-08679-3 3

13. Briggs, J.S.: Generating reversible programs. Softw. Pract. Exper. 17(7), 439–453
(1987)

14. Bruni, R., Melgratti, H.C., Montanari, U.: Theoretical foundations for compensa-
tions in flow composition languages. In: POPL 2005, pp. 209–220. ACM (2005)

15. Caires, L., Ferreira, C., Vieira, H.: A process calculus analysis of compensations.
In: Kaklamanis, C., Nielson, F. (eds.) TGC 2008. LNCS, vol. 5474, pp. 87–103.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00945-7 6

https://doi.org/10.1007/978-3-642-21254-3_8
https://doi.org/10.1007/978-3-642-21254-3_8
https://doi.org/10.1007/s00236-015-0253-y
https://doi.org/10.1007/s00236-015-0253-y
https://doi.org/10.1007/978-3-540-74510-5_9
https://doi.org/10.1007/978-3-540-74510-5_9
https://doi.org/10.1007/3-540-58043-3_17
https://doi.org/10.1007/3-540-58043-3_17
https://doi.org/10.1007/978-3-030-50086-3_2
https://doi.org/10.1007/978-3-031-08679-3_3
https://doi.org/10.1007/978-3-642-00945-7_6


36 R. Glück et al.

16. Cardelli, L., Laneve, C.: Reversibility in massive concurrent systems. Sci. Ann.
Comput. Sci. 21(2), 175–198 (2011)

17. Castellani, I., Dezani-Ciancaglini, M., Giannini, P.: Reversible sessions with flexible
choices. Acta Inform. 56(7–8), 553–583 (2019)

18. Cristescu, I., Krivine, J., Varacca, D.: A compositional semantics for the reversible
π-calculus. In: LICS 2013, pp. 388–397. IEEE Computer Society (2013)

19. Danos, V., Krivine, J.: Reversible communicating systems. In: Gardner, P.,
Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp. 292–307. Springer, Hei-
delberg (2004). https://doi.org/10.1007/978-3-540-28644-8 19

20. Danos, V., Krivine, J.: Transactions in RCCS. In: Abadi, M., de Alfaro, L.
(eds.) CONCUR 2005. LNCS, vol. 3653, pp. 398–412. Springer, Heidelberg (2005).
https://doi.org/10.1007/11539452 31

21. Davis, M.G., Smith, E., Tudor, A., Sen, K., Siddiqi, I., Iancu, C.: Towards optimal
topology aware quantum circuit synthesis. In: QCE 2020, pp. 223–234. IEEE (2020)

22. De Vos, A.: Reversible Computing: Fundamentals, Quantum Computing, and
Applications. Wiley, Hoboken (2010)

23. De Vos, A., De Baerdemacker, S., Van Rentergem, Y., Synthesis of quantum cir-
cuits vs. synthesis of classical reversible circuits. In: Synthesis Lectures on Digital
Circuits and Systems. Morgan & Claypool Publishers (2018)

24. Deutsch, D.: Quantum theory, the Church-Turing principle and the universal quan-
tum computer. Proc. Roy. Soc. Lond. A. Math. Phys. Sci. 400(1818), 97–117 (1985)

25. Esparza, J., Nielsen, M.: Decidability issues for Petri nets. BRICS Rep. Ser. 1(8),
1994

26. Feynman, P.R.: Quantum mechanical computers. Found. Phys. 16(6), 507–531
(1986)

27. Frank, M.P.: Reversibility for efficient computing. Ph.D. thesis, Massachusetts
Institute of Technology, Cambridge, MA, USA (1999)

28. Fredkin, E., Toffoli, T.: Quantum mechanical computers. Int. J. Theor. Phys. 21(3–
4), 219–253 (1982)

29. Giachino, E., Lanese, I., Mezzina, C.A.: Causal-consistent reversible debugging. In:
Gnesi, S., Rensink, A. (eds.) FASE 2014. LNCS, vol. 8411, pp. 370–384. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-642-54804-8 26

30. Glück, R., Yokoyama, T.: A linear-time self-interpreter of a reversible imperative
language. Comput. Softw. 33(3), 108–128 (2016)

31. Glück, R., Yokoyama, T.: A minimalist’s reversible while language. IEICE Trans.
Inf. Syst. E100-D(5), 1026–1034 (2017)

32. Glück, R., Yokoyama, T.: Reversible computing from a programming language
perspective. Theor. Comput. Sci. 953, Article 113429 (2023)

33. Gomez, A.N., Ren, M., Urtasun, R., Grosse, R.B.: The reversible residual network:
backpropagation without storing activations. In: Advances in Neural Information
Processing Systems. NIPS 2017, vol. 30, pp. 2214–2224. Curran Associates Inc.
(2017)

34. Graversen, E., Phillips, I.C.C., Yoshida, N.: Event structure semantics of (con-
trolled) reversible CCS. J. Log. Algebraic Methods Program. 121, 100686 (2021)

35. Haulund, T., Mogensen, T.Æ., Glück, R.: Implementing reversible object-oriented
language features on reversible machines. In: Phillips, I., Rahaman, H. (eds.) RC
2017. LNCS, vol. 10301, pp. 66–73. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-59936-6 5

36. Hay-Schmidt, L., Glück, R., Cservenka, M.H., Haulund, T.: Towards a unified
language architecture for reversible object-oriented programming. In: Yamashita,

https://doi.org/10.1007/978-3-540-28644-8_19
https://doi.org/10.1007/11539452_31
https://doi.org/10.1007/978-3-642-54804-8_26
https://doi.org/10.1007/978-3-319-59936-6_5
https://doi.org/10.1007/978-3-319-59936-6_5


Towards a Taxonomy for Reversible Computation Approaches 37

S., Yokoyama, T. (eds.) RC 2021. LNCS, vol. 12805, pp. 96–106. Springer, Cham
(2021). https://doi.org/10.1007/978-3-030-79837-6 6

37. Hoey, J., Ulidowski, I.: Reversing an imperative concurrent programming language.
Sci. Comput. Program. 223, 102873 (2022)

38. Jacobsen, P.A.H., Kaarsgaard, R., Thomsen, M.K.: CoreFun: a typed functional
reversible core language. In: Kari, J., Ulidowski, I. (eds.) RC 2018. LNCS, vol.
11106, pp. 304–321. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
99498-7 21

39. Jacobson, J.: A formalization of DARCs patch theory using inverse semigroups.
Technical report, UCLA (2009)

40. Kari, J.: Reversible cellular automata: from fundamental classical results to recent
developments. New Gener. Comput. 36(3), 145–172 (2018)

41. Kelly, F.P.: Reversibility and Stochastic Networks. Wiley, Hoboken (1979)
42. Knill, E.: Conventions for quantum pseudocode. Technical report LAUR-96-2724,

Los Alamos National Lab (1996)
43. Kristensen, J.T., Kaarsgaard, R., Thomsen, M.K.: Jeopardy: an invertible func-

tional programming language. CoRR, arXiv:2209.02422 (2022)
44. Kuhn, S., Ulidowski, I.: Local reversibility in a calculus of covalent bonding. Sci.

Comput. Program. 151, 18–47 (2018)
45. Kuhn, S., Ulidowski, I.: Modelling of DNA mismatch repair with a reversible pro-

cess calculus. Theor. Comput. Sci. 925, 68–86 (2022)
46. Kutrib, M., Malcher, A.: Reversible pushdown automata. J. Comput. Syst. Sci.

78(6), 1814–1827 (2012)
47. Landauer, R.: Irreversibility and heat generation in the computing process. IBM

J. Res. Dev. 5(3), 183–191 (1961)
48. Lanese, I., Lienhardt, M., Mezzina, C.A., Schmitt, A., Stefani, J.-B.: Concurrent

flexible reversibility. In: Felleisen, M., Gardner, P. (eds.) ESOP 2013. LNCS, vol.
7792, pp. 370–390. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-37036-6 21

49. Lanese, I., Mezzina, C.A., Schmitt, A., Stefani, J.-B.: Controlling reversibility in
higher-order Pi. In: Katoen, J.-P., König, B. (eds.) CONCUR 2011. LNCS, vol.
6901, pp. 297–311. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-23217-6 20

50. Lanese, I., Mezzina, C.A., Stefani, J.-B.: Controlled reversibility and compensa-
tions. In: Glück, R., Yokoyama, T. (eds.) RC 2012. LNCS, vol. 7581, pp. 233–240.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36315-3 19

51. Lanese, I., Mezzina, C.A., Stefani, J.-B.: Reversibility in the higher-order π-
calculus. Theor. Comput. Sci. 625, 25–84 (2016)

52. Lanese, I., Mezzina, C.A., Tiezzi, F.: Causal-consistent reversibility. Bull. EATCS
114 (2014)

53. Lanese, I., Nishida, N., Palacios, A., Vidal, G.: A theory of reversibility for Erlang.
J. Log. Algebr. Meth. Program. 100, 71–97 (2018)

54. Lanese, I., Palacios, A., Vidal, G.: Causal-consistent replay reversible semantics
for message passing concurrent programs. Fundam. Informaticae 178(3), 229–266
(2021)

55. Lanese, I., Schultz, U.P., Ulidowski, I.: Reversible computing in debugging of
Erlang programs. IT Prof. 24(1), 74–80 (2022)

56. Laursen, J.S., Ellekilde, L.-P.: Schultz, U.P.: Modelling reversible execution of
robotic assembly. Robotica 36(5), 625–654 (2018)

57. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to
document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

https://doi.org/10.1007/978-3-030-79837-6_6
https://doi.org/10.1007/978-3-319-99498-7_21
https://doi.org/10.1007/978-3-319-99498-7_21
http://arxiv.org/abs/2209.02422
https://doi.org/10.1007/978-3-642-37036-6_21
https://doi.org/10.1007/978-3-642-37036-6_21
https://doi.org/10.1007/978-3-642-23217-6_20
https://doi.org/10.1007/978-3-642-23217-6_20
https://doi.org/10.1007/978-3-642-36315-3_19


38 R. Glück et al.

58. Matsuda, K., Hu, Z., Nakano, K., Hamana, M., Takeichi, M.: Bidirectionalization
transformation based on automatic derivation of view complement functions. In:
ICFP 2007, PP. 47–58. ACM (2007)

59. McNellis, J., Mola, J., Sykes, K.: Time travel debugging: root causing bugs in
commercial scale software. CppCon talk (2017). https://www.youtube.com/watch?
v=l1YJTg A914

60. Melgratti, H., Mezzina, C.A., Pinna, G.M.: Towards a truly concurrent semantics
for reversible CCS. In: Yamashita, S., Yokoyama, T. (eds.) RC 2021. LNCS, vol.
12805, pp. 109–125. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
79837-6 7

61. Melgratti, H.C., Mezzina, C.A., Pinna, G.M.: A Petri net view of covalent bonds.
Theor. Comput. Sci. 908, 89–119 (2022)

62. Melgratti, H.C., Mezzina, C.A., Ulidowski, I.: Reversing place transition nets. Log.
Methods Comput. Sci. 16(4) (2020)

63. Mimram, S., Di Giusto, C.: A categorical theory of patches. In: MFPS XXIX.
Electronic Notes in Theoretical Computer Science, vol. 298, PP. 283–307. Elsevier
(2013)

64. Miszczak, J.: Models of quantum computation and quantum programming lan-
guages. Bull. Polish Acad. Sci. Tech. Sci. 59(3), 305–324 (2011)

65. Miszczak, J.: High Level Structures for Quantum Computing. Springer, Cham
(2012). https://doi.org/10.1007/978-3-031-02516-7

66. Morita, K.: Computation-universality of one-dimensional one-way reversible cellu-
lar automata. Inf. Process. Lett. 42(6), 325–329 (1992)

67. Morita, K.: Reversible computing and cellular automata–a survey. Theor. Comput.
Sci. 395(1), 101–131 (2008)

68. Morita, K.: Theory of Reversible Computing. Monographs in Theoretical Computer
Science. An EATCS Series. Springer, Tokyo (2017). https://doi.org/10.1007/978-
4-431-56606-9

69. Morrison, D., Ulidowski, I.: Direction-reversible self-timed cellular automata for
delay-insensitive circuits. J. Cell. Autom. 12(1–2), 101–120 (2016)

70. Nakano, K.: Time-symmetric Turing machines for computable involutions. Sci.
Comput. Program. 215, 102748 (2022)

71. Nash, B., Gheorghiu, V., Mosca, M.: Quantum circuit optimizations for NISQ
architectures. Quantum Sci. Technol. 5(2), 025010 (2020)

72. Nishida, N., Palacios, A., Vidal, G.: Reversible computation in term rewriting. J.
Log. Algebr. Methods Program. 94, 128–149 (2018)

73. Nishida, N., Vidal, G.: Characterizing compatible view updates in syntactic bidi-
rectionalization. In: Thomsen, M.K., Soeken, M. (eds.) RC 2019. LNCS, vol. 11497,
pp. 67–83. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21500-2 5

74. Ömer, B.: Structured Quantum Programming. Ph.D. thesis, Vienna University of
Technology (2003)

75. Paolini, L., Piccolo, M., Roversi, L.: On a class of reversible primitive recursive
functions and its Turing-complete extensions. New Gener. Comput. 36(3), 233–
256 (2018)

76. Perumalla, K.S.:Introduction to Reversible Computing. CRC Press/Taylor & Fran-
cis Group (2014)

77. Philippou, A., Psara, K.: Reversible computation in Petri nets. In: Kari, J., Uli-
dowski, I. (eds.) RC 2018. LNCS, vol. 11106, pp. 84–101. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-99498-7 6

78. Philippou, A., Psara, K.: A collective interpretation semantics for reversing Petri
nets. Theor. Comput. Sci. 924, 148–170 (2022)

https://www.youtube.com/watch?v=l1YJTg_A914
https://www.youtube.com/watch?v=l1YJTg_A914
https://doi.org/10.1007/978-3-030-79837-6_7
https://doi.org/10.1007/978-3-030-79837-6_7
https://doi.org/10.1007/978-3-031-02516-7
https://doi.org/10.1007/978-4-431-56606-9
https://doi.org/10.1007/978-4-431-56606-9
https://doi.org/10.1007/978-3-030-21500-2_5
https://doi.org/10.1007/978-3-319-99498-7_6


Towards a Taxonomy for Reversible Computation Approaches 39

79. Phillips, I., Ulidowski, I.: Reversibility and asymmetric conflict in event structures.
In: D’Argenio, P.R., Melgratti, H. (eds.) CONCUR 2013. LNCS, vol. 8052, pp. 303–
318. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40184-8 22

80. Phillips, I., Ulidowski, I.: Event identifier logic. Math. Struct. Comput. Sci. 24(2)
(2014)

81. Phillips, I., Ulidowski, I.: Reversibility and asymmetric conflict in event structures.
J. Log. Algebr. Methods Program. 84(6), 781–805 (2015)

82. Phillips, I., Ulidowski, I., Yuen, S.: A reversible process calculus and the modelling
of the ERK signaling pathway. In: Glück, R., Yokoyama, T. (eds.) RC 2012. LNCS,
vol. 7581, pp. 218–232. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-36315-3 18

83. Phillips, I.C.C., Ulidowski, I.: Reversing algebraic process calculi. J. Log. Algebr.
Program. 73(1–2), 70–96 (2007)

84. Schordan, M., Oppelstrup, T., Jefferson, D.R., Barnes Jr., P.D.: Generation of
reversible C++ code for optimistic parallel discrete event simulation. New Gener.
Comput. 36(3), 257–280 (2018)

85. Schultz, U.P., Axelsen, H.B.: Elements of a reversible object-oriented language.
In: Devitt, S., Lanese, I. (eds.) RC 2016. LNCS, vol. 9720, pp. 153–159. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-40578-0 10

86. Schultz, U.P., Bordignon, M., Støy, K.: Robust and reversible execution of self-
reconfiguration sequences. Robotica 29(1), 35–57 (2011)

87. Siljak, H., Psara, K., Philippou, A.: Distributed antenna selection for massive
MIMO using reversing Petri nets. IEEE Wirel. Commun. Lett. 8(5), 1427–1430
(2019)

88. Thomsen, M.K., Axelsen, H.B.: Interpretation and programming of the reversible
functional language RFUN. In: IFL 2015, pp. 8:1–8:13. ACM (2015)

89. Thomsen, M.K., Axelsen, H.B., Glück, R.: A reversible processor architecture and
its reversible logic design. In: De Vos, A., Wille, R. (eds.) RC 2011. LNCS, vol.
7165, pp. 30–42. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-
29517-1 3

90. Toffoli, T.: Reversible computing. In: de Bakker, J., van Leeuwen, J. (eds.) ICALP
1980. LNCS, vol. 85, pp. 632–644. Springer, Heidelberg (1980). https://doi.org/10.
1007/3-540-10003-2 104

91. Toffoli, T., Margolus, N.: Cellular Automata Machines. A New Environment for
Modeling. MIT Press, Cambridge (1987)

92. Ulidowski, I., Phillips, I., Yuen, S.: Reversing event structures. New Gener. Com-
put. 36(3), 281–306 (2018)

93. Undo, UDB - reverse debugger for C/C++ (2020). https://undo.io
94. Vassor, M.: Reversibility and predictions. In: Yamashita, S., Yokoyama, T. (eds.)

RC 2021. LNCS, vol. 12805, pp. 163–181. Springer, Cham (2021). https://doi.org/
10.1007/978-3-030-79837-6 10

95. Yokoyama, T., Axelsen, H.B., Glück, R.: Towards a reversible functional language.
In: De Vos, A., Wille, R. (eds.) RC 2011. LNCS, vol. 7165, pp. 14–29. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-29517-1 2

96. Yokoyama, T., Axelsen, H.B., Glück, R.: Fundamentals of reversible flowchart lan-
guages. Theor. Comput. Sci. 611, 87–115 (2016)

97. Yokoyama, T., Glück, R.: A reversible programming language and its invertible
self-interpreter. In: PEPM 2007, pp. 144–153. ACM (2007)

https://doi.org/10.1007/978-3-642-40184-8_22
https://doi.org/10.1007/978-3-642-36315-3_18
https://doi.org/10.1007/978-3-642-36315-3_18
https://doi.org/10.1007/978-3-319-40578-0_10
https://doi.org/10.1007/978-3-642-29517-1_3
https://doi.org/10.1007/978-3-642-29517-1_3
https://doi.org/10.1007/3-540-10003-2_104
https://doi.org/10.1007/3-540-10003-2_104
https://undo.io
https://doi.org/10.1007/978-3-030-79837-6_10
https://doi.org/10.1007/978-3-030-79837-6_10
https://doi.org/10.1007/978-3-642-29517-1_2

	Towards a Taxonomy for Reversible Computation Approaches
	1 Introduction
	2 Taxonomy
	3 Application of the Taxonomy
	4 Conclusion, Related and Future Work
	References




