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Abstract. Cloud service providers (CSP) provide on-demand cloud
computing services, reduces the cost of setting-up and scaling-up IT
infrastructure and services, and stimulates shorter establishment times
for start-ups that offer or use cloud-based services. Task reneging or
dropping sometimes occur when a task waits in the queue longer than its
timeout or execution deadline, or it is compromised and must be dropped
from the queue or as an active queue management strategy to avoid tail
dropping of tasks when the queues are full. Reneged or dropped tasks
could be resubmitted provided they were not dropped due to security
reasons. In this paper, we present a simple M/M/c/N queueing model
of a cloud computing physical machine, where the interarrival times and
the services times are exponentially distributed, with N buffer size and c
virtual machines running in parallel. We present numerical examples to
illustrate the effect of task reneging and task resubmission on the queue-
ing delay, probability of task rejection, and the probability of immediate
service.

Keywords: Transient-state · Steady-state · Performance evaluations ·
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1 Introduction

Cloud service providers (CSP) provide on-demand cloud computing services such
as software, platform and infrastructure to their customers. It enables the users
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to access these services anywhere, at any time and based on their needs with-
out being concerned about the cost and time of setting up and running their
infrastructure from scratch. Therefore, cloud computing has stimulated shorter
establishment times for start-ups that offer or use cloud-based services and the
creation of scalable enterprise applications [1]. Performance evaluations of cloud
computing systems have been studied using queueing theory in [6,9–13]. The
use of analytical modelling methods offer faster and less expensive performance
evaluation tools when compared to testbed experiments and discrete event simu-
lation, which are time-consuming and expensive [14]. The results obtained using
analytical modelling may be an approximation of the relative trends of the
performance parameters but can be used to derive high-level insight into the
behaviour of the system [2]. The evaluation of cloud computing systems may
require the prediction and estimation of the cost-benefit of a strategy and the
corresponding acceptable quality of service (QoS) which may not be feasible by
simulation or measurements [3].

Task reneging or dropping sometimes occur when a task waits in the queue
longer than its timeout or execution deadline, or it is compromised and must be
dropped from the queue or as an active queue management strategy to avoid tail
dropping of tasks when the queues are full. Reneged or dropped tasks could be
resubmitted provided they were not dropped due to security reasons. Dropping
of tasks from the queue is called task reneging [15] while the resubmission of
the dropped task is called feedback [16]. The authors in [4,5,17,18] studied task
reneging in the context of cloud computing but their studies were limited to
steady-state Markovian modelling without resubmission.

In this paper, we present a simple M/M/c/N queueing model of a cloud pro-
cessing physical machine, where the interarrival times and the services times are
exponentially distributed, with N buffer size and c virtual machines running in
parallel. We present numerical examples to illustrate the effect of reneging and
feedback on the queueing delay, probability of task rejection, and the probabil-
ity of immediate service. The rest of the paper is arranged as follows: model
description is presented in Sect. 2, performance modelling is presented in Sect. 3,
some numerical examples are presented in Sect. 4 and conclusion in Sect. 5.

2 Model Description

The tasks submitted to a cloud computing infrastructure may be queued up in
the load balancer and then scheduled to any of the available physical machines,
provided the rate of arrival of tasks is far greater than the scheduling rate [7].
The load balancing mechanism detects the physical machines that are overloaded
and those that are underutilised and strive to balance the load among them [7].
However, the evaluation of the load balancer is out of the scope of this paper. In
the physical machines, the tasks can then be scheduled into any available VMs
for processing. Because some of the tasks may be time-constrained or likely to
fail or maybe have been compromised, it will renege or dropped from the queue
or moved to another queue (jockeying) [8] depending on the queue management
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strategy implemented. Figure 1 shows a general cloud computing model where
users can submit tasks over the internet to a cloud computing data centre infras-
tructure, which consists of the load balancer and physical machines which are
hosting virtual machines.

The use of effective tasks scheduling policies ensures that the potential of
cloud computing is fully harnessed and exploited to meet the QoS requirements
of cloud computing services. The authors in [20] presented a review of cloud com-
puting scheduling methods which are categorised into QoS-based task scheduling,
ant Colony optimisation Algorithm-based scheduling, particle swarm optimisa-
tion (PSO)-based task scheduling, Multiprocessor-based scheduling, Fuzzy-based
scheduling, Clustering-based, task scheduling, Deadline-constrained scheduling,
Cost-based, scheduling and other scheduling-based approaches. Scheduling algo-
rithms which use techniques such as round-robin, allocation, a probabilistic allo-
cation that seek to minimise the average response time, Random Neural Network
(RNN) based allocation scheme that uses reinforcement learning and on-line
greedy adaptive algorithm were presented in [22]. A discrete symbiotic organism
search (DSOS) scheduling algorithm was proposed in [21] for optimal scheduling
of tasks in cloud data centres.

Suppose that the tasks scheduled to a given physical machine are arriving
with an arrival rate of λ as shown in Fig. 2. If the rate of arrival of tasks is greater
than the rate at which they are processed, then those that arrive and when all
the virtual machines (VMs), {V M1, V M2, V M3, · · · , V Mc} that are running in
parallel are busy, will have to wait and then later scheduled for execution. The
processing server or physical machine is modelled as an M/M/c/N, where c is
the number of VMs and N is the maximum number of tasks or the buffer size.
It is assumed that all the VMs have the same processing rate, μ.

The model proposed in the paper are based on the following assumptions:

1. The arrival process of tasks into the task buffers in the processing servers
follows a Poisson process with parameter λ.

2. The system has a single queue and finitely many numbers of VMs. The pro-
cessing times of each VM are exponentially distributed with parameter μ.

The mean processing rate of tasks is: μn = { nμ, 0 ≤ n < c
cμ c ≤ n ≤ N

3. The queue discipline is FCFS.
4. The capacity of the system is finite (say, N).
5. The reneging times or the times at which the tasks are dropped from the

queue are exponentially distributed with parameter ξ.
6. When a task reneges or is dropped from the queue, it can be resubmitted with

a probability p otherwise, with a probability q = 1 − p it is not resubmitted.
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3 Performance Evaluation Modelling: Steady-State
and Transient-State Solutions

Defining the following probabilities:
P0(t) is the probability that at time t there is no task in the system.
Pn(t) is the probability that at time t there are 1 ≤ n ≤ N tasks in the

system.

Fig. 1. Cloud computing model

Fig. 2. Queueing model of a cloud computing physical machine
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The difference-differential equations of the queuing model are:

dP0(t)
dt

= −λP0(t) + qμP1(t), n = 0 (1)

dPn(t)
dt

= −(λ + nqμ)Pn(t) + λPn−1(t) + (n + 1)qμPn+1(t), 1 ≤ n < c (2)

dPn(t)
dt

= −(λ + cqμ)Pn(t) + λPn−1(t) + (cqμ + ξ)Pn+1(t), n = c (3)

dPn(t)
dt

= −[λ + cqμ + (n − c)ξ]Pn(t) + λPn−1(t) (4)

+ [cqμ + (n + 1 − c)ξ]Pn+1(t), c + 1 ≤ n < N

dPN (t)
dt

= − [cqμ + (N − c)ξ]PN (t) + λPN−1(t), n = N (5)

In steady-state, when limt→∞ P0(t) = P0, limt→∞ pn(t) = pn, limt→∞ pN (t) =
pN , Eqs. (1)–(5) becomes:

0 = −λP0 + qμP1, n = 0 (6)
0 = −(λ + nqμ)Pn + λPn−1 + (n + 1)qμPn+1, 1 ≤ n < c (7)
0 = −(λ + cqμ)Pn + λPn−1 + (cqμ + ξ)Pn+1, n = c (8)
0 = −[λ + cqμ + (n − c)ξ]Pn + λPn−1 + [cqμ + (n + 1 − c)ξ]Pn+1, c + 1 ≤ n < N

(9)
0 = −[cqμ + (N − c)ξ]PN + λPN−1, n = N (10)

The above (N + 1) linear equations in the unknown probabilities P0, P1...PN are
solved as follows:

Solving (6) and (7), we get

Pn =
1
n!

( λ

qμ

)n

P0, 0 ≤ n ≤ c (11)

Now, from Eqs. (8)–(10) and using relation (11), we get

Pn =
1
c!

( λ

qμ

)c λ(n−c)

∏N
m=c+1[cμq + (m − c)ξ]

P0, c + 1 ≤ n ≤ N (12)

Thus, Pn can be written as:

Pn =

{
1
n!

(
λ
qμ

)n

P0 0 ≤ n ≤ c

1
c!

(
λ
qμ

)c
λ(n−c)

∏N
m=c+1[cμq+(m−c)ξ]

P0 c + 1 ≤ n ≤ N
(13)

Where P0 can be obtained using normalization equation, ΣN
n=0Pn = 1.

We use a numerical method (Runge-Kutta method of fourth order) to obtain
transient solution of the model. The “ode45” function of MATLAB software is
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used to compute the transient numerical results. The mean number of tasks
waiting in the queue, Lq(t) and the mean waiting time Wq(t) respectively are
given by [24]:

Lq(t) =
N∑

n=c

(n − c)Pn(t) (14)

Wq(t) =
Lq(t)

cμ[1 − ∑c
n=0 Pn(t)]

The transient state probabilities, including the probability that the queue is
empty and the probability that the buffer is full can be obtained by solving set
of equations in (5) numerically. If the queue is empty, incoming tasks will be
processed immediately, it provides good quality of service (QoS) to the users
but it is not profitable for the CSPs. If the buffer is full, then incoming tasks
will be rejected, which results in poor QoS.

4 Numerical Examples

In this section we present numerical examples to illustrate the effect of reneging
and feedback on the queueing delay, probability of task rejection, and probabil-
ity of immediate service. We use a numerical method (Runge-Kutta method of
fourth order) to obtain transient solution of the model. The “ode45” function of
MATLAB software is used to compute the transient numerical results.

Figures 3 and 4 shows the variation of the state probabilities with time. Gen-
erally, the state probabilities increase sharply and then attains steady state.
P0(t) is the probability that the queue is empty at the time, t, such that any
packet that arrives is immediately scheduled into the VM for processing while
P10(t) is the probability that there are 10 tasks in the queue. The values of the
parameters are taken as: λ = 12, μ = 5, q = 0.9, ξ = 0.4, c = 3.

Figure 5 shows the transient behaviour of the mean number of tasks in the
queue with time. The mean queue size increases with time for a constant arrival
rate and then attains a steady state after a long time. It can be observed that
when tasks that are dropped from the queue are resubmitted, the queue size is
relatively larger. Similar behaviour can be observed in Fig. 5 and 6, which shows
the transient behaviour of the mean delay and the probability of task dropping
when the buffer is full. It can also be observed that when the tasks that are
dropped from the queue are resubmitted, the probability of task dropping or
tail dropping of packets when the buffers are full is relatively higher. The values
of parameters for used are: λ = 85, μ = 30, q = 0.85, ξ = 0.4, c = 3, N = 50 and
the initial condition is P7(0) = 1.
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Fig. 3. Probabilities vs time
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Fig. 4. Probabilities vs time

Figure 7 shows the effect of the average arrival rate of tasks on mean queueing
delay. The mean delay increases as the rate of arrival of tasks increases slowly,
and after a certain value of the arrival rate, a small increase in the arrival rate of
tasks will result in a corresponding fast increase in the delay. A similar behaviour
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Fig. 5. Comparison of average delay in queue vs time
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Fig. 6. Comparison of probability of task blocking vs time
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of the probability of task blocking can be seen in Fig. 8. The values of parameters
are: μ = 30, q = 0.85, ξ = 0.3, c = 3, N = 50 at t = 3. Initial condition is
P7(0) = 1.

65 70 75 80 85
0.05

0.1

0.15

0.2

0.25

0.3

Average arrival rate (λ)

A
ve

ra
ge

 d
el

ay
 in

 q
ue

ue
 (

W
q(t

))

Fig. 7. Effect of average arrival rate on average delay in queue

Figure 9 shows the variation of the mean queueing delay with the probability
of feedback. As the probability that tasks that are dropped from the queue are
resubmitted increases, the higher the delay. Figure 10 shows that variation of the
reneging rate with the mean queueing delay. Resubmission of tasks that reneged
from the queue or a task that was rejected is very important to ensure QoS of
some users; other users may have to wait longer in the queue. The values of
parameters used are: λ = 78, μ = 30, ξ = 0.3, c = 3, N = 50 at t = 3. Initial
condition is P7(0) = 1 and λ = 88, μ = 30, q = 0.8, c = 3, N = 50 at t = 3. Initial
condition is P7(0) = 1 respectively.

Figure 11 shows that increasing the number of VMs will significantly decrease
the queueing delays. In other to reduce energy consumption in cloud data cen-
tres, but the drawback of such a strategy is an increase in the queueing delay.
Similar behaviour can be seen in Fig. 12, where increasing the number of VM
also decreases the probability of task blocking. Therefore, increasing the number
of VMs will improve the QoS but increases the energy consumption and hence
the costs on the CSP. Other QoS and energy optimization methods such as task
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Fig. 8. Effect of average arrival rate on probability of task blocking
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Fig. 9. Effect of probability of feedback on average delay in queue
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Fig. 10. Effect of rate of reneging on average delay in queue
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Fig. 12. Effect of number of servers on probability of task blocking

migration can be considered by are out of the scope of this work. The values of
parameters used are: λ = 14, μ = 15, q = 0.8, ξ = 0.1, N = 20. Initial condition
is P7(0) = 1.

5 Conclusion

We have presented a simple M/M/c/N queueing model of a cloud processing
in which tasks could be dropped from the queue, the dropped tasks can be
resubmitted for possible processing and if the buffer where the tasks are stored
is full, subsequent tasks will be rejected. We have presented numerical examples
to illustrate its utility by considering the effects of reneging and feedback on the
queueing delay, probability of task rejection, and the probability of immediate
service. We intend to extend this study to the evaluation of a cloud infrastructure
with load balancing, where tasks are the first queue up and then scheduled into
the various processing server and reneging and feedback will be considered both
at the load balancer and the processing servers.
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