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Abstract—Sharding is one of the most effective technologies
for improving blockchain scalability by dividing a blockchain
network into multiple shards that process transactions in parallel.
However, many existing sharded blockchain systems can include
a large number of cross-shard transactions, resulting in high
communication overhead and processing latency. Two solutions
have emerged to address these issues. One of them focuses on
optimizing the allocation of transactions to reduce the cross-
shard communication while ensuring workload balance. The
other emphasizes the design of an efficient cross-shard trans-
action processing mechanism to reduce the latency caused by
confirming cross-shard transactions. However, the literature still
lacks a comprehensive review on the advances of Cross-shard
Transaction Allocation Optimization and Processing (CTAOP)
mechanisms, which would be a valuable addition to the literature.
This paper is a comprehensive survey of existing CTAOP mech-
anisms, and first introduces cross-shard transactions and related
concepts. Then, we propose two sets of criteria for evaluating
the two types of CTAOP mechanisms, and provide a taxonomy
of CTAOP mechanisms, followed by a thorough review based on
our proposed criteria. A list of open issues is also highlighted,
and corresponding future research directions are suggested to
advance our understanding of CTAOP mechanisms.

Index Terms—Blockchain sharding, Transaction allocation op-
timization, Cross-shard transaction processing.

I. INTRODUCTION

BLOCKCHAIN, a pivotal technology for distributed
ledgers, has been extensively applied in various domains,

such as finance, communications and the Internet of Things
(IoT) [1]. However, existing blockchain consensus protocols
typically mandate each transaction to be broadcast across
the network of the blockchain, with each network node au-
tonomously verifying its validity. A transaction is confirmed
only when a majority of nodes reach consensus, as illustrated
in Fig. 1(a). Thus, transaction processing delays can increase
significantly as the number of nodes and transactions increase.
Furthermore, each node needs to communicate with all others
and jointly participate in transaction verification, leading to
an exponential rise in communication cost, a reduction in
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throughput, and increased confirmation latency. As a result,
current blockchain systems, such as Bitcoin [2], are limited in
practice to a maximum processing capacity of seven Transac-
tions Per Second (TPS) [3], and the throughput of blockchain
is several orders of magnitude smaller than common central-
ized electronic credit card-based payment systems such as Visa
[4].

Sharding is one of the most promising solutions for im-
proving blockchain scalability [5], and it is widely used
for enhancing horizontal scalability in traditional database
systems. First applied to blockchain by Luu et al. [6], sharding
partitions the blockchain network nodes into distinct clusters
or “shards” which work in parallel to reach a consensus
regarding transactions and to generate a new block efficiently.
Normally, shards prevent centralization by operating with
independent nodes, thereby avoiding resource bottlenecks and
reducing the risk of shard collusion. As illustrated in Fig. 1(b),
blockchain sharding can be categorized into three types, i.e.,
network sharding, transaction sharding, and state sharding.
Network sharding divides nodes of the blockchain network
into different shards, each of which can process transactions
in parallel. Transaction sharding assigns a set of transactions
to distinct shards, to enable parallel transaction processing
and allow shards to collaborate on cross-shard transactions.
State sharding partitions the global state of the blockchain
into distinct shards to enhance scalability, where each shard
maintains only a portion of the entire ledger. Thus, sharding
schemes must improve parallel processing capabilities without
compromising security [7], and cross-shard transactions must
be optimized and processed efficiently.

Although sharding can significantly improve blockchain
performance, its design faces two key challenges. Since each
shard contains a relatively small number of nodes, attackers
can launch Sybil attacks [8] to forge legal identities, increase
the number of malicious nodes within a shard, and launch
a shard takeover attack [9]. To address these security risks,
researchers have proposed a permissionless mechanism such
as Proof-of-Work (PoW) [2] or Proof-of-Stake (PoS) [10]
to periodically select a statistically representative group of
validators. Second, it has been suggested that shards are
periodically reconfigured to ensure that the probability of
any shard being compromised over the system’s lifetime is
minimized. Thus OmniLedger [11] leverages random numbers
generated by RandHound to determine node allocation in each
epoch, while SGX-Shard [12] employs secure and unbiased
random numbers produced within a Trusted Execution Envi-
ronment (TEE) [13] to allocate nodes.

In a sharded blockchain system, transaction allocation and
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Fig. 1. Non-sharded blockchain versus sharded blockchain. Instead of processing all tx by all blockchain nodes in a conventional manner, a sharded blockchain
partitions nodes into a number of smaller committees, and each committee processes only a subset of tx and stores a portion of the ledger.

cross-shard transaction processing should be well addressed.
Each shard operates relatively independently, with its own
independent verifiers, transaction set, and state, lacking the
capability to directly access or modify the states of other
shards. Therefore, the shard intending to access and modify
the state of another shard must initiate cross-shard transactions.
Since shard ledgers operate in isolation, validating cross-shard
transactions necessitates an additional consensus round, and
distinct shards must achieve ledger synchronization prior to
submitting transactions. This imposes transaction confirmation
latency and significant communication overhead. Furthermore,
load imbalance degrades system performance because transac-
tions blocked in hot shards with heavy transaction allocation
experience high confirmation latency.

Many existing transaction allocation and processing solu-
tions make simple decisions that randomly allocate transac-
tions to different shards according to their addresses, inevitably
resulting in an excessive number of cross-shard transactions
and an uneven shard workload. In the case of the Unspent
Transaction Output (UTXO) model, Rapidchain [14] indicates
that, when the number of shards is 16, approximately 99.98%
of the transactions involve cross-shard consensus. For the
Account/Balance transaction model, when feeding 8 × 104

transactions, the Monoxide [15] yields unbalanced transaction
distributions among all shards, and the proportion of cross-
shard transactions can reach 90% when the number of shards
exceeds 64 [16], [17]. Excessive cross-shard communication
overhead and load imbalance emerge as key bottlenecks re-
stricting system scalability.

To address the challenges posed by cross-shard transac-
tions, particularly their significant communication overhead,
researchers have proposed solutions in both the transaction
sharding and the state sharding layers. One type of solution fo-
cuses on optimizing transaction allocation to minimize cross-
shard communication. For example, Tao et al. [18] aggregate
the accounts with similar transaction characteristics into the
same shard, while Nguyen et al. [19] employs a graph-based
approach to allocate transactions. Another type of solution
emphasizes designing efficient cross-shard transaction process-

ing mechanisms to improve concurrency and communication
efficiency. For instance, Liu et al. [20], [21] introduced batch
processing and pipelining techniques to enhance the efficiency
of cross-shard transaction processing based on the Two-phase
Commit (2PC) protocol [22]. In this paper, we refer to these
two types of solutions as Cross-shard Transaction Allocation
Optimization and Processing (CTAOP) mechanisms. The core
objective of CTAOP is to optimize transaction allocation
and processing workflows to significantly reduce cross-shard
communication and processing overhead.

We can find a number of surveys about blockchain shard-
ing in the literature from different perspectives. Wang et
al. [23] identified five fundamental components of sharding
schemes and analyzed the major challenges associated with
each. Yu et al. [24] conducted a comprehensive comparison
and quantitative evaluation on major sharding mechanisms,
evaluating essential characteristics, including intra-consensus
security and cross-shard transaction atomicity. Hafid et al. [25]
proposed a taxonomy based on shard formation and intra-shard
consensus, and compared typical existing protocols. Han et al.
[26] deconstructed the blockchain sharding protocol into four
foundational layers with distinct functionalities and offered
insights into the structural coherence of system configurations.
Huang et al. [27] summarized the key theories and meth-
ods of sharding techniques, including cross-shard consensus
protocols, and outlined advantages and drawbacks of various
sharding schemes. Liu et al. [28] decomposed existing sharded
blockchain systems into functional components and classified
them in terms of system model. Liu et al. [29] developed
a classification framework for blockchain sharding schemes
based on blockchain type and sharding technology, alongside a
set of evaluation criteria. Li et al. [30] outlined the fundamen-
tal building blocks and summarized countermeasures to miti-
gate potential attacks in blockchain sharding. Zhang et al. [31]
analyzed the characteristics of classical sharding techniques
from both performance and implementation perspectives, and
summarized the key mechanisms of sharding. Yang et al.
[32] discussed the performance of sharding technologies and
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TABLE I
COMPARISON OF OUR SURVEY WITH EXISTING RELATED SURVEYS

Paper Year Covered topics ① ② ③ ④ ⑤ ⑥

Wang et al. [23] 2019 Analyze the key components and its major challenges.

Yu et al. [24] 2020 Focus on the intra-consensus protocol and atomicity of cross-shard.

Hafid et al. [25] 2020 Focus on the shard formation and the intra-shard consensus.

Han et al. [26] 2021 Focus on the foundational layers and the coherence of system setting.

Huang et al. [27] 2022 Summarize the key theories and methods of sharding techniques.

Liu et al. [28] 2022 Analyze the functional components in sharding schemes.

Liu et al. [29] 2023 Classify the sharding schemes based on blockchain sharding type.

Li et al. [30] 2023 Focus on the sharding design models and key components.

Zhang et al. [31] 2023 Analyze the sharding techniques from performance and implementation perspectives.

Yang et al. [32] 2024 Focus on the discussion on the performance of sharding technologies.

This paper 2025 Focus on the cross-shard transaction allocation optimization and processing.

: Fully supported; : Partially supported; : Not supported; ① Propose a clear technical framework for enhancing shard performance through the
holistic optimization of cross-shard transaction performance and reliability. ② Give a detailed and differentiated review on the cross-shard transactions based

on the UTXO model and the Account/Balance model. ③ Give a review on the transaction allocation optimization schemes. ④ Give a review on the
cross-shard transaction processing mechanisms. ⑤ Present a taxonomy of the cross-shard transaction optimization and processing mechanisms. ⑥ Propose

two sets of criteria that transaction allocation optimization schemes and cross-shard transaction processing mechanisms should satisfy, respectively.

proposed future directions accordingly.

Up to now, most surveys related to blockchain sharding
focus on node allocation and shard formation technologies,
while paying little attention to the technologies for transaction
allocation and processing. Existing related surveys fail to
present a clear technical framework for enhancing shard per-
formance through holistic optimization of cross-shard trans-
action performance and reliability. Specifically, these surveys
lack a detailed and differentiated review of cross-shard trans-
actions based on the UTXO model and the Account/Balance
model. Existing surveys [23], [24], [26]–[28], [30]–[32] only
explore the cross-shard transaction processing mechanisms,
lacking review and analysis on transaction allocation opti-
mization schemes. Furthermore, although some surveys [26]–
[28] classify cross-shard transaction processing mechanisms
and evaluate their performance and security, they are not
comprehensive, without classification or evaluation of transac-
tion allocation optimization schemes. Thus, we are motivated
to provide a thorough survey on the recent advances of
CTAOP mechanisms in order to guide its future investigation.
Table I provides a comparison between our survey and other
highly related surveys. Our work is the first to establish a
comprehensive technical framework for reviewing sharding
performance from the aspects of CTAOP. Additionally, it is
the first to offer a detailed and differentiated analysis on cross-
shard transactions based on the UTXO and Account/Balance
models, as well as the first to review transaction allocation
optimization schemes.

In this paper, we perform a systematic survey on the CTAOP
mechanisms. We first provide a detailed and differentiated
overview on cross-shard transactions based on the above two
transaction models and introduce theoretical framework related
to cross-shard transactions. Then, we propose two sets of cri-
teria that transaction allocation optimization mechanisms and

cross-shard transaction processing mechanisms should satisfy,
respectively. After that, we provide a taxonomy of the CTAOP
mechanisms and outline their advantages and disadvantages.
Based on the aforementioned taxonomy and the proposed
evaluation criteria, we comprehensively review the CTAOP
mechanisms in the literature and analyze their strengths and
weaknesses. Finally, we highlight a number of unsolved issues
and suggest future research directions. Specifically, the main
contributions of this paper can be summarized as follows:

• We present a clear technical framework for enhancing
shard performance through the holistic optimization of
cross-shard transaction performance and reliability.

• We propose two sets of criteria that should be satisfied
by two types of CTAOP mechanisms, respectively.

• We present a taxonomy of CTAOP mechanisms, and
conduct an in-depth review on existing works by em-
ploying the proposed criteria to analyze their strengths
and weaknesses.

• Based on our review and evaluation, we identify a list of
open issues and further propose future research directions
to promote future research on CTAOP.

The remainder of this survey is organized as follows.
Section II gives a detailed and differentiated overview of
cross-shard transactions based on the UTXO model and the
Account/Balance model, and introduces important concepts
related to cross-shard transactions. In Section III, we pro-
pose two sets of criteria for evaluating transaction allocation
optimization schemes and cross-shard transaction processing
mechanisms, respectively. Section IV presents a taxonomy of
CTAOP mechanisms, followed by a comprehensive review on
the literature of CTAOP by employing the proposed evaluation
criteria. Based on the literature review, we identify open issues
and suggest future research directions in Section VI. Finally,
we draw a conclusion in the last section.
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TABLE II
LIST OF ACRONYMS

Acronym Full Form

CTAOP Cross-Shard Transaction Allocation
Optimization and Processing

IoT Internet of Things

TPS Transactions Per Second

PoW Proof of Work

PoS Proof of Stake

TEE Trusted Execution Environment

UTXO Unspent Transaction Output

2PC Two-Phase Commit

MIMO Multiple Input and Multiple Output

LPA Label Propagation Algorithm

BFT Byzantine Fault Tolerance

ACID Atomicity, Consistency, Isolation, and Durability

CAP Consistency, Availability, and Partition tolerance

PCC Pessimistic Concurrency Control

OCC Optimistic Concurrency Control

2PL Two-Phase Locking

SISO Single Input Single Output

DAG Directed Acyclic Graph

BFS Breadth-First Search

CoSi Collective Signatures

PBFT Practical Byzantine Fault Tolerance

LSTM Long Short-Term Memory

A-Msign Aggregated Multi-signature

MPT Merkle Patricia Trie

DCC Deterministic Concurrency Control

DeFi Decentralized Finance

II. BACKGROUND KNOWLEDGE

This section provides useful background knowledge about
blockchain sharding. We first present an overview of cross-
shard transaction processing based on the two primary data
models. Then, we introduce transaction graphs and summarize
the relevant graph analysis methods. Finally, we present some
key concepts related to cross-shard transaction processing,
including transaction consistency and concurrency.

A. Cross-shard Transactions

Cross-shard transactions are the transactions that occur
between different shards. Their consensus requires a collab-
oration of the shards that are involved in the transaction.
Blockchain systems use two main data models, each designed
for specific purposes and functionalities, which in turn deter-
mine the types of transactions that can be carried out in that
blocks and the operations that are executed. One is the UTXO
model, designed for Bitcoin, and the Account/Balance model
adopted by Ethereum [33]. Here, we will now outline their
structure.

UTXO model [2]: A UTXO transaction is a “fragments
of assets” representation, containing a designated amount for

Cross-shard transaction 

Input
created by ( )

created by ( )

created by ( )

Output

(a) A UTXO-based
cross-shard transaction.

Cross-shard transaction 

From ( )

To      ( )

Value     

(b) An Account/Balance-based
cross-shard transaction.

Fig. 2. Cross-shard transactions based on two transaction models.

each asset, and the corresponding ownership details. Assets
are stored in UTXOs, and a transaction consumes one or more
UTXOs as its inputs and generates new UTXOs as outputs. A
consumed (or spent) UTXO is removed from the ledger and
ceases to exist.

Account/Balance model [33]: This model is widely em-
ployed for user accounts and smart contracts. Each user and
contract is assigned a unique, fixed address. A user’s account
is associated with a non-negative balance. A contract address
records the binary codes and the state data of the contract [34].

UTXO-based and Account/Balance-based cross-shard trans-
actions have different structures:

UTXO-based cross-shard transactions: In Fig. 2(a),
a transaction tx with multiple inputs is created by
tx1

in, tx
2
in, · · · , txi

in. Let S1
in, S

2
in, · · · , Si

in and Sout denote
the shards that contain tx1

in, tx
2
in, · · · , txi

in and tx, respec-
tively. If the shards S1

in, S
2
in, · · · , Si

in and Sout are not the
same, a UTXO-based cross-shard transaction will occur.

Account/Balance-based cross-shard transactions: Fig. 2(b)
shows a transaction that is initiated between two accounts
Accountsender and Accountreceiver that are located in Sin

and Sout; it is called a cross-shard transaction based on the
Account/Balance model, if the shards Sin and Sout are not the
same. Notably, a single transaction could be associated with
multiple users.

B. Transaction Graph

A graph structure, referred to as a “transaction network”
is constructed separately based on the characteristics of the
UTXO and Account/Balance transaction models. Depend-
ing on the distinct characteristics of the UTXO and Ac-
count/Balance transaction networks, appropriate graph opti-
mization techniques are applied to simultaneously achieve
workload balance and minimize cross-shard communication.

1) Graph Construction: As mentioned previously, there is
a distinction in the transaction data structure between the
UTXO-based model and the Account/Balance-based model.
When executing a transaction based on the UTXO model, a
sufficient number of UTXOs should be selected from a set
of UTXOs as the input of the transaction. Newly generated
UTXOs are appended to the set, while spent UTXOs are subse-
quently removed [2]. Consequently, each transaction becomes
intrinsically linked to prior transactions, resulting in a chained
transactional structure. In contrast, the Account/Balance model
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(a) Graph partitioning. (b) Community detection.

Fig. 3. Two methods of graph analysis.

is comparatively streamlined. During a transaction, the corre-
sponding account balance is adjusted directly based on the
transaction type (payment or deposit). In the UTXO model,
each transaction depends on other transactions, whereas in the
Account/Balance model, transactions only involve the trans-
fer of funds between different accounts without considering
dependencies. Based on these characteristics, we define two
types of transaction graphs, respectively.

The graph of UTXO-based transactions: Since UTXOs and
transactions based on them do not involve double spending and
exhibit dependencies, the transaction graph can be represented
as a directed graph G = (V,E), where V denotes the set of
transactions and E comprises UTXOs, with (u, v) ∈ E if
transaction u uses the UTXO created by transaction v [19].

The graph of Account/Balance-based transactions: An ac-
count is an entity, and transactions are more like interactions
between entities. The transaction graph can be established as a
directed graph G = (V,E), where V represents accounts and
E denotes transactions, with (vi, vj) ∈ E if the transactions
involve the transfer of assets between these two accounts
[27]. Additionally, to identify the community structure among
accounts, a weight attribute can be assigned to indicate trans-
action frequency.

2) Graph Analysis Methods: Graph partitioning and com-
munity detection [35] techniques are two fundamental tech-
niques in transaction allocation optimization. As shown in Fig.
3(a), graph partitioning aims to divide the transaction graph
into non-overlapping parts, ensuring that each entity belongs
to only one part. The objective is to minimize the number of
edges between subsets (i.e., cross-shard communication) while
considering additional factors such as load balance [36]. In
contrast, community detection focuses on identifying tightly
connected entities and uncovering the community structure
within a network, as illustrated in Fig. 3(b).

The UTXO-based transaction graph is inherently dynamic
and sequential, whereas the Account/Balance-based transac-
tion graph is characterized by statistical relationship patterns
among accounts. Streaming graph partitioning technology [37]
is particularly well-suited for the UTXO-based transaction
graph, whereas community detection technology serves the
Account/Balance-based transaction graph better.

For example, in the context of graph partitioning for UTXO-
based transactions, Nguyen et al. modeled the transaction
graph as Transaction-as-Node (TaN) and proposed a streaming

graph algorithm called OptChain. This algorithm effectively
allocates transactions to an optimal shard by evaluating fitness
scores between transactions and shards [19]. For the Ac-
count/Balance model, Li et al. accurately modeled transaction
load and cross-shard communication and introduced a limiting
factor to enhance a label propagation algorithm. This algorithm
identifies community structures that limit transaction load
scale and achieves the synchronous optimization of cross-shard
communication and workload balance [27].

C. Transaction Consistency
As a unique distributed ledger, blockchain must consider

the attributes of distributed systems and databases. From
a distributed system perspective, blockchains adhere to the
Consistency, Availability, and Partition Tolerance (CAP) the-
orem, which states that a system can simultaneously satisfy
at most two of the three core properties at any given time
[38]. From a database perspective, transactions must follow
the Atomicity, Consistency, Isolation, and Durability (ACID)
properties [39]. Consequently, consistency represents not only
the critical CAP property, but also the ACID property, showing
a shared requirement across both paradigms in blockchain
systems.

Achieving consistency is a primary goal of transactions
involving multiple shards. In distributed operations, the con-
sistency property ensures that all nodes within a given shard
access and produce the same consistent state. Additionally,
updates are executed in timestamp order or according to a
predefined sequence whenever possible [40]. Therefore, cross-
shard transaction submission protocols must address two key
challenges while maintaining transactional atomicity. First, a
conflict identification mechanism should be implemented to
handle potentially conflicting transactions initiated by multiple
nodes simultaneously, ensuring that only one is accepted for
execution. Second, accepted transactions must be processed
in a predefined sequence across all participating nodes to
guarantee global data consistency [41].

In blockchain sharding, the ledger of each shard operates
independently, with consensus protocols such as PoW and
Byzantine Fault Tolerance (BFT) [42], [43]. Blockchain shard-
ing techniques enable a trade-off between consistency and
availability while preserving partition tolerance. The consis-
tency of cross-shard transaction processing mechanisms can
be classified into two categories:
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:

Fig. 4. An example of transaction conflict. If tx1 reads the intermediate state of tx2 or tx2 reads the intermediate state of tx1, it results in a violation of
transaction isolation.

• Strong consistency [44]: all operations involved in a
cross-shard transaction must either commit or abort as a
single atomic unit, ensuring that there are no intermediate
states in the system [45]. This ensures that at any instant,
the system is in a consistent state. For example, the SGX-
Shard employs 2PC for cross-shard transactions, which
although ensures strong consistency, increases transaction
confirmation latency and reduces system throughput.

• Eventual consistency [46]: Eventual consistency is usu-
ally adopted in the eventual sharded blockchain. This cat-
egory allows for temporary inconsistency among shards,
ensuring that the final state becomes consistent over time
[47]. For instance, Monoxide [15] uses eventual atomicity
and relay transactions to enhance transaction concurrency.
However, this approach could introduce transaction con-
flicts, requiring additional concurrency control.

Achieving strong consistency typically results in higher
latency. Overall, cross-shard transaction processing protocols
require a careful trade-off between consistency and latency,
aligning with the PACELC theory1 [48]. Developing consensus
protocols that can efficiently handle cross-shard transactions
while minimizing latency is a key issue that should be ex-
plored.

D. Transaction Concurrency

A sharded blockchain system allows for the concurrent
execution of multiple transactions, thereby improving sys-
tem throughput. However, it inevitably raises the problem of
transaction conflicts, especially in the context of cross-shard
transactions. Concurrent execution becomes infeasible when
transactions access shared resources. In the UTXO model,
this means accessing the same elements within the UTXO set,
whereas in the Account/Balance model, it means accessing the
same account and/or state [49].

In the sharded blockchain system, the shards reach con-
sensus independently and operate without sharing their states.
Consequently, local shards maintain only partial cross-shard
transaction records rather than complete data. Moreover, no
coordinator exists to manage the overall transaction sequence.

1The PACELC theorem is an extension to the CAP theorem. It states that in
case of network partitioning (P) in a distributed computer system, one has to
choose between availability (A) and consistency (C) (as per the CAP theorem),
but else (E), even when the system is running normally in the absence of
partitions, one has to choose between latency (L) and loss of consistency (C).

When concurrent transactions from other shards attempt to
modify a shard’s state, conflicts with local transactions become
highly possible.

Building on a case introduced by [12], we consider an
account/balance-based asset transfer scenario illustrated in Fig.
4. Let tx1 : ⟨Acc1 + Acc2⟩ → ⟨Acc3⟩ be a transaction trans-
ferring assets from accounts Acc1 and Acc3 to Acc2. Whereas
tx2 : ⟨Acc3⟩ → ⟨Acc4⟩ be another transaction transferring as-
sets from account Acc3 to Acc4 submitted roughly at the same
time as tx1, where Acc1 and Acc2 belong to Shard1, Acc3
and Acc4 belong to Shard2. If the transaction sequence of the
two asset transfers is ⟨op1a , op1b , op2a , op1c , op2b⟩, it breaks
isolation. Because the withdrawal operation of tx2 is executed
prior to the deposit operation of tx1, tx2 observes the state of
the partially completed transaction tx1, potentially resulting in
inconsistent balance views across different transactions.

To prevent inconsistent states caused by transaction con-
flicts and ensure isolation, sharded blockchain systems require
concurrency control [50] to correctly process transactions
that may be in conflict. This means that transactions being
executed are not affected by other concurrent transactions. In
sharded blockchain systems, most of these concurrency control
algorithms use one of two basic mechanisms: Pessimistic
Concurrency Control (PCC) [51] and Optimistic Concurrency
Control (OCC) [52].

For instance, SGX-Shard uses a 2PC and 2PL-based ap-
proach [51] to concurrency control, which requires one shard
to wait for the readiness of related shards before handling
cross-shard transactions. Conversely, X-shard [53] adopts an
optimistic approach, permitting concurrent transactions in an
input shard. Upon committing a cross-shard transaction, each
recipient shard validates dependencies. If conflicts arise, the
shard aborts and rolls back the transaction. Both methods
exhibit inherent limitations. In SGX-Shard, account balances
are locked during transaction execution, thereby stalling other
transactions dependent on these balances and leading to el-
evated latency and diminished throughput. While OCC im-
proves concurrency, its higher abort rate in smart contract
environments increases rollback frequency, which adversely
impacts overall throughput [54].

III. EVALUATION CRITERIA

We propose two sets of criteria for evaluating the per-
formance of CTAOP mechanisms. We first summarize five
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Evaluation criteria

TAP

Globality

Adaptability

Workload balance

Storage overhead

Cross-shard transaction ratio

CTP

Reliability

Atomicity

Liveness

Isolation

Fault tolerance

Incentive

Security

Fork attack

Replay attack

Censorship attack

Effectiveness

Parallelism

Throughput

Latency

Communication overhead

Applicability
MIMO enablement

Contract enablement

Fig. 5. Evaluation criteria of CTAOP mechanisms. TAP refers to transaction allocation optimization, and CTP refers to cross-shard transaction processing.

specific evaluation criteria for evaluating transaction allocation
optimization schemes. Then, we propose a set of evaluation
metrics for cross-shard transaction processing mechanisms.
These evaluation metrics are shown in Fig. 5.

A. Transaction Allocation Optimization Criteria

We propose the following criteria to evaluate transaction
allocation optimization schemes.

1) Globality (GL): Globality entails the consideration of
transaction dependencies and historical account interaction
data. By analyzing transaction dependencies, optimal shard
allocation can be determined for UTXO-based transactions.
Similarly, by analyzing account interaction data, frequently
interacting accounts can be grouped together. This approach
provides precise guidance for transaction allocation based on
long-term statistical analysis, reducing cross-shard transactions
and achieving anticipated performance gains. Therefore, glob-
ality is a critical criterion for transaction allocation optimiza-
tion schemes.

2) Adaptability (AP): Adaptability refers to the ability of
transaction allocation to be dynamically adjusted according to
fluctuations in network load during the period of consensus
[55]. It enables the system to modify its allocation strategy

based on current conditions, such as account migration. Adapt-
ability significantly enhances the performance of transaction
allocation optimization and mitigates shard overload caused
by network fluctuations during a consensus epoch. As such,
adaptability is an indispensable criterion for transaction allo-
cation optimization schemes.

3) Workload Balance (WB): Workload balance ensures
equitable workload distribution across shards, optimizing over-
all performance and resource utilization. In high-load “hot”
shards, transaction congestion increases confirmation latency,
while low-load “cold” shards underutilize computing resources
and fail to achieve optimal throughput. Workload balance
improves shard utilization, enhancing system throughput and
reducing acknowledgment latency. Therefore, an effective
transaction allocation scheme must balance the workload
across shards.

4) Storage Overhead (SO): Storage overhead refers to the
additional burden on nodes for storing transaction relationships
during the transaction allocation process. High storage over-
head consumes substantial resources and results in increased
transaction allocation latency. To facilitate comparison and
analysis, space complexity serves as an indicator for measuring
storage consumption. It is affected by the data structure of a
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Fig. 6. Attacks against cross-shard transactions.

transaction set. This data structure may be either a transac-
tion dependency graph containing x transactions, an account
interaction graph containing y accounts, or other structures.

5) Cross-shard Transaction Ratio (CTR): In contrast to
intra-shard transactions, cross-shard transactions require co-
ordination of state across multiple shards, which increases
confirmation latency, communication overhead, and potential
security risks. A key objective of the transaction allocation
optimization schemes is to reduce the frequency of cross-
shard transactions, while minimizing unnecessary overhead to
boost overall system performance. The effectiveness of these
schemes is directly measurable using this criterion.

B. Cross-shard Transaction Processing Criteria

We propose a set of criteria for evaluating the performance
of cross-shard transaction processing mechanisms in terms of
reliability, effectiveness, and applicability.

1) Reliability-related Criteria: Cross-shard transaction pro-
cessing mechanisms should ensure consistency and efficiency
in transaction execution, even in the presence of transaction
conflicts, malicious nodes, and potential attacks. Therefore,
we propose the following criteria to evaluate the reliability of
cross-shard transaction processing mechanisms.

a) Atomicity (AM): Atomicity refers to the principle that
transactions are indivisible, that is, they are either executed
completely or not at all. If a transaction’s components are
executed on different shards and one part fails, the transaction
is deemed a failure, and all changes are rolled back [45].
The atomic commit mechanism guarantees that cross-shard
transactions are recorded in the ledgers of all related shards,
thus ensuring consistency in the ledger state. Therefore, atom-
icity is an indispensable criterion for a cross-shard transaction
processing mechanism.

b) Liveness (LN): Liveness refers to that a cross-shard
transaction can be eventually processed, i.e., the involved
shards continuously make progress. Liveness guarantees that
the sharded blockchain system responds to clients within a
certain period of time. Even in the presence of network delays,
communication issues between shards, or malicious nodes, the
system ensures that transactions are not indefinitely blocked
[45]. Liveness is critical for maintaining system responsiveness
and reliability.

c) Isolation (IL): Isolation refers to the condition in which
multiple transactions can be executed simultaneously, but the
execution of each transaction is independent of the others.
Cross-shard transactions may access and modify ledger state
simultaneously with other concurrent transactions, which in-
evitably leads to transaction conflicts and ledger state inconsis-
tencies. The cross-shard transaction mechanism should provide
a level of isolation to ensure that cross-shard transactions are
not interfered with by other concurrent transactions. This is
typically achieved through concurrency control mechanisms
such as locking or timestamp ordering, which prevent issues
like data inconsistency.

d) Fault Tolerance (FT): Fault tolerance describes the
capability of each shard to operate stably in the presence
of Byzantine nodes [56]. Fault tolerance is evaluated using
the fault tolerance ratio, expressed as f/n, where f denotes
the maximum number of Byzantine nodes within a shard,
and n represents the total number of nodes in the shard.
Byzantine nodes always broadcast error messages and deny
services to hinder transaction consensus. Therefore, a reliable
processing mechanism requires high fault tolerance of each
shard to ensure its availability. We assume that the BFT
consensus protocol can achieve 1/3 fault tolerance while the
PoW consensus protocol can achieve 1/2 fault tolerance.

e) Security (SE): Security refers to the capability of
the cross-shard processing mechanism to handle cross-shard
transactions even in the face of various potential attacks. The
security of a cross-shard transaction processing mechanism is
measured by the variety of attacks it can defend against. A
reliable cross-shard processing mechanism must be able to
provide countermeasures against potential attacks. The more
comprehensive the attacks it can withstand, the safer the trans-
action processing becomes. Next, we present several attacks
against cross-shard transactions, while their characteristics are
shown in Fig. 6.

• Fork Attack (FA): In a PoW consensus system, a cross-
shard transaction is initially recorded in the ledgers of
multiple shards. Subsequently, miners in a shard may
extend a longer chain to revert the transaction, leading to
inconsistencies among shards [57]. The attacker exploits
the inconsistency of the shard ledgers, which causes the
shards to have conflicting views on cross-shard transac-
tions.
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• Replay Attack (RA): The attacker records the response
of shards and replays it during other protocol instances,
thus deceiving other entities involved in the transaction,
including shards and clients [58]. This attack exploits the
weak binding between shards and transactions, causing
double spending and resource locking.

• Censorship Attack (CA): The leaders within shards op-
erate honestly within their own shards, but engage in
malicious behavior when it comes to cross-shard trans-
actions, such as withholding certificates [21]. This attack
exploits the inability of single shard to maintain a global
view, disrupting the normal execution of cross-shard
transactions and leading to transaction blocking.

f) Incentive (IN): Incentive is designed to regulate the
behavior of system entities from an economic perspective.
Its goal is to encourage system entities to achieve spe-
cific objectives [59], such as actively participating in cross-
shard transactions and honestly behaving. In the context of
blockchain, an incentive usually increases the utility of nodes
by rewarding them, thereby motivating them to join the
blockchain’s execution. On the one hand, the incentive can
encourage nodes to maintain the atomicity and liveness of
cross-shard transaction processing mechanisms. On the other
hand, it can also prevent various attacks, ensuring that the
cross-shard shard transaction processing mechanisms operate
normally and as expected. Therefore, incentive plays a crucial
role in the process of cross-shard transactions.

2) Effectiveness-related Criteria: Effectiveness refers to the
efficiency and overhead of a cross-shard processing mech-
anism when handling cross-shard transactions. Quantitative
evaluation is necessary to accurately assess whether a mecha-
nism can satisfy this type of criteria.

a) Parallelism (PL): Parallelism refers to the ability of a
single shard to process multiple cross-shard transactions si-
multaneously. Cross-shard transaction processing mechanisms
typically include two parallel processing methods, batch and
pipeline [60]. Supporting either one or both methods means
that parallelism is satisfied. Batch means that a single block
can contain the input or output of multiple cross-shard trans-
actions [61]. Pipelining splits transaction processing into mul-
tiple stages, allowing a single shard to perform different stages
of processing in parallel [62]. If a cross-shard transaction
processing mechanism supports parallelism, it can significantly
enhance the efficiency of the sharded blockchain.

b) Throughput (TP): Throughput measures the volume of
transactions a blockchain system can handle within a specified
time period. A cross-shard transaction processing mechanism
aims to maximize transaction throughput within a given time.
Consequently, throughput serves as a key metric for evaluating
processing efficiency.

c) Latency (LT): Latency is the time elapsed from when a
transaction enters the transaction pool to its final recording
in the ledger. Low latency implies quick confirmation and
execution of transactions, thus reflecting the real-time process
capability of the cross-shard transaction processing mecha-
nism. This is particularly critical for applications that demand
immediate confirmation, such as financial transactions. There-
fore, latency is a crucial metric for evaluating the real-time

efficiency and responsiveness of the cross-shard transaction
processing mechanism.

d) Communication Overhead (CO): The communication
overhead denotes the data exchanged among shards during
the processing of cross-shard transactions. This overhead is
influenced by various factors, including the size of each shard
(m) and the total number of shards (n) involved in cross-shard
transactions. Excessive communication overhead not only un-
dermines the system’s scalability, but also impairs the overall
performance and responsiveness of the blockchain network.
Therefore, minimizing communication overhead is essential
for optimizing the efficiency of the cross-shard processing
mechanism, ensuring rapid transaction finality and a positive
user experience.

3) Applicability-related Criteria: Applicability refers to the
ability of the cross-shard transaction processing mechanism to
be applied in practice to handle complex transactions involving
multiple accounts, multiple assets, and interactions with smart
contracts. An applicable cross-shard transaction processing
mechanism must effectively manage this complexity.

a) Contract Enablement (CE): Contract enablement refers
to the capability of a sharded blockchain to process smart
contract-based cross-shard transactions. A smart contract is a
program executed on a blockchain that automatically enforces
contractual terms when predefined conditions are met [63].
These contracts are applicable across various domains, such as
financial, supply chain, voting systems, identity verification,
and beyond [64]. Therefore, to accommodate diverse appli-
cation requirements, the cross-shard transaction processing
mechanism must support smart contracts. Notably, UTXO-
based transactions do not inherently support smart contracts.

b) MIMO Enablement (ME): Multiple Input and Multi-
ple Output (MIMO) enablement denotes the capability of a
sharded blockchain system to handle MIMO cross-shard asset
transactions. Notably, all UTXO-based transactions inherently
support MIMO. The flexibility and concurrency of MIMO
transactions enable cross-shard transaction processing mecha-
nisms to no longer be limited to inefficient Single Input Sin-
gle Output (SISO) transactions, thereby also reducing cross-
shard communication. Therefore, MIMO enablement serves
as a valuable measure of the applicability of the cross-shard
transaction processing mechanisms.

IV. TAXONOMY OF CTAOP MECHANISMS

This section gives a detailed taxonomy of CTAOP mech-
anisms, as shown in Fig. 7. We first classify CTAOP mech-
anisms into transaction allocation optimization schemes and
cross-shard transaction processing mechanisms based on the
differences of optimization objectives. Subsequently, we fur-
ther propose detailed taxonomies of the two main types of
mechanisms and explore the advantages and disadvantages of
their respective sub-taxonomies, as shown in Table III.

A. Taxonomy of Transaction Allocation Optimization Schemes

The primary objective of transaction allocation optimization
schemes is to minimize cross-shard transactions while main-
taining workload balance. As illustrated in Fig. 7, existing
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transaction allocation optimization schemes can be catego-
rized into three types based on their allocation strategies:
graph-based, polling-based, and transaction characteristics-
based schemes. Additionally, we summarize the respective
advantages and limitations of each approach.

1) Graph-based Schemes: Graph-based transaction alloca-
tion schemes transform historical transaction networks into
graph structures and utilize graph algorithms to assign ac-
counts and transactions. The core principle is to co-locate
dependent transactions and frequently interacting accounts
within the same shard. This approach captures global interac-
tion patterns and performs combinatorial optimization of trans-
action placement [65]. However, constructing and processing
graph structures introduces significant computational and stor-
age overhead, thereby increasing the burden on blockchain
nodes.

2) Polling-based Schemes: Polling-based transaction allo-
cation schemes dynamically assess whether to migrate par-
ticipating accounts to different shards for each transaction.
While this approach can partially achieve load balancing, it
neglects the relationships among existing accounts, thereby
limiting its effectiveness in reducing cross-shard transactions.
Moreover, account migration may disrupt previously optimized
configurations, resulting in suboptimal cross-shard transaction
processing.

3) Transaction Characteristics-based Schemes: Transac-
tion characteristics-based allocation schemes assign transac-
tions based on specific features of transactions or accounts,
such as involved participants or transaction types. Although
simple and efficient, this approach has limited applicability and
may not be suitable for diverse transaction patterns. Addition-
ally, it often lacks comprehensive performance considerations,
necessitating further refinement in future designs.

B. Taxonomy of Cross-shard Transaction Processing Mecha-
nisms

The objective of cross-shard transaction processing mech-
anisms is to enhance the processing efficiency of cross-
shard transactions. We have categorized existing cross-shard
transaction processing mechanisms into six types based on
different design principles. These types are further summa-
rized according to their differences in applicable transaction
models: the general models, the UTXO model, and the Ac-
count/Balance model. The general model category includes the
2PC protocol and the Cross-shard Byzantine Fault Tolerance
(Cross-Shard BFT) mechanism; the UTXO model category
includes the cross-shard transaction splitting mechanism; and
the Account/Balance model category consists of the relay
transaction mechanism, the decoupling mechanism, and the
multi-layer sharding mechanism, as shown in Fig. 7. Finally,
for each of the six types, we summarize its basic process and
discuss its advantages and disadvantages, as shown in Table
III.

1) 2PC Protocol: The 2PC protocol is the most widely
adopted method for handling cross-shard transactions, which
can be deployed in both models. As shown in Fig. 8, this
protocol consists of a preparation phase and a commitment
phase. In the preparation phase, all input shards must generate
an availability certificate to confirm the availability of an input.
Each shard then transmits its agreement results, along with
the certificate, to a coordinator or coordinators [45]. Once an
input is confirmed as available, it is locked to prevent double-
spending by other transactions. In the commitment phase, the
coordinator(s) distribute the collected certificates to all relevant
shards, which then verify the availability of the inputs. If
all inputs are deemed available, the transaction is validated
and committed. Conversely, if any shard reports an input
as unavailable, the transaction is invalidated, and the other
shards release the previously locked inputs [11]. There are
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Fig. 8. Centralized 2PC protocol versus distributed 2PC protocol. The primary distinction between the two types of 2PC protocols lies in their communication
structure, specifically whether a third party is involved in coordinating cross-shard transactions.

several different ways to implement the 2PC protocol, either
centralized or distributed based on communication structure,
specifically whether a third party is involved in coordinating
cross-shard transactions.

a) Centralized 2PC Protocol: As illustrated in Fig. 8(a), a
central transaction coordinator oversees the execution of cross-
shard transactions. Its responsibilities include collecting proofs
and disseminating them to the relevant shards. Communication
is centralized, with all shards communicating directly with
the coordinator, resulting in relatively high communication
efficiency. Based on the role of the centralized coordinator,
the protocol can be classified into two types: client-driven and
shard-driven.

• Client-driven: The client is responsible for collecting and
transmitting proofs. However, this type of protocol also
inevitably increases the burden on clients. In case the
client fails, the transaction may be blocked [12].

• Shard-driven: Specific shards run the BFT protocol to
coordinate cross-shard transactions. Although liveness is
guaranteed, concurrency is hard to satisfy [12].

b) Distributed 2PC Protocol: As illustrated in Fig. 8(b), the
coordinators are composed of shards participating in transac-
tions, requiring the exchange of proofs of fund availability.
The communications among them are distributed, without
any central coordinator. Compared to the centralized 2PC,
the burden on a specific coordinator is released [6]. The
design of the distributed 2PC is more complex than that of
the centralized 2PC. Multiple rounds of message exchange
increase communication overhead.

2) Cross-Shard BFT Mechanism: The Cross-Shard BFT
mechanism is designed to achieve consensus among nodes
across multiple shards. As illustrated in Fig. 9, this mechanism
involves two main roles: primary participant and backup
participants. Specifically, the primary participant, also known
as a leader, is typically the leader node of the input shard
and is responsible for handling client requests and initiating
proposals. The backup participants, typically consensus nodes
within all the shards that participate in the transaction, adhere
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Fig. 9. Cross-Shard BFT mechanism.

to the principle that “the minority is subordinate to the
majority,” and need to accept messages from 2f + 1 or more
of the participants [45].

This mechanism eliminates the need for a coordinator to
collect and distribute proofs of availability of funds. Addition-
ally, Cross-Shard BFT mechanisms effectively address chal-
lenges such as transaction conflicts, deadlocks, and participant
failures [66]. However, message exchanges across all nodes
involved in shard transactions result in high communication
overhead.

3) Cross-shard Transaction Splitting Mechanism: As
shown in Fig. 10, the cross-shard transaction splitting mech-
anism processes the general MIMO transaction by splitting
cross-shard transactions into multiple SISO sub-transactions.



IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, VOL. , NO. , MARCH 2025 12

TABLE III
SUMMARY AND COMPARISON OF CTAOP MECHANISMS

Categories Advantages Disadvantages

TAOS

GS 1. Analyze global transaction patterns;
2. Optimize transaction allocation combinatorially [65].

Generating graph structures incurs additional costs, causing
extra node burden.

PS Partially achieve load balance.
1. Limited ability to reduce cross-shard transactions;
2. Account migration may disrupt previously optimized
configurations.

TCS Simple and fast. 1. Limited application scope;
2. Require further performance optimization.

CTPM

C2PC Relatively high communication efficiency. 1. Increase the burden of clients [12];
2. Insufficient concurrency [12].

D2PC Release the burden of a centralized coordinator. Multiple rounds of message exchange increase
communication overhead.

CSBFT Solve transaction conflict, deadlock, and failure [66]. Direct participation of nodes in cross-shard communication
brings high overhead.

CSTSM Simplify consensus [6]. Sub-transactions introduce additional communication
overhead.

OP-RTM 1. Enhance transaction processing flexibility;
2. Improve system concurrency [15].

1. Difficult to handle multi-input transactions;
2. Sub-transactions cause an increase of communication
overhead;
3. Multi-step leads to high latency.

AS-RTM 1. Quick cross-shard transaction confirmation [17];
2. Shard load can be adjusted.

1. Cannot support multiple input transactions;
2. Fine-grained partition of account states increases
protocol complexity;
3. Ensuring account trust presents a significant challenge.

DM Facilitate collaboration on complex cross-shard transactions
[67]. Increase system implementation complexity.

MLSM Prevent invalid and conflicting transactions.
1. Storage bottleneck;
2. The complexity of cross-shard consensus affects
processing efficiency and communication overhead.

TAOS: Transaction allocation optimization scheme; CSTPM: Cross-shard transaction processing mechanism;
GS: Graph-based schemes; PS: Polling-based schemes; TCS: Transaction characteristics-based schemes;

C2PC: Centralized 2PC protocol; D2PC: Distributed 2PC protocol; CSBFTM: Cross-Shard BFT mechanism;
CSTSM: Cross-shard transaction splitting mechanism; OP-RTM: Operation partition based relay transaction mechanism;

AS-RTM: Account segmentation based relay transaction mechanism; DM: Decoupling mechanism; MLSM: Multi-layer sharding mechanism.

For a cross-shard transaction tx = ⟨(I1, I2), O⟩ with two
inputs I1 and I2 that belong to Shard1 and Shard2, respec-
tively, and one output O that belongs to Shard3. Shard3
creates two types of transactions txi = ⟨Ii, I ′i⟩ and tx′ =
⟨(I ′1, I ′2), O⟩. For i ∈ {1, 2}, txi has input Ii and output I ′i ,
where |I ′i| = |Ii| (i.e., the same amounts), and I ′i belongs
to Shard3 [6]. While the transaction splitting mechanism
simplifies cross-shard transaction processing, it introduces
additional communication overhead due to the creation of sub-
transactions.

4) Relay Transaction Mechanism: We categorize the relay
transaction mechanism into Operation Partition and Account
Segmentation, as shown in Fig. 11. The essence of the relay
transaction mechanism lies in dividing the transaction state
across multiple shards, where a source shard and a target shard
execute different operations. Overall, the relay transaction
mechanism can serve as a sub-scheme within other cross-
shard transaction processing mechanisms and is commonly
applicable to SISO scenarios. The above two classes of the
relay transaction mechanism are described below.

a) Operation Partition: As illustrated in Fig. 11(a), the
relay transaction mechanism based on operation partition
decouples cross-shard transactions into multiple steps, each

Cross-shard 
Transaction

Fig. 10. Cross shard transaction splitting mechanism.

involving a single shard. The source shard transmits these
steps to the target shard by deriving and forwarding relay
transactions, similar to a relay race [15]. Operation partitioning
enhances the flexibility and scalability of transactions, thereby
improving the concurrency and scalability of the system.
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Fig. 11. Two implementations of the relay transaction mechanisms. In the operation partition, the miners of the source shard verify a withdraw operation,
record it in the ledger, and subsequently forward the relay transaction to the target shard. After the relay transaction is verified by the target shard, it is
recorded in the ledger and executes a deposit operation. In the account segmentation, the cross-shard transaction process is divided into two stages. Trusted
accounts are employed to execute relevant operations within each shard, thereby enabling the concurrent processing of deposit and withdrawal operations.

However, it encounters three potential challenges. First, it is
difficult to handle multi-input transactions relying on the relay
transaction mechanism. Second, an increase in the number of
sub-transactions results in higher overhead. Finally, multi-step
processing itself causes high latency to some extent.

b) Account Segmentation: Account segmentation refers
to the account states of some special users being split and
stored in multiple shards [16], [17], as illustrated in Fig.
11(b). If these special accounts are fully trusted, cross-shard
transactions can be processed within a single shard, reducing
the need for inter-shard communication and lowering latency
[16]. However, implementing account segmentation requires
the design of fine-grained account state partitions, which
inevitably increases the complexity of the mechanism. Addi-
tionally, ensuring the trustworthiness of these special accounts
poses a significant challenge.

5) Decoupling Mechanism: The core concept of the decou-
pling mechanism is to separate transaction recording from con-
sensus execution by coordinating the state storage and trans-
action execution processes. The mechanism disrupts ledger
isolation between shards, enabling each shard to share the
ledger during transaction execution and facilitating collabo-
ration on complex cross-shard transactions [67]. Inevitably,
implementing the decoupling mechanism requires complex
system design and coordination mechanisms, which increases
the difficulty of implementation.

6) Multi-layer Sharding Mechanism: As shown in Fig. 12,
this mechanism selects nodes from each shard to form a
new-layer shard that coordinates all cross-shard transactions,
so as to solve invalid transactions and transaction conflicts.
For example, Prophet [54] addresses conflicts by establishing
a reconnaissance coalition and implementing deterministic
global ordering, whereas DC Chain [68] proactively resolves
conflicts through the formation of a decentralized coordinator.

Despite the advantages, the introduction of the coordination
layer poses several challenges. The shards in the coordina-
tion layer store ledger data from multiple shards, leading to

Second layer shard

First layer

Fig. 12. Multi-layer sharding mechanism.

increased storage overhead and potential system bottlenecks.
Moreover, the coordination layer requires stringent security
protocols to ensure robust defenses. Finally, as cross-shard
transactions traverse multiple layers, the extra complexity of
cross-shard consensus may impact overall consensus efficiency
and communication overhead.

V. CTAOP MECHANISMS

This section gives a detailed literature review on existing
CTAOP mechanisms by employing our proposed criteria.
We retrieve and thoroughly review a total of 29 relevant
research papers published between 2017 and 2024, searched
from databases including IEEE Xplore, ACM Digital Library,
Google Scholar, Web of Science, and arXiv. Among these, 10
papers cover topics related to transaction allocation optimiza-
tion schemes, while 19 papers focus on cross-shard transaction
processing mechanisms. Finally, we discuss our findings and
compare the reviewed works.

A. Review on Transaction Allocation Optimization Schemes
In this subsection, we review the transaction allocation opti-

mization mechanisms following their taxonomy by evaluating
them using our proposed criteria. Our review results are shown
in Table IV.
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TABLE IV
SUMMARY AND COMPARISON OF TRANSACTION ALLOCATION OPTIMIZATION SCHEMES

Category Ref TM GL AP WB SO

Graph-based schemes

METIS [69] A/B O(y2)

Optchain [19] UTXO O(x2)

CLPA [70] A/B O(y2)

RGP [71] UTXO O(kx)

Txallo [65] A/B O(y2)

Estray [72] A/B O(y2)

Pollong-based schemes
Scheduler [73] A/B O(y)

LB-Chain [74] A/B O(y)

Transaction characteristics-based schemes
OBSC [18] A/B O(1)

Sliver [75] A/B O(t)

: Meet the criterion; : Do not meet; ‘-’: Not Available; UTXO: UTXO model; A/B: Account/Balance model.Ref: Reference; TM: Transaction Model;
GL: Globality; AP: Adaptability; WB: Workload Balance; SO: Storage Overhead; x: The number of transactions; y: The number of accounts;

k: The levels of ancestral transactions; t: The number of cross-chain transactions.

1) Graph-based Schemes: Fynn et al. [69] introduced the
classical offline graph algorithm METIS [76] to partition
accounts. Similarly, Huang et al. [16], [17] adopted the METIS
algorithm as an automated transaction distribution strategy
in Brokerchain [16], [17]. The METIS algorithm initially
constructs an account transaction graph, assigning weights to
its vertices and edges. The edge weights are defined by the
number of transactions between corresponding account pairs,
while a vertex’s weight is computed as the total weight of its
connected edges. The algorithm periodically determines the
optimal partitioning of the graph to minimize inter-partition
edges while maintaining balanced shard weights. Considering
the entire transaction state network, the METIS algorithm
achieves GL but inevitably incurs a state graph storage over-
head of O(y2). However, since the METIS algorithm does not
quantify workload in detail, the account graph partitioning re-
lies solely on edge weights and therefore does not satisfy WB.
Moreover, the METIS algorithm cannot adapt to fluctuations
in network load; therefore, it disregards AP. As the number of
shards increases from 4 to 60, the CTR stabilizes at 20-25%.

Nguyen et al. [19] proposed a blockchain sharding optimiza-
tion framework called OptChain, which aims to minimize the
proportion of cross-shard transactions through a lightweight
dynamic transaction allocation strategy. OptChain models the
UTXO transaction flow as a TaN, where each transaction is
represented as a node in an online Directed Acyclic Graph
(DAG). It then formulates the transaction allocation problem
as an online graph partitioning problem considering tempo-
ral balance. Therefore, OptChain supports GL. In addition,
OptChain introduces a Temporal Fitness Scoring mechanism
to evaluate the suitability of placing new transactions in
each shard. Specifically, Temporal Fitness comprises two sub-
scores: Transaction to Shard (T2S) and Latency to Shard
(L2S). The T2S score is determined using the PageRank al-
gorithm [77] to evaluate the compatibility of new transactions
with each shard, while the L2S score estimates the confir-
mation latency of new transactions in each shard based on

the probability distribution of the shard’s communication and
verification time. Finally, using the formula T2S−0.01∗L2S,
OptChain calculates the Temporal Fitness score, and the shard
with the highest score is selected as the optimal placement for
a new transaction. The Temporal Fitness Scoring mechanism
determines the best placement of transaction shards based on
the real-time load of the transaction network, thereby ensuring
dynamic workload balance. Obviously, OptChain satisfies the
requirements of AP and WB. Nevertheless, maintaining the
TaN structure incurs an unavoidable O(x2) storage overhead
when its size is x. In the Ethereum dataset containing 3 million
transactions, as the number of shards increases from 4 to 64,
the CTR rises from 11.26% to 36.68%.

Li et al. [70] proposed a community-aware account alloca-
tion strategy called the Constrained Label Propagation Algo-
rithm (CLPA). The core idea of CLPA is to propagate labels
between nodes based on their connection patterns, thereby
identifying tightly connected communities with constrained
sizes. During initialization, CLPA assigns an initial label to
each account based on its current shard ID. Subsequently,
each account iterates through its neighboring accounts, cal-
culates a score using a scoring function, and updates its label
accordingly. The scoring function considers both community
size and the strength of connections between accounts, and
introduces a penalty parameter to adjust the priority of the
optimization goals. Therefore, WB is satisfied. To further
support the proposed account partitioning mechanism, Li et
al. designed an elastic sharding protocol called Transformers.
A key innovation of Transformers is the introduction of a Main
Shard (M-shard), which is responsible for processing local
transactions and constructing an account graph. The M-shard
then executes the CLPA algorithm to achieve a community-
aware partitioning of the account graph. Ultimately, each
Working Shard (W-shard) relocates accounts based on the par-
titioning results and updates its local ledger state. Therefore,
CLPA satisfies GL, but preserving the community structure
incurs an unavoidable O(y2) storage overhead. Additionally,
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CLPA fails to account for AP, as it does not dynamically adapt
to load fluctuations within an epoch. In the Ethereum dataset
with three million transactions, when the penalty parameter
is set to 0.5, the number of shards is fixed at eight, and the
epoch length is approximately 100 seconds, resulting in a CTR
of about 40%.

Ren et al. [71] proposed the Root Graph Placement (RGP)
algorithm, aiming to reduce the number of cross-shard trans-
actions by placing ancestor transactions and their associated
future transactions in the same shard. RGP constructs a DAG
rooted at the new transaction using Breadth-First Search (BFS)
[78], which encompasses the new transaction along with its
ancestors within k levels. Next, the algorithm counts the num-
ber of fully spent and partially spent ancestors in each shard,
where parameter a differentiates their respective weights. The
cost score and load score for each shard are then calculated
considering both the number of ancestor transactions and the
overall transaction volume within each shard. The cost score
is multiplied by the load score to compute a final placement
score for each shard, with the RGP algorithm assigning the
new transaction to the shard with the highest score. If all
shard scores are zero, the new transaction is placed in the
shard containing the least number of ongoing transactions. The
cost score and load score measure the fitness of transaction
allocation from both a historical transaction and a workload
perspective. Therefore, RGP satisfies the requirements of GL
and WB, while AP is overlooked. Moreover, RGP only needs
to consider the recent k levels of ancestors without analyzing
the entire transaction history, thus the storage overhead is
only O(kx). When the level of ancestors is two, the CTR is
approximately 20% across shard configurations ranging from
4 to 128.

Zhang et al. [65] introduced TxAllo, a deterministic and
efficient transaction allocation mechanism designed for the
dynamic allocation of accounts and their associated transac-
tions. The TxAllo algorithm consists of two sub-algorithms: a
global optimization algorithm called G-TxAllo and an adaptive
adjustment algorithm called A-TxAllo. G-TxAllo optimizes
the transaction network globally using historical data, while
A-TxAllo efficiently updates allocations based on previous
results and real-time transaction data. Thus, TxAllo achieves
GL. Specifically, the G-TxAllo algorithm operates in two
phases: initialization and optimization. In the initialization
phase, G-TxAllo employs the Louvain [79] extension algo-
rithm to perform community detection on the account graph
to derive an initial account-to-shard mapping. During the
optimization phase, the G-TxAllo algorithm iterates through
each account, evaluating throughput improvements resulting
from reassigning accounts across communities, and continues
until the gain falls below a predefined convergence thresh-
old. Conversely, A-TxAllo quickly adapts to data changes
by computing throughput variations at the community level
based solely on the previous allocation results and newly
submitted transaction data. Furthermore, both sub-algorithms
of TxAllo enforce workload constraints based on each shard’s
processing capacity, λ, thereby meeting the requirement of
WB. However, TxAllo does not fully meet AP because it
fails to adapt its allocation policy in response to real-time

shard load fluctuations. Additionally, the introduction of the
community detection algorithm inevitably incurs an O(y2)
storage overhead. When the transaction size reaches 300,000,
TxAllo achieves approximately a 12% CTR even with 60
shards.

Jia et al. [72] proposed a protocol called Estuary, which
employs a multi-level state model and a state-split aggregation
mechanism to minimize cross-shard transactions. Within the
multi-level state model, state units are divided into primary
and secondary states. The primary state facilitates transactions
between users, while the secondary state is limited to receiving
state units from other users or being converted into a primary
state. The state split aggregation mechanism allows users to
split and aggregate state units between shards, enabling dy-
namic state distribution adjustments based on user transaction
demands. Additionally, Estuary introduces the Community
Overlap Propagation Algorithm (COPRAS) to optimize user
state distribution. COPRAS defines the belonging coefficient
and the workload index ∆(D). The former denotes the pro-
portion of a user’s state distribution across different shards,
while the latter measures the largest workload deviation of
shard from the system’s average workload. During the iterative
process, COPRAS dynamically calculates and updates the
user’s belonging coefficient in each shard based on states
and the belonging coefficients of neighboring users. Finally,
based on the updated belonging coefficient, COPRAS dynam-
ically reallocates user states across shards to reduce cross-
shard transactions and minimize the imbalance index ∆(D).
Therefore, COPRAS satisfies WB. Since COPRAS traverses
the entire transaction network G(V,E) to update each user’s
belonging coefficient, the scheme meets the requirement of GL
but incurs a storage overhead of O(y2). However, COPRAS
does not adapt to network load fluctuations, so AP is ignored.
After processing 47 million one-to-one Bitcoin transactions,
when the number of shards is incrementally increased from 2
to 64, the CTR remains generally below 6.4%.

2) Polling-based Schemes: Krol et al. [73] introduced
Shard Scheduler, a mechanism for object placement and mi-
gration scheduling aimed at improving overall system through-
put. Shard Scheduler supports complex multi-account transac-
tions arising from smart contracts by determining the optimal
placement of accounts while minimizing migration costs. It
maintains two key data structures: an alignment vector, which
represents the total transaction cost associated with an account
in a specific shard, and a load metric for each shard. To
allocate new accounts, Shard Scheduler selects a main shard
based on the criterion of choosing the least-loaded shard and
assigns the new account accordingly. Simultaneously, for pre-
existing accounts involved in the transaction, Shard Scheduler
calculates the migration cost of each account based on their
alignment vectors and determines whether migration to the
main shard is beneficial. Thus, Shard Scheduler adapts to
network load fluctuations, satisfying AP. Additionally, it incor-
porates an economic incentive mechanism to encourage miners
to execute migrations that enhance overall system throughput
rather than prioritizing the interests of a single shard. The
Shard Scheduler scheme satisfies WB while maintaining an
O(y) storage overhead, where y represents the number of
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active accounts. However, since historical account interaction
data is not considered, Shard Scheduler does not satisfy GL.
When the number of shards is 16 and the migration cost is
10, the CTR is approximately 60%.

Li et al. [74] introduced LB-Chain, a smart account allo-
cation and migration scheme designed to balance transaction
loads across shards while minimizing account migrations to re-
duce overhead. The account allocation process consists of two
components: transaction prediction and an account allocation
algorithm. In the prediction phase, LB-Chain employs Long
Short-Term Memory (LSTM) [80] technology to periodically
forecast the future transaction volume of “hot accounts” based
on historical transactions and pending transactions generated
by these accounts. However, as it does not take account
interaction into consideration, LB-Chain cannot effectively
address the cross-shard transaction optimization problem and
therefore does not meet the requirements of GL. Based on the
transaction prediction results, LB-Chain employs a heuristic
approach to move “hot accounts” from overloaded shards to
the least-loaded shard while keeping the shard assignments
of “non-hot accounts” unchanged. This redistribution reduces
transaction imbalances among shards, thereby ensuring WB.
Once the allocation scheme is finalized, the system migrates
the account state and its pending transactions from the source
shard to the target shard. Additionally, the system incorporates
measures such as ensuring intra-shard consensus, prioritizing
transaction execution, handling transaction queue migration,
and postponing the verification of new transactions to maintain
migration safety and enhance migration efficiency. Overall,
LB-Chain effectively adapts to network load fluctuations,
meeting the requirements of AP. Since LB-Chain is primarily
optimized for workload balance and does not provide details
on cross-shard transaction handling, its CTR cannot be eval-
uated.

3) Transaction Characteristics-based Schemes: To mini-
mize cross-shard communication overhead, Tao et al. [18]
proposed a sharding approach based on smart contracts. The
method groups users interacting with a single smart contract
into a shard, enabling independent verification and confirma-
tion of transactions within each shard. For users participating
in multiple smart contracts, their transactions are placed in
a designated shard, MaxShard. MaxShard records all transac-
tions in the system, and miners maintain a local call graph [81]
between smart contracts and users, eliminating the need for
remote access to the entire transaction history. Consequently,
the approach does not satisfy GL, but it incurs only O(1)
storage overhead, indicating that storage requirements remain
constant regardless of transaction volume. To prevent empty
block generation and enhance throughput, Tao et al. proposed
a dynamic inter-shard merging algorithm and an intra-shard
transaction selection algorithm. The former encourages small
shards to merge into larger shards based on cooperative game
theory [82] to optimize computational resources, while the
latter improves the efficiency of larger shards by allowing
miners to choose distinct transaction sets. Through evolution-
ary stable strategy [83], Tao et al. further demonstrate that
the proposed inter-shard merging and intra-shard transaction
selection algorithms converge to Nash equilibrium. Since the

scheme can adapt shard sizes dynamically in response to
transaction state changes, it satisfies AP and WB. Since the
proposed scheme is designed exclusively for smart contracts
in which users participate, the CTR is 0%. Nevertheless,
its applicability remains limited to specific smart contract
interactions.

Tao et al. [75] proposed a transaction distribution mech-
anism aiming to enhance the throughput of the relay chain
[84]. The core idea of Sliver is to assign cross-chain trans-
actions with dependencies to a single shard, thereby entirely
eliminating the need for cross-shard interactions. Specifically,
Sliver assigns the same identifier to the registration, recording,
and completion of a transaction, ensuring that miners within
a shard do not need to verify cross-chain transactions from
other shards. To address the load imbalance of the relay
chain, Sliver formulates relay transaction allocation as an
integer optimization problem. The objective is to incremen-
tally minimize the maximum shard workload while satisfying
all cross-chain transaction dependencies. After transforming
the objective function into a separable convex function with
respect to the allocation variables, Sliver then reformulates
the integer optimization problem into an equivalent linear pro-
gramming problem using λ-techniques. Finally, this problem
is solved efficiently by a linear programming solver [85], [86].
Therefore, Sliver satisfies the requirement of WB. As Sliver
exclusively records cross-chain transaction data, it does not
satisfy GL, and its storage overhead is O(t). Additionally,
Sliver does not account for short-term fluctuations in shard
workload, thereby disregarding AP. Since the proposed scheme
is solely for cross-chain transactions, the CTR is 0% for this
specific scenario, yet its applicability remains restricted to
cross-chain transactions.

B. Review on Cross-shard Transaction Processing Mecha-
nisms

In this subsection, we review 19 articles related to cross-
shard transaction processing mechanisms according to their
categories. In addition, we evaluated them using general
evaluation metrics, as shown in Table V. Notably, UTXO-
based transaction processing mechanisms support ME, but do
not support CE. Unless otherwise specified, we assume that
the BFT consensus protocol can tolerate up to 1/3 Byzantine
faults, while the PoW consensus protocol can tolerate up to
1/2 faulty nodes.

1) 2PC Protocol: To handle UTXO-based cross-shard
transactions, OmniLedger [11] proposes Atomix, a client-
driven 2PC protocol that ensures transactions are atomically
committed or eventually aborted. Each input shard tolerates
Byzantine faults up to 1/3 of its nodes, generating a proof
of acceptance or proof of rejection via the ByzCoinX [92]
consensus protocol while locking the funds. The client then
gathers sufficient proof to either commit or abort the transac-
tion and subsequently reclaims the locked funds. Therefore,
the protocol can satisfy AM. However, if the client crashes
indefinitely, the locked funds may become permanently in-
accessible, thereby violating the requirement of LN. Further-
more, OmniLedger enforces serialized transaction execution
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TABLE V
SUMMARY AND COMPARISON OF CROSS-SHARD TRANSACTION PROCESSING MECHANISMS

Category Ref TM AM LN IL FAR RAR CAR IN CE ME PL FT CO

2PCP

OmniLedger [11] UTXO 1/3 O(m+ n)

SGX-Shard [12] General 1/2 O(m2 + n)

Instachain [87] UTXO 1/3 O(m+ n)

Chainspace [88] A/B 1/3 O(m2 + n2)

Byzcuit [58] A/B 1/3 O(m2 + n)

SSHC [20] UTXO 1/3 O(m+ n)

CHERUBIM [62] General 1/3 O(m+ n)

CSBFTM

Sharper [66] A/B 1/3 O(m2n2)

FS [21] UTXO 1/3 O(m+ n)

Cochain [89] A/B 1/3 O(m2 + n2)

CSTSM RapidChain [14] UTXO 1/2 O(m2 +m logn)

RTM

Monoxide [15] A/B 1/2 O(m+ n)

BrokerChain [16], [17] A/B 1/3 O(m2 + n)

X-shard [53] A/B 1/3 O(m2 + n)

DM
Benzene [67] A/B 1/2 O(m+ n)

Jenga [90] A/B 1/3 O(m2 + 1)

MLSM

Pyramid [91] A/B 1/3 O(m+ n)

Prophet [54] A/B 1/3 O(m+ n2)

DC chain [68] A/B 1/3 O(m+ n)

: Meet the criterion; : Do not meet; ‘-’: Not Available; UTXO: UTXO model; A/B: Account/Balance model; m: The size of each shard; n: The
number of shards involved in the transaction. 2PCP: Two-phase Commit Protocol; RTM: Relay Transaction mechanism; CSBFTM: Cross-Shard BFT

Mechanism; CSTSM: Cross-shard Transaction Splitting Mechanism; DM: Decoupling Mechanism; MLSM: Multi-layer Sharding Mechanism;
Ref: Reference; TM: Transaction Model; AM: Atomicity; LN: Liveness; IL: Isolation; FAR: Fork Attack Resistance; RAR: Replay Attack Resistance;

CAR: Censorship Attack Resistance; CE: Contract Enablement; ME: MIMO Enablement; IN: Incentive; FT: Fault Tolerance; PL: Parallelism;
CO: Communication Overhead. FAR, RAR, and CAR indicate whether a scheme provides countermeasures against FA, RA, and CA, respectively.

by constructing a block DAG, satisfying IL, but it does not
support PL. Since OmniLedger lacks an incentive mechanism
for participating entities, IN is overlooked. OmniLedger em-
ploys Collective Signatures (CoSi) [93] to enhance transaction
security, serving as a defensive countermeasure against FA,
thereby satisfying the requirement of FAR. However, Om-
niLedger is vulnerable to CA and RA due to inadequate super-
vision of the leader’s behavior within shards and the potential
for attackers to replay response messages from a shard to
previous transactions within a protocol instance. Consequently,
RAR and CAR remain unfulfilled. In an experimental setup
comprising 1,800 nodes and 25 shards, with a malicious node
proportion of 12.5%, OmniLedger achieves a throughput of
13,000 TPS and a latency as low as 8.04 seconds. With the
introduction of CoSi signatures and a centralized coordinator,
when a transaction involves n shards with a shard size of m,
the cross-shard communication overhead is only O(m+ n).

SGX-Shard [12] introduces a cross-shard consensus pro-
tocol that ensures the correct execution of transactions even
in the presence of malicious transaction coordinators. The
consensus protocol designates a reference shard as a central-
ized coordinator, which executes BFT internally to implement
a 2PC state machine and mandates the involved shards to
send response messages. Funds are unlocked for submission

only after collecting a sufficient number of responses from
the participating shards. Therefore, the protocol satisfies AM.
Since the reference committee is designed with high security,
ensuring continuous processing of client requests without
the risk of indefinite blocking, LN is guaranteed. Moreover,
SGX-Shard employs 2PL for concurrency control, which may
constrain concurrency efficiency under high workloads. As a
result, SGX-Shard satisfies IL but not PL. From a security per-
spective, the shards use TEE (e.g., Intel SGX [94]) to enhance
the Practical Byzantine Fault Tolerance (PBFT) protocol [42],
[43] to achieve intra-shard consensus with no more than 1/2
Byzantine fault tolerance, so it can support FAR. However, the
lack of a verification mechanism for shard response messages
and cross-shard supervision of malicious behavior prevents
SGX-Shard from mitigating RA and CA. Consequently, RAR
and CAR remain unfulfilled. In terms of applicability, SGX-
Shard supports CE and ME due to its emphasis on accom-
modating general blockchain workloads. Additionally, SGX-
Shard does not support IN due to insufficient consideration
of its design and implementation. In an experimental deploy-
ment on the Google Cloud Platform with 972 nodes and 36
shards, under a 12.5% adversary model, SGX-Shard achieves
a throughput of 3,000 TPS with an average latency of 80
seconds. When a transaction involves n shards with each
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shard size of m, the cross-shard communication overhead is
O(m2 + n).

Instachain [87] adopts a stateless blockchain model within
shards and integrates a novel cross-shard verification tech-
nique, enabling efficient processing of UTXO-based trans-
actions. Instachain employs a client-driven 2PC protocol for
cross-shard transaction verification. Each shard executes syn-
chronous HotStuff [95] with 1/3 Byzantine fault tolerance
to process cross-shard transactions sequentially, generating a
Proof-of-Inclusion (POI) that confirms the removal of funds
from the UTXO pool of the input shard. The client subse-
quently collects the POI to coordinate cross-shard transactions,
incurring a cross-shard communication overhead of O(m+n).
If an input asset is invalid, the protocol permits the submission
of other valid input assets. As a result, Instachain fails to sat-
isfy AM. To prevent transaction blocking, each node employs
a secure shard detector to monitor shard status. When a shard
loses liveness, the detector initiates a shutdown request to the
reference shard. The reference shard reorganizes nodes and
transactions upon receiving a sufficient number of shutdown
requests, ensuring transaction transfer to an active shard.
Thus, Instachain satisfies LN and CAR. However, Instachain
fails to satisfy IL and PL due to the absence of parallel
execution and concurrency control mechanisms. Moreover,
Instachain maintains a POI accumulator in each shard and
mandates clients to provide non-membership proofs for cross-
shard transactions, which consequently disregards FAR and
RAR. Since Instachain lacks a mechanism to incentivize nodes
for cross-shard transactions or ensure its security, IN is not
satisfied. As Instachain lacks specific experimental details, its
throughput and latency remain unevaluated.

Chainspace [88] employs S-BAC, a distributed 2PC protocol
integrating Byzantine agreement and atomic commit. In this
protocol, all input shards act as coordinators, each generating
an availability certificate via a 1/3 Byzantine fault-tolerant
protocol and coordinating cross-shard transactions through
certificate exchange. A transaction is submitted only upon the
receipt of availability certificates from all participating shards.
Since each shard executes the BFT protocol for consensus,
this approach mitigates single points of failure and prevents
transaction blocking. Thus, S-BAC satisfies the requirements
of AM and LN. Since S-BAC effectively implements a variant
of OCC, it resolves conflicts by processing a transaction
and aborting others. As a result, S-BAC satisfies IL but
not PL. Furthermore, Chainspace is auditable, allowing users
to track transactions and identify malicious nodes. Thus, S-
BAC supports FAR and CAR but does not support RAR,
as it remains vulnerable to the replay of response messages.
Although Chainspace incentivizes nodes via CSCoin contracts,
this incentive does not apply to cross-shard transactions and
thus fails to support IN. In an experiment with 15 shards,
each containing 4 nodes, Chainspace achieves a throughput
of 350 TPS and a latency of 210 ms. Input shards exchange
availability certificates to coordinate cross-shard transactions,
leading to a communication overhead of O(m2+n2). Regard-
ing applicability, Chainspace is tailored for smart contracts and
extends to multi-object transactions, satisfying CE and ME.

Byzcuit [58] is a fork of Chainspace that assigns a shard

as the cross-shard transaction manager. This centralized co-
ordination reduces cross-shard communication overhead to
O(m2 + n) among n shards, each containing m nodes. Since
its experimental setup is based on Chainspace, it inherits the
same satisfaction of AM, LN, and IL. However, as it does not
enhance parallelism in Chainspace, it remains incompatible
with PL. Byzcuit is also expected to satisfy CE and ME in
terms of applicability, similar to Chainspace. Furthermore, the
protocol mandates that the output shard implicitly consume the
virtual input to transition into an input shard, requiring each
shard to participate in the first phase of 2PC and execute BFT
consensus with 1/3 Byzantine fault tolerance. This mechanism
satisfies FAR and RAR, though it lacks a mechanism to
accommodate CAR. Byzcuit achieves a throughput of 1,550
TPS in an experimental setup with 96 nodes and 10 shards.

SSHC [20] implements a responsive cross-shard transaction
batch-processing scheme to improve the efficiency of cross-
shard transactions in the UTXO model. Each input shard
aggregates multiple transaction inputs and applies Pipelined
Byzantine Fault Tolerance (PLBFT) to generate an availability
certificate, tolerating up to 1/3 Byzantine faults. The input
shard then aggregates the availability certificates into a Merkle
tree [96] and commits to the root using a threshold signature.
Shards validate each other by verifying the availability certifi-
cates received from other input shards. Once all input shards
have issued their availability certificates, the output shard can
directly verify the state of each input using the Merkle tree
without invoking the BFT protocol again. By analyzing the
cross-shard processing mechanism of SSHC, it is actually a
distributed 2PC protocol and therefore can satisfy AM and LN.
Due to the incorporation of batch processing, SSHC satisfies
the requirement of PL. From a security perspective, each input
shard employs PLBFT consensus and binds its input state to
the corresponding transaction ID when transmitting availabil-
ity certificates, thereby supporting FAR and RAR. However,
as individual shards do not maintain a global perspective of
cross-shard transactions, SSHC remains vulnerable to CA.
Consequently, CAR remains unaddressed. Additionally, SSHC
does not support IN due to the absence of a well-defined incen-
tive mechanism. As SSHC lacks specific experimental details,
its throughput and latency remain unevaluated. Compared to
other distributed 2PC protocols, SSHC incurs a cross-shard
communication overhead of O(m+ n).

Existing 2PC protocols process cross-shard transactions
sequentially, resulting in significant system overhead and
reduced throughput. CHERUBIM [62] introduces a general
pipeline 2PC framework, P-2PC, to optimize the 2PC pro-
tocol through the reuse of cross-shard certificates. With the
integration of intra-shard BFT, CHERUBIM extends P-2PC to
4P-2PC, enabling pipelined processing both within and across
shards. The output shard first sorts transactions and forms
a batch for the input shard. The input shard then verifies
the availability of the transaction inputs in the current batch
and the validity of the previous batch using PLBFT. Upon
receiving the input shard’s availability certificate, the output
shard aggregates it using the Aggregated Multi-signature (A-
Msign) protocol and returns it to the input shard for final
confirmation. Thus, it satisfies the requirement of AM. Ad-



IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, VOL. , NO. , MARCH 2025 19

ditionally, each shard functions as a coordinator by executing
the BFT consensus protocol, eliminating the risk of a single
point of failure. Consequently, it satisfies LN. An analysis
of the cross-shard consensus process reveals that 4P-2PC can
process four transaction batches simultaneously within a single
voting round, thus satisfying PL. However, due to the lack of
concurrency control, it does not satisfy IL. From a security
perspective, as each shard utilizes BFT consensus, it satisfies
FAR. However, it lacks countermeasures to mitigate RAR
and CAR, as it fails to incorporate a global perspective and
response binding mechanisms. This vulnerability arises from
insufficient oversight of the leader’s behavior within the shard
and the risk of an attacker replaying the response message
in a different protocol instance. Additionally, IN remains
unexplored. Regarding applicability, CHERUBIM supports
two trading models but does not specify support for smart
contracts, thereby satisfying ME but not CE. The integra-
tion of pipelining and multi-signature protocols significantly
reduces communication overhead, resulting in a cross-shard
communication complexity of O(m + n). With 20 shards,
each containing 60 nodes, the system achieves a throughput
of 49,700 TPS and a transaction confirmation latency of 3.45
seconds.

2) Cross-Shard BFT Mechanisms: Sharper [66] employs
DAG techniques to preserve a global transaction sequence
and introduces a flat consensus protocol to coordinate cross-
shard transaction ordering. The cross-shard consensus process
in the presence of Byzantine nodes comprises three stages:
propose, accept, and commit. As illustrated in Fig. 9, a client
first submits a cross-shard transaction request to any node in
the relevant shard. The receiving node assumes the role of
the primary node, initiating the consensus protocol across all
relevant shards. The primary node broadcasts a proposal to all
nodes, and each node then collects at least 2f + 1 matching
messages from each shard before advancing to the next phase.
Once a sufficient number of commit messages are collected,
the node executes and finalizes the cross-shard transaction,
satisfying AM. An analysis of this consensus process reveals
that Sharper integrates the Byzantine consensus protocol into
cross-shard consensus, triggering a view change upon node
failure or timeout. Additionally, Sharper enforces a total order
among transactions accessing the same data. Consequently,
it satisfies the requirements of LN and IL. However, PL is
not addressed. From a security perspective, the consensus
mechanism of Sharper functions as a Byzantine consensus
protocol encompassing all participating nodes, providing re-
silience against three potential attacks. Consequently, FAR,
RAR and CAR are satisfied. Since Sharper lacks incentives
for node participation in cross-shard transactions, it does
not fulfill the requirement of IN. With a setup of 4 shards
and 4 nodes, where all transactions are cross-shard, Sharper
processes 7,500 transactions with a latency of 700 ms. The
cross-shard communication complexity is O(m2n2), where m
denotes the shard size and n denotes the number of nodes.
As Sharper exclusively supports the account model and lacks
references to smart contract compatibility, it does not satisfy
CE or ME.

FS [21] proposes the parallel Cross-Shard BFT protocol,

CSBFT, enabling each node to function as both a leader and a
backup across multiple concurrent CSBFT instances. During
both the cross-preparation and cross-commitment phases, each
shard leader initiates proposals and gathers at least 2f+1 votes
within its shard before forwarding them to the coordinator
shard leader. The coordinator shard leader aggregates the
received messages into a confirmation message and dissem-
inates it to all shard leaders. Subsequently, the shard leader
broadcasts the confirm message within the shard. Once honest
nodes verify it, the transaction is deemed committed. CSBFT
employs a two-layer HotStuff protocol, ensuring consistency
and mitigating single points of failure, thereby satisfying
AM, LN, and IL. Furthermore, since a node can participate
in multiple consensus rounds concurrently, CSBFT functions
as a variant of the pipeline mechanism, satisfying PL. If a
shard leader exhibits malicious behavior, other shards swiftly
generate and transmit cross-shard view change messages to
the target shard, ensuring the cross-shard view mechanism
effectively mitigates FA and CA. Thus, it satisfies FAR and
CAR. However, CSBFT does not address IN due to the ab-
sence of incentives. Under an experimental setup of 128 nodes
and 36 shards, with an average of 2 input shards, FS achieves
a throughput of approximately 32,000 TPS and a latency of
2.2 seconds. The leader aggregates and distributes messages
twice, yielding a cross-shard communication complexity of
O(m+ n).

In sharded blockchain systems, smaller shards are suscep-
tible to corruption, compromising overall system security. As
a result, existing studies favor larger shards, which substan-
tially limit transaction concurrency in large-scale blockchain
sharding systems. Cochain [89] introduces the Consensus on
Consumes (CoC) protocol, enabling multiple shards to form a
CoC group that oversees smaller member shards. If a member
shard is found to be corrupted, CoC swiftly replaces it with an-
other, ensuring each shard maintains a 2/3 fault tolerance rate.
To validate intra-shard consensus results, each member shard
executes transactions via the PFBT protocol and transmits
the results to other shards using Cross-Shard BFT. A cross-
shard transaction is relayed to the target shard only after the
source shard’s block is confirmed by the CoC protocol, thereby
satisfying AM. The CoC protocol ensures isolation to pre-
vent transaction conflicts, thereby supporting IL. Furthermore,
Cochain improves processing efficiency through a pipeline
mechanism, enabling shards to optimistically generate new
blocks while awaiting consensus verification, thus satisfying
LN and PL. From a security perspective, the CoC group
verifies intra-shard consensus results, effectively mitigating
three distinct types of potential attacks. Thus, FAR, RAR and
CAR are supported. However, CoC does not address IN. Under
an experimental setup with 6,100 nodes and 10 shards, where
each block accommodates up to 4,096 transactions, the system
achieves a throughput of 65,066 TPS and an approximate la-
tency of 40 seconds. The cross-shard communication overhead
is O(m2 + n2). Cochain supports multi-asset transactions but
does not mention smart contract functionality, satisfying ME
but not CE.

3) Cross-shard Transaction Splitting Mechanisms: To re-
duce the overhead introduced by centralized 2PC on clients,
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RapidChain [6] employs a transaction-splitting mechanism to
handle cross-shard transactions. The output shard splits cross-
shard transactions into multiple sub-transactions, generating
several UTXOs equivalent in number to those of the input
shard designated for expenditure. Upon receiving a sub-
transaction, each input shard verifies it using intra-shard BFT
protocol [97] with 50% fault tolerance in a synchronous
network, and then returns the result to the output shard. If
one sub-transaction fails and the others succeed, the sharded
blockchain uses the funds in future transactions by notifying
the owner of the funds, effectively achieving the same outcome
as a transaction rollback. Therefore, Rapidchain satisfies AM.
Besides, the output committee uses batching verification re-
quests at each round, thus PL is supported. However, since
transactions are split into multiple sub-transactions, if one
of these sub-transactions fails while another conflicts with
concurrent transactions, the entire transaction may fail simulta-
neously. Therefore, the mechanism cannot satisfy IL. Regard-
ing transaction activity, the client solely initiates transactions
without participating in coordination, thereby preventing funds
from being locked indefinitely and satisfying LN. From a
security perspective, RapidChain supports FAR. However, ma-
licious nodes can still replay response messages and withhold
acknowledgments to launch attacks, rendering RapidChain in-
capable of satisfying RAR and CAR. Since RapidChain lacks
incentives for nodes to participate in cross-shard transactions,
it does not support IN. Under an experimental setup with 4,000
nodes and 250 shards, where each transaction block contains
4,096 transactions, the system achieves a throughput of 7,384
TPS with a latency of 8.84 seconds. With the implementation
of the Kademlia routing mechanism [98], the cross-shard
communication overhead is only O(m2 +m log n).

4) Relay Transaction Mechanisms: Monoxide [15] intro-
duces an eventual atomicity scheme to efficiently manage
cross-shard transactions, ensuring correctness and robustness
in asynchronously operating shards. As illustrated in Fig.
11(a), Monoxide decomposes cross-shard transactions into
multiple steps, each involving a single shard, and incentivizes
miners to execute these steps via relay transactions. This
mechanism guarantees the eventual completion of all opera-
tions, achieving the correct end state and thereby satisfying
AM. Eventual atomicity enables transactions to interleave
asynchronously and without locks, ensuring shard concurrency
and full utilization. Thus, Monoxide satisfies LN. However,
neither IL nor PL is explored. The Chu-ku-nu mechanism
allows miners to generate multiple blocks concurrently across
different zones using a single PoW consensus protocol with
1/2 Byzantine fault tolerance. Monoxide ensures transaction
security by requiring the source shard’s block to confirm the
initial transaction and the target shard’s first block to confirm
the relay transaction. There remains a certain probability that
the ledger of the source exchange will be replaced by another
ledger. However, unlike immediate sharded blockchains, the
eventual sharded blockchain relies on probabilistic block con-
firmations within each shard. There is a probability that the
source shard ledger may be replaced by an alternative ledger.
Security analysis indicates that Monoxide fails to support
FAR and CAR, but supports RAR. Monoxide introduces

fee splitting for cross-shard transactions, incentivizing the
relayed step of transaction processing and thereby supporting
IN. Furthermore, Monoxide expands its support from asset
transactions to smart contracts, thereby satisfying CE but
not ME. In a setup with 2,048 shards and 24 nodes per
shard, Monoxide achieves a throughput of 11,694 TPS with a
latency of 13–21 seconds. When n shards, each containing m
nodes are involved, the cross-shard communication overhead
is O(m+ n).

Advanced blockchain sharding solutions, such as Monoxide,
experience issues of load imbalance and an elevated proportion
of cross-shard transactions. Brokerchain [16], [17] employs
fine-grained status partitioning and account segmentation,
integrating them with broker accounts to facilitate cross-
shard transactions. As illustrated in Fig. 11(b), user accounts
pledge a portion of their funds to become brokers, whose
status is partitioned and distributed across multiple shards.
During cross-shard transaction consensus, the broker divides
the transaction into two parts, executing one on the source
shard and the other on the target shard. The broker creates
the latter part only after the source shard confirms the former
part. Subsequently, the target account validates the broker’s
transaction, prompting the source shard to release the locked
funds. Therefore, Brokerchain can satisfy AM. Moreover, if
the transaction remains unconfirmed within the designated
token-lock period, the source shard refunds the token to the
sender, clearly satisfying LN. The absence of concurrency
control and parallelism techniques results in Brokerchain not
supporting PL and IL. Regarding security, each shard validates
transactions through the PBFT protocol, ensuring consensus
with a fault tolerance threshold of 1/3. Additionally, each
account in Brokerchain maintains a nonce counter, and cross-
shard transactions incorporate a token-lock duration. These
mechanisms provide partial protection against three potential
attacks. Thus, FAR, RAR and CAR are supported. Brokerchain
incorporates an incentive mechanism to encourage users to
act as brokers, thereby satisfying IN. The performance of
BrokerChain was evaluated in an environment with 112 nodes
and 16 shards, featuring an 8-second block interval and a
block capacity of 500 transactions. The system maintains a
fixed transaction arrival rate of 500 and utilizes 40 broker
accounts. BrokerChain attains an average throughput of 352
TPS with an acknowledgment latency of 275.94 seconds. The
cross-shard communication complexity is O(m2 + n), where
n denotes the number of shards and m represents the size
of each shard. Finally, as Brokerchain solely processes asset
transactions under the Account/Balance model, neither CE nor
ME is supported.

X-shard [53] adopts an optimistic approach to concurrently
process cross-shard transactions as sub-transactions within
input shards, thereby improving transaction processing effi-
ciency. It establishes a gateway account in each shard to facil-
itate transactions with other shards. The input shard decom-
poses a cross-shard transaction into multiple sub-transactions,
jointly signed using a threshold signature scheme. Subse-
quently, the funds are transferred to the gateway account of the
designated output shard. If all sub-transactions achieve intra-
shard PBFT consensus, the output shard incorporates the com-
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plete cross-shard transaction into the blockchain. Conversely,
if any sub-transaction fails validation, a rollback transaction
is generated to revert the processed sub-transaction. Thus,
X-shard satisfies AM. Furthermore, X-shard implements a
timestamp-based verification period mechanism, mandating
each shard to complete verification within a predefined time
frame upon receiving cross-shard transactions and their corre-
sponding sub-transactions. Hence, LN is satisfied. Analyzing
X-shard’s handling of concurrent transactions, we find that it
satisfies IL, as it employs OCC to process MIMO-type cross-
shard transactions. Additionally, the batch signing mechanism
of threshold signatures allows X-shard to support PL. Regard-
ing security, X-shard incorporates timestamps and threshold
signatures, effectively mitigating three potential attacks. There-
fore, FAR, RAR and CAR are satisfied. However, IN remains
unexplored. In an experimental setup with 16 shards and 10
nodes per shard, a transaction arrival rate of 3,000 TPS, and
a maximum block size of 100 transactions, X-shard attains a
peak throughput of 1,200 TPS while maintaining an optimal
communication overhead of O(m2 + n). X-shard exclusively
supports asset transactions under the MIMO model, thereby
satisfying ME but not CE.

5) Decoupling Mechanisms: Benzene [67] employs a dual-
chain architecture to separate transaction recording from con-
sensus execution. The Proposer chain autonomously records
transactions within the shard and generates proposal blocks
containing local transactions, whereas the Vote chain facilitates
cross-shard collaboration and verifies proposal blocks from
other shards through voting. For local transaction confirmation,
miners aggregate multiple transactions into proposal blocks
using PoW consensus and submit them to TEE for verification.
Subsequently, miners broadcast the proposed block header and
TEE proof to the entire network. Miners in other shards cast
votes for valid proposal blocks, generate voting blocks, and
disseminate them. Finally, the proposal block with the highest
number of votes, determined by both the vote blocks and
local proposal blocks, is recorded in the ledger. This voting
design allows Benzene to effectively mitigate FA and RA.
However, miners can still withhold blocks, and Benzene lacks
a countermeasure against CA. Security analysis indicates that
Benzene supports FAR and RAR, but fails to address CAR.
Cross-shard transactions attain eventual atomicity via a two-
phase confirmation process executed asynchronously. The con-
sensus process functions as a TEE-assisted relay transaction
mechanism. Thus, Benzene satisfies AM and LN. Further-
more, Benzene enhances the confirmation process for cross-
shard transactions by employing batch processing, thereby
supporting PL. However, IL and IN remain unexplored. In
an experimental setup with 50 shards, Benzene achieves a
throughput of 32,370 TPS with a latency of 13 seconds. The
cross-shard communication overhead is O(m + n) where n
denotes the number of shards and m represents the size of each
shard. Regarding applications, Benzene does not support CE
and ME, as neither smart contracts nor MIMO are addressed.

Jenga [90] introduces a novel sharding-based approach
for efficient smart contract execution, primarily requiring all
state shards to retain the contract’s execution logic while
establishing an orthogonal execution channel for each state

shard. Each channel operates orthogonally to all state shards,
enabling concurrent transaction execution and interaction with
state shards via orthogonal subsets, thereby eliminating cross-
shard communication. Building upon these concepts, Jenga
introduces a three-phase cross-shard consensus protocol. Dur-
ing cross-shard consensus, the state shard first determines the
required transaction state and broadcasts it to the execution
channel via the subgroup. Upon receiving the state, the exe-
cution channel initiates the counter and executes all relevant
contracts. Once the state counter is restored, the execution
channel transmits the execution result back to the state shard
via the subgroup. Finally, the state shard updates the state
and records the transaction on the blockchain. Thus, Jenga
satisfies AM. Additionally, Jenga prevents client blocking
by requiring a fee pledge, thereby satisfying LN. However
IL and PL remain unexplored. Regarding security, Jenga’s
consensus protocol, integrated with contract state sharing and a
multi-channel execution mechanism, mitigates three potential
attacks. Therefore, FAR, RAR and CAR are satisfied. Further-
more, to deter malicious client behavior, the system requires
clients to pledge fees before engaging in cross-shard trans-
actions. This mechanism serves as a variant of the incentive
mechanism, thereby supporting IN. In an experimental setup
with 12 shards and 240 nodes per shard, each node verifies
up to 4,096 transactions of 512 bytes per consensus round.
With 20% of nodes designated as malicious, Jenga achieves
a throughput of 4,300 TPS and a latency of 11 seconds.
Additionally, as Jenga does not specify support for MIMO-
type transactions, it satisfies CE but not ME.

6) Multi-layer Sharding Mechanisms: Pyramid [91] intro-
duces a layered sharding consensus mechanism that leverages
collaboration among multiple shards to ensure consistency.
The layered sharding mechanism categorizes nodes into in-
ternal shards (i-shards) and bridge shards (b-shards). b-shards
maintain the complete ledger of their associated i-shards and
achieve cross-shard block consensus using a BFT-type protocol
combined with CoSi. During each round of cross-shard trans-
action consensus, the b-shard generates a cross-shard block
and transmits it to the relevant i-shards. The block is submitted
only after receiving acceptance messages from all relevant i-
shards. For cross-shard transactions spanning multiple shards,
Pyramid decomposes them into multiple steps and processes
them using a relay mechanism to address b-shard overlap
constraints. Thus, Pyramid satisfies AM and LN. Furthermore,
to prevent transaction conflicts, the i-shard randomly selects
one block for acceptance while rejecting the others, thereby
satisfying IL. Regarding security, Pyramid incorporates 1/3
Byzantine fault tolerance within each shard, supplemented
by hierarchical verification mechanisms to confirm blocks,
thereby supporting FAR and RAR. However, due to the limited
overlap range of b-shards, it may still face the risk of block
withholding and thus does not support CAR. However, as
Pyramid lacks an incentive mechanism for nodes involved
in cross-shard transactions, it does not support IN. Since
Pyramid does not employ pipelining or batching to accelerate
consensus, it does not fulfill PL. In an experimental setup with
3,500 nodes and 17 shards, each node verifies up to 4,096
transactions per consensus round. Pyramid attains a throughput
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of 110,500 TPS with a latency of 5 seconds. For n shards,
each comprising m nodes, the cross-shard communication
overhead is O(m + n). Since Pyramid explicitly introduces
multi-step transactions covering both money transfers and
smart contracts, it supports CE and ME.

To mitigate high abort rates caused by nondeterministic race
conditions, PROPHET [54] guarantees conflict-free execution
through a two-layer sharding architecture. This architecture
operates through the collaboration and supervision of recon-
naissance coalitions, a sequence shard, and executing shards.
PROPHET employs a cooperative consensus mechanism com-
prising four phases: pre-execution, sequencing, execution, and
verification. Initially, it leverages untrusted, self-organizing
node coalitions from distinct shards to pre-execute cross-shard
transactions, including smart contracts, to derive prerequisite
ordering information. Subsequently, it constructs a trusted
global order via stateless ordering and post-verification of
pre-execution results. Following this order, shards systemat-
ically execute and record transactions conflict-free. At the
conclusion of each round, shards broadcast their verification
outcomes. Meanwhile, PROPHET employs an asynchronous
correction mechanism, enabling shards to process transactions
without waiting for proofs from all other shards, thereby
alleviating transaction blocking. If subsequent proof deems
a transaction invalid, PROPHET rolls back the transaction
along with its state changes. Thus, PROPHET satisfies AM
and LN. Moreover, deterministic global ordering eliminates
transaction conflicts, thereby satisfying IL. Regarding security,
the reconnaissance coalition, sequence shard, and execution
shards all employ PBFT with 1/3 Byzantine fault tolerance
to establish intra-shard consensus. Together with deterministic
global ordering and the asynchronous correction mechanism,
PROPHET effectively resists three potential attacks. There-
fore, PROPHET satisfies the requirements of FAR, RAR, and
CAR. During cross-shard consensus, PROPHET incentivizes
reconnaissance coalitions by allocating transaction fees for
successfully committed pre-executed transactions, thereby sat-
isfying IN. Additionally, due to the absence of batching and
pipelining, PL is not supported. In an experimental setup
with 64 shards and 50 nodes per shard, the proportion of
malicious nodes is fixed at 12.5%. PROPHET attained a
throughput of 1,203 TPS with a latency of 2.5 seconds. With
BLS signatures implemented within each shard, the cross-
shard communication overhead is O(m + n2). Furthermore,
since PROPHET is designed for smart contracts and does not
support MIMO-type asset transactions, it satisfies CE but not
ME.

DC chain [68] introduces a Decentralized Coordinator (DC)
and a robust two-layer consensus protocol to accelerate cross-
shard consensus. The DC consists of primary nodes and
maintains a verifiable global state database, preemptively
aborting conflicting transactions and thereby satisfying IL.
Moreover, the consensus protocol finalizes valid cross-shard
transactions via efficient interactions between the DC and
participating shards. During cross-shard consensus, the DC
initially partitions cross-shard transactions, including smart
contracts, into sub-transactions and establishes consensus on
the sub-transaction proposals. Subsequently, DC members

forward the transaction to the local shard for verification. Local
shards process sub-transactions via a variant of the SBFT [99]
protocol, with the leader returning the result to the client.
Thus, DC chain satisfies AM. Furthermore, after achieving
consensus on a cross-shard transaction, the source and target
shards can proceed with new transactions without waiting for
mutual confirmation, thereby satisfying LN. However, due to
the lack of batching, pipelining, and incentive mechanisms, PL
and IN are not supported. By incorporating timers and BLS
signatures at each stage of cross-shard consensus, along with
a verifiable global database, the DC demonstrates resilience
against three potential attacks. Therefore, the requirements
of FAR, RAR, and CAR are satisfied. Under experimental
conditions with 5 shards, each comprising 4 nodes, and a
fixed transaction distribution of 10% cross-shard transactions,
DC chain achieves a throughput of 200 TPS. As DC Chain
employs a two-tier consensus protocol and integrates the linear
SBFT protocol within each shard, its cross-shard communica-
tion overhead is O(m+n). Regarding applicability, DC Chain
supports both CE and ME, as it accommodates smart contracts
and multi-input transactions.

C. Evaluation and Discussion
Table IV presents the evaluation results from ten studies

on cross-shard transaction optimization schemes. The primary
objective of these schemes is to minimize cross-shard com-
munication overhead while maintaining workload balance.
Therefore, they should satisfy three key evaluation criteria:
GL, AP and WB, while minimizing the CTR. Based on the
literature review, six studies meet the GL, indicating that most
solutions consider historical transaction patterns and imple-
ment predictive transaction allocation strategies. Regarding
WB, nine studies fulfill this criterion, demonstrating a growing
research emphasis on improving shard utilization to optimize
workload distribution. However, only four studies support AP,
with two of them relying on a polling-based mechanism. AP
refers to the capacity of a transaction allocation strategy to
dynamically adjust to network load fluctuations during the
consensus process, thereby allowing the system to dynamically
optimize transaction allocation based on real-time network
conditions. By integrating the findings on workload balance, it
becomes evident that most studies adjust account distribution
only during the reconfiguration phase, without integrating a
load-aware module into the consensus process. This limitation
hinders the system’s ability to efficiently handle transaction
surges and network fluctuations. Therefore, future research
should focus on account migration mechanisms to strengthen
the system’s adaptability and resilience, ultimately improving
the efficiency and stability of cross-shard transaction process-
ing.

Table V summarizes the statistical results of 19 studies
on cross-shard transaction processing mechanisms. The core
objective of these mechanisms is to improve the efficiency of
transaction processing while ensuring transaction reliability. A
review of the relevant literature reveals that AM and LN, which
are critical properties to maintain consistency and facilitate
fault recovery in distributed systems [45], have been imple-
mented in nearly all existing solutions. However, only around
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60% of the surveyed mechanisms satisfy the IL requirement,
highlighting the absence of a universally effective approach
for handling cross-shard transaction conflicts. A detailed case-
based analysis reveals that existing approaches primarily rely
on concurrency control strategies such as 2PL and OCC to
handle transaction conflicts. Although these strategies mitigate
conflicts to some extent, high locking rates and rollback fre-
quencies may lead to decline in overall transaction processing
efficiency. Additionally, our study reveals that only a few so-
lutions, mainly those based on relay transaction mechanisms,
incorporate IN. Regarding SE, the incentive mechanisms for
cross-shard transactions require further exploration to ensure
fair profit distribution and punish malicious nodes. Notably,
only eight of the 19 studies address CE. As a key technology
capable of adapting to diverse application requirements, smart
contracts play a crucial role in the practical adoption of
sharding schemes. Therefore, dedicated research on smart con-
tract transaction processing mechanisms is necessary. Finally,
in terms of PL, the support provided by existing solutions
remains insufficient. Considering the high CO and the critical
role of PL for enhancing transaction processing efficiency, fu-
ture research should further explore the potential of pipelining
and other acceleration technologies in cross-shard transactions
to optimize overall transaction execution and communication
performance.

VI. OPEN ISSUES AND FUTURE DIRECTIONS

Based on the review and comparison of the literature, this
section identifies several open issues and suggests future re-
search directions to advance research on CTAOP mechanisms.

A. Efficient and Secure Account Migration

1) Open Issue: Adaptability is overlooked in most existing
transaction allocation optimization schemes. To reduce cross-
shard transactions while ensuring workload balance, state-of-
the-art studies [65], [69], [70] periodically assign frequently
interacting accounts to the same shard, but neglect to respond
to network load fluctuations within an epoch. Account migra-
tion mechanisms satisfy adaptability to a certain extent, but
existing mechanisms still face issues regarding security and
efficiency. In the context of blockchain sharding, developing
efficient and secure account migration mechanisms requires
addressing numerous detailed considerations.

2) Future Research Direction: To ensure the robustness
of the account migration process, three aspects need to be
further studied: efficiency, security; and cost-economy. Firstly,
account migration entails managing the state of an account
and all its associated transactions, resulting in a substantial in-
crease in transaction confirmation latency. Therefore, improv-
ing transaction efficiency during account migration is essential.
A potential solution involves fine-tuning locking of accounts
to process deposit transactions exclusively in real-time [100].
Second, simplistic account migration schemes are susceptible
to various types of attacks. Thus, the migration mechanism
must be meticulously designed to ensure both consistency and
liveness throughout the migration process while incorporating
an effective recovery mechanism for potential failures, such

as migration timeout [101]. Finally, when accounts migrate
between shards, state data must be synchronized, resulting in
significant synchronization overhead and performance reduc-
tion in a real-world scenario. Consequently, it is imperative to
design cost-effective account migration and state synchroniza-
tion schemes. For example, LB-Chain and tMPT [102] provide
valuable insights. LB-Chain mitigates unnecessary migrations
by leveraging LSTM to predict active entities, while tMPT
reduces the volume of state synchronization data by pruning
inactive entities within the Merkle Patricia Trie (MPT).

B. Deterministic Parallelism

1) Open Issue: Although some cross-shard transaction pro-
cessing mechanisms introduce concurrency control strategies
such as 2PL and OCC to ensure isolation, researchers have
observed that these solutions perform much less effectively
than expected in practical applications. The poor performance
can be attributed to inherent conflicts among cross-shard trans-
actions, as well as the independent and stochastic scheduling
of these transactions across different shards [73]. Specifi-
cally, each shard schedules local transactions independently
and lacks a mechanism to coordinate a globally consistent
transaction order. As a result, the execution order of cross-
shard transactions may be inconsistent across shards, leading
to unexpected and unavoidable conflicts. However, traditional
concurrency control cannot guarantee global determinism and
ultimately resolves conflicts through rollback or abort, sacri-
ficing throughput and increasing latency.

2) Future Research Direction: The literature calls for the
development of deterministic execution schemes to address
the challenges of uncertain competition. One promising ap-
proach is to establish a transaction execution order before
processing pending transactions, thereby reducing the failure
rate and its associated negative impacts [73]. This approach
aligns with Deterministic Concurrency Control (DCC) algo-
rithms in distributed environments, which eliminate the need
for costly commitment protocols by ensuring that different
replicas independently produce identical results from the
same input transactions [103]. State-of-the-art deterministic
databases, such as BOHM [104], Calvin [105], and Aria
[106], implement DCC through various methods. Specifically,
BOHM constructs a dependency graph from a batch of input
transactions by analyzing their read/write sets. Calvin involves
acquiring read/write locks before executing transactions, ad-
hering to a predefined order of input transactions. Aria runs
an identical batch of transactions for each replica using a
consistent database snapshot and resolves conflicts uniformly.
These deterministic execution schemes offer valuable insights
for addressing uncertain competition problems in cross-shard
transaction processing.

C. Appropriate Reward and Punishment

1) Open Issue: We have observed that few mechanisms,
such as the relay transaction mechanism, incorporate incen-
tives, while most cross-shard transaction processing solutions
overlook this aspect. Additionally, to the best of our knowl-
edge, there is limited research on the detailed design and



IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, VOL. , NO. , MARCH 2025 24

theoretical analysis of reward-and-punishment mechanisms
for cross-shard transactions, particularly in terms of ensuring
transaction fairness and holding malicious nodes accountable.
Therefore, designing an appropriate reward and punishment
mechanism is crucial to incentivize honest and proactive
behavior among participating nodes.

2) Future Research Direction: It is highly recommended to
explore reward and punishment mechanisms to encourage par-
ticipation in cross-shard transaction processing. First, sharded
blockchain systems should develop fair incentive mechanisms
to motivate miners to engage in cross-shard transactions. Due
to the isolation of shard ledgers, most cross-shard transaction
processing mechanisms require an additional round of consen-
sus to reach agreement. This imposes high costs and security
risks on the nodes involved in cross-shard transactions. For
example, in the 2PC protocol, the leader is responsible for
gathering, consolidating, and transmitting messages across
shards. As a result, the leader incurs greater communication
and computation overhead compared to other nodes and should
therefore receive higher rewards [107]. Furthermore, account-
ability mechanisms for malicious nodes must be investigated.
For instance, in the 2PC protocol, the leader of a local shard
may fail to forward the availability certificate to other related
shards, thereby obstructing cross-shard consensus. To address
this, a reputation mechanism could be introduced to monitor
node behavior. The reputation value would be calculated based
on predefined algorithms that evaluate node actions. If a node
exhibits untrustworthy behavior and its reputation value falls
below a certain threshold, its participation rights could be
revoked, or its share of profits should be reduced [108].

D. Efficient Cross-shard Contract Invocation

1) Open Issue: Previous solutions have primarily focused
on simple asset transfers and non-nested smart contracts, often
overlooking the challenge of efficiently supporting complex
contract transactions. Executing a contract may involve ac-
cessing states from multiple contracts, making it difficult to
decompose the contract into independent operations. For a
complex cross-shard contract that requires a series of nested
invocations to other cross-shard contracts, named chained
calls2, the confirmation latency increases linearly with the
number of participating contracts [109]. Moreover, these
complex cross-shard contracts may involve cyclic calls3 to
contracts managed by other shards, potentially leading to
deadlocks and negatively impacting smart contract availability
[110]. Therefore, designing an efficient cross-shard contract
invocation mechanism is essential to address these challenges.

2) Future Research Direction: Given the complexity of
smart contracts, designing a flexible and efficient cross-shard
contract invocation mechanism is a promising area of research.
One potential solution involves refactoring the execution-store
architecture of blockchain sharding. For instance, Jenga [90]
addresses the isolation among shards by coordinating state

2Chained calls refer to scenarios where the execution of one smart contract
triggers the invocation of another contract, which may, in turn, invoke
additional contracts, creating a unidirectional, chain-like dependency.

3Cyclic calls, on the other hand, occur when multiple contracts establish a
closed-loop interdependency, forming cyclic relationships.

storage and execution logic, enabling complex transactions
involving multiple contracts to be processed by a single
execution shard in a single round. Another promising direction
is to enhance the execution speed of smart contracts. Off-
chain computing, leveraging the robust capabilities of Trusted
Execution Environments (TEEs), offers a way to securely
perform complex computations with privacy preservation off-
chain while submitting only essential state information and
execution results on-chain [111]. However, since TEEs are
vulnerable to attacks, establishing a robust remote authenti-
cation mechanism is critical to enhancing their security and
fostering trusted on-chain and off-chain interactions [112].

E. Efficient Communication

1) Open Issue: High cross-shard communication overhead
continues to hinder sharding performance and limit blockchain
scalability. There remains significant potential for further op-
timizing cross-shard communication. Most cross-shard trans-
action processing mechanisms require coordination among
related shards to reach consensus. As the number of shards
increases, communication overhead inevitably becomes exces-
sive. This issue is particularly pronounced in distributed 2PC
protocols and Cross-Shard BFT mechanisms. For instance,
when the distributed 2PC protocol processes multi-input cross-
shard transactions, each shard transmits a unique availability
certificate for each input to all other involved shards. In
a typical scenario where a cross-shard transaction involves
i input shards and j output shards, the message exchange
volume reaches i2 + i ∗ j [113]. To enhance the efficiency of
cross-shard transaction processing, communication overhead
must be consistently optimized.

2) Future Research Direction: Further research is highly
encouraged to optimize communication efficiency among
shards. One promising approach is to introduce a batch cer-
tification mechanism that proves the availability of multiple
inputs within a single certificate. A potential implementation
of this approach could leverage the Merkle tree technique to
create a single certificate encapsulating multiple input avail-
abilities, which is then shared with relevant shards after achiev-
ing BFT consensus within the shard. Additionally, advanced
encoding techniques can be explored to reduce the volume
of data exchanged between shards. For example, Polyshard
[114] and the 2-Dimensional Sharding Scheme [115] propose
computational redundancy encoding schemes. These allow
nodes to decode and recover original transaction information
after receiving a certain number of encoded pieces, eliminating
the need for all data to be transmitted. Finally, node allocation
strategies should be further refined by considering such factors
as geographical distance [116]. By minimizing the number
of communication rounds between distant nodes, the overall
communication efficiency of the globally sharded blockchain
can be significantly improved.

F. Comprehensive and Modular Experimental Platforms

1) Open Issue: Currently, there is a lack of reliable sim-
ulation or experimental platforms for validating the CTAOP
mechanisms proposed by researchers. The implementation of
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sharded blockchain mechanisms is often tailored to the devel-
opment of specific consensus algorithms. Many researchers
modify existing blockchain platforms, such as Bitcoin and
Ethereum, to conduct experiments. However, these platforms
either lack native support for sharding or have sharding com-
ponents that are tightly integrated with other system elements,
making performance evaluation and comparison with prior
research challenging [117].

2) Future Research Direction: As researchers advance
CTAOP mechanisms, there is a critical need for a compre-
hensive and modular sharded blockchain platform to serve
as a standardized experimental framework for performance
evaluation. This platform should, at minimum, include a
simulator with multiple essential components, such as transac-
tion allocation schemes, cross-shard consensus protocols, and
ledger management mechanisms [117]. Additionally, it must
support diverse performance metrics for blockchain evaluation
while providing modular interfaces to facilitate the design
and testing of new mechanisms. Existing platforms, such
as BlockEmulator [117] and ShardEval [118], offer sharded
blockchain simulation frameworks to enable users to evaluate
sharding performance. Expanding and refining these platforms
could significantly enhance research in this domain.

G. Sustainable Scenario-oriented Research
1) Open Issue: Application-oriented research in blockchain

sharding remains insufficient. While blockchain sharding
enhances the performance and scalability of traditional
blockchains, providing technical support for emerging appli-
cations, popular use cases—such as Web3 and Decentralized
Finance (DeFi)—are primarily centralized commercial projects
deployed on public blockchains [119]. These applications can-
not be directly integrated with sharded blockchains, creating
compatibility challenges between blockchain sharding mecha-
nisms and real-world scenarios. Addressing these challenges is
essential for developing practical sharded blockchain systems.

2) Future Research Direction: To transition CTAOP re-
search into large-scale applications, it is essential to address
compatibility challenges and achieve ecosystem integration.
For example, integrating decentralized ecosystems like Web3
with blockchain sharding requires designing architectures and
models tailored to domain-specific needs. Key research areas
include: defining interoperable interaction layers, establishing
criteria for client and validator node selection, and designing
transaction and ledger formats [120]. Furthermore, establish-
ing a bidirectional feedback loop driven by “technology R&D
– real-world application” is imperative. Huang et al. pioneered
research in this area by developing the Broker2Earn protocol
[121] based on a self-developed Brokerchain sharding archi-
tecture. This approach addresses inefficiency in fragmented
DeFi blockchains, improving processing speed and liquidity
utilization while introducing an incentive mechanism. The
success of BrokerChain in DeFi not only validates its feasi-
bility but also provides a replicable framework for translating
theoretical advancements into industrial applications. Ensuring
the sustainability of blockchain research, development, and ap-
plication becomes essential for promoting ecosystem upgrades
and long-term adoption.

VII. CONCLUSION

This survey provided a thorough review on existing CTAOP
mechanisms. We first provided a brief overview of cross-
shard transactions based on two transaction models (i.e., the
UTXO model and the Account/Balance model) and introduced
related basic concepts. Then, we proposed two sets of criteria
that should be satisfied by transaction allocation optimization
schemes and cross-shard transaction processing mechanisms,
respectively. After that, we provided the taxonomies of the two
types of CTAOP mechanisms. By employing our proposed cri-
teria, we thoroughly reviewed the existing literature of CTAOP
by following the taxonomies. Based on our comprehensive
review, we highlighted a number of open issues and proposed
a list of future research directions accordingly to guide future
research efforts on CTAOP mechanisms.
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