Hierarchiczna rekonstrukcja korelacji - między statystykami a uczeniem maszynowym

Prelegent: 

Jarosław Duda, Wydział Matematyki i Informatyki, Uniwersytet Jagielloński

Data: 

27/03/2019 - 13:00

Chociaż techniki uczenia maszynowego są bardzo potężne, mają pewne słabości, takie jak iteracyjna optymalizacja z wieloma lokalnymi minimami, duża swoboda parametrów, brak ich interpretowalności i kontrola dokładności. Z drugiej strony mamy klasyczne statystyki oparte na momentach, które nie mają tych problemów, ale dostarczają tylko przybliżonego opisu. W trakcie seminarium zostanie przedstawione podejście, które łączy ich zalety: z optymalnymi współczynnikami momentu MSE, ale zaprojektowanymi w taki sposób, że możemy je bezpośrednio przekształcić w gęstość prawdopodobieństwa. Dla przypadku wielowymiarowego taka podstawa momentów mieszanych asymptotycznie pozwala na dokładną rekonstrukcję dowolnej wspólnej dystrybucji, każdy współczynnik może być niezależnie i tanio oszacowany, ma jasną interpretację i mamy pewną kontrolę nad jego dokładnością. Przedstawione zostaną również jego dwie aplikacje: systematyczne ulepszanie modelowania ARMA / ARCH dla dowolnych momentów mieszanych i niestacjonarnych szeregów czasowych oraz ocena wiarygodności danych dotyczących dochodów: modelowanie ciągłego rozkładu prawdopodobieństwa warunkowego z dużej liczby zmiennych różnych typów. Slajdy dostępne pod adresem: https://www.dropbox.com/s/7u6f2zpreph6j8o/rapid.pdf

Historia zmian

Data aktualizacji: 09/05/2019 - 22:09; autor zmian: Jarosław Miszczak (miszczak@iitis.pl)

Chociaż techniki uczenia maszynowego są bardzo potężne, mają pewne słabości, takie jak iteracyjna optymalizacja z wieloma lokalnymi minimami, duża swoboda parametrów, brak ich interpretowalności i kontrola dokładności. Z drugiej strony mamy klasyczne statystyki oparte na momentach, które nie mają tych problemów, ale dostarczają tylko przybliżonego opisu. W trakcie seminarium zostanie przedstawione podejście, które łączy ich zalety: z optymalnymi współczynnikami momentu MSE, ale zaprojektowanymi w taki sposób, że możemy je bezpośrednio przekształcić w gęstość prawdopodobieństwa. Dla przypadku wielowymiarowego taka podstawa momentów mieszanych asymptotycznie pozwala na dokładną rekonstrukcję dowolnej wspólnej dystrybucji, każdy współczynnik może być niezależnie i tanio oszacowany, ma jasną interpretację i mamy pewną kontrolę nad jego dokładnością. Przedstawione zostaną również jego dwie aplikacje: systematyczne ulepszanie modelowania ARMA / ARCH dla dowolnych momentów mieszanych i niestacjonarnych szeregów czasowych oraz ocena wiarygodności danych dotyczących dochodów: modelowanie ciągłego rozkładu prawdopodobieństwa warunkowego z dużej liczby zmiennych różnych typów. Slajdy dostępne pod adresem: https://www.dropbox.com/s/7u6f2zpreph6j8o/rapid.pdf

Data aktualizacji: 11/03/2019 - 10:25; autor zmian: Zbigniew Puchała (zbyszek@iitis.pl)
While machine learning techniques are very powerful, they have some weaknesses, like
iterative optimization with many local minimums, large freedom of parameters, lack of their
interpretability and accuracy control. From the other side we have classical statistics based on
moments not having these issues, but providing only a rough description. I will talk about approach
which combines their advantages: with MSE-optimal moment-like coefficients, but designed such that
we can directly translate them into probability density. For multivariate case such basis of mixed
moments asymptotically allows to accurately reconstruct any joint distribution, each coefficient
can be independently and cheaply estimated, has a clear interpretation, and we have some control of
its accuracy. I will also present its two applications: systematic enhancement of ARMA/ARCH-like
modeling for any mixed moments and non-stationary time series, and for credibility evaluation of
income data: modeling continuous conditional probability distribution from a large number of
variables of various types. Slides: https://www.dropbox.com/s/7u6f2zpreph6j8o/rapid.pdf 
Data aktualizacji: 11/03/2019 - 10:25; autor zmian: Zbigniew Puchała (zbyszek@iitis.pl)
While machine learning techniques are very powerful, they have some weaknesses, like
iterative optimization with many local minimums, large freedom of parameters, lack of their
interpretability and accuracy control. From the other side we have classical statistics based on
moments not having these issues, but providing only a rough description. I will talk about approach
which combines their advantages: with MSE-optimal moment-like coefficients, but designed such that
we can directly translate them into probability density. For multivariate case such basis of mixed
moments asymptotically allows to accurately reconstruct any joint distribution, each coefficient
can be independently and cheaply estimated, has a clear interpretation, and we have some control of
its accuracy. I will also present its two applications: systematic enhancement of ARMA/ARCH-like
modeling for any mixed moments and non-stationary time series, and for credibility evaluation of
income data: modeling continuous conditional probability distribution from a large number of
variables of various types. Slides: https://www.dropbox.com/s/7u6f2zpreph6j8o/rapid.pdf 
Data aktualizacji: 11/03/2019 - 10:24; autor zmian: Zbigniew Puchała (zbyszek@iitis.pl)
While machine learning techniques are very powerful, they have some weaknesses, like
iterative optimization with many local minimums, large freedom of parameters, lack of their
interpretability and accuracy control. From the other side we have classical statistics based on
moments not having these issues, but providing only a rough description. I will talk about approach
which combines their advantages: with MSE-optimal moment-like coefficients, but designed such that
we can directly translate them into probability density. For multivariate case such basis of mixed
moments asymptotically allows to accurately reconstruct any joint distribution, each coefficient
can be independently and cheaply estimated, has a clear interpretation, and we have some control of
its accuracy. I will also present its two applications: systematic enhancement of ARMA/ARCH-like
modeling for any mixed moments and non-stationary time series, and for credibility evaluation of
income data: modeling continuous conditional probability distribution from a large number of
variables of various types. Slides: https://www.dropbox.com/s/7u6f2zpreph6j8o/rapid.pdf