Found 22 results
Filters: Autor is Tadeusiewicz, Ryszard  [Clear All Filters]
Patro KKumar, Allam JPrakash, Neelapu BChakravart, Tadeusiewicz R, U Acharya R, Hammad M, Yildirim O, Plawiak P.  2023.  Application of Kronecker convolutions in deep learning technique for automated detection of kidney stones with coronal CT images. Information Sciences. 640
Daoui A, Yamni M, Altameem T, Ahmad M, Hammad M, Plawiak P, Tadeusiewicz R, El-Latif AAAbd.  2023.  AuCFSR: Authentication and Color Face Self-Recovery Using Novel 2D Hyperchaotic System and Deep Learning Models. Sensors. 23
Kandukuri URani, Prakash AJaya, Patro KKumar, Neelapu BChakravart, Tadeusiewicz R, Plawiak P.  2023.  Constant Q–Transform–Based Deep Learning Architecture for Detection of Obstructive Sleep Apnea. International Journal of Applied Mathematics and Computer Science. 33
Sakr AS, Plawiak P, Tadeusiewicz R, Pławiak J, Sakr M, Hammad M.  2023.  ECG-COVID: An end-to-end deep model based on electrocardiogram for COVID-19 detection. Information Sciences. 619
Maher A, Qaisar SMian, Salankar N., Jiang F, Tadeusiewicz R, Plawiak P, EL-Latif AAAbd, Hammad M.  2023.  Hybrid EEG-fNIRS brain-computer interface based on the non-linear features extraction and stacking ensemble learning. Biocybernetics and Biomedical Engineering. 43
Avci D, Sert E, Dogantekin E, Yildirim O, Tadeusiewicz R, Plawiak P.  2023.  A new super resolution Faster R-CNN model based detection and classification of urine sediments. Biocybernetics and Biomedical Engineering. 43
Patro KKumar, Allam JPrakash, Hammad M, Tadeusiewicz R, Plawiak P.  2023.  SCovNet: A skip connection-based feature union deep learning technique with statistical approach analysis for the detection of COVID-19. Biocybernetics and Biomedical Engineering. 43
Głomb P, Cholewa M.  2015.  Experimental Evaluation of Selected Approaches to Covariance Matrix Regularization. Artificial Intelligence and Soft Computing. 9120:391-401.
Głomb P, Sochan A.  2014.  Surface Mixture Models for the Optimization of Object Boundary Representation. Artificial Intelligence and Soft Computing, Lecture Notes in Computer Science 8467. :703–714.
Blachnik M., Głomb P.  2012.  Do we need complex models for gestures? A comparison of data representation and preprocessing methods for hand gesture recognition Artificial Intelligence and Soft Computing Lecture Notes in Computer Science 7267. :477–485.
Pawlak Z.  2004.  Inference rules and decision rules. :102–108.